矩阵思维

矩阵思维
矩阵思维

前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。

可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊!

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。

事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。

大部分工科学生,往往是在学习了

一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说:

* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那

么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用?

* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?

* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?

* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?

* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?

* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?

* 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?

这样的一类问题,经常让使用线性代数已经很多年的人都感到为难。就好像大人面对小孩子的刨根问底,最后总会迫不得已地说“就这样吧,到此为止”一样,面对这样的问题,很多老手们最后也只能用:“就是这么规定的,你接受并且记住就好”来搪塞。然而,这样的问题如果不能获得回答,线性代数对于我们来说就

是一个粗暴的、不讲道理的、莫名其妙的规则集合,我们会感到,自己并不是在学习一门学问,而是被不由分说地“抛到”一个强制的世界中,只是在考试的皮鞭挥舞之下被迫赶路,全然无法领略其中的美妙、和谐与统一。直到多年以后,我们已经发觉这门学问如此的有用,却仍然会非常迷惑:怎么这么凑巧?

我认为,这是我们的线性代数教学中直觉性丧失的后果。上述这些涉及到“如何能”、“怎么会”的问题,仅仅通过纯粹的数学证明来回答,是不能令提问者满意的。比如,如果你通过一般的证明方法论证了矩阵分块运算确实可行,那么这并不能够让提问者的疑惑得到解决。他们真正的困惑是:矩阵分块运算为什么竟然是可行的?究竟只是凑巧,还是说这是由矩阵这种对象的某种本质所必然决定的?如果是后者,那么矩阵的这些本质是什么?只要对上述那些问题稍加考虑,我们就会发现,所有这些问题都不是单纯依靠数学证明所能够解决的。

像我们的教科书那样,凡事用数学证明,最后培养出来的学生,只能熟练地使用工具,却欠缺真正意义上的理解。

自从1930年代法国布尔巴基学派兴起以来,数学的公理化、系统性描述已经获得巨大的成功,这使得我们接受的数学教育在严谨性上大大提高。然而数学公理化的一个备受争议的副作用,就是一般数学教育中直觉性的丧失。数学家们似乎认为直觉性与抽象性是矛盾的,因此毫不犹豫地牺牲掉前者。然而包括我本人在内的很多人都对此表示怀疑,我们不认为直觉性与抽象性一定相互矛盾,特别是在数学教育中和数学教材中,帮助学生建立直觉,有助于它们理解那些抽象的概念,进而理解数学的本质。反之,如果一味注重形式上的严格性,学生就好像被迫进行钻火圈表演的小白鼠一样,变成枯燥的规则的奴隶。

对于线性代数的类似上述所提到的一些直觉性的问题,两年多来我断断续续地反复思考了四、五次,为此阅读了好几本国内外线性代数、数值分析、代数和数学通论性书籍,其中像前苏联的名著《数学:它的内容、方法和意义》、龚升教授的《线性代数五讲》、前面提到的 Encounter with Mathematics(《数学概观》)以及Thomas A. Garrity的《数学拾遗》都给我很大的启发。不过即使如此,我对这个主题的认识也经历了好几次自我否定。比如以前思考的一些结论曾经写在自己的 blog里,但是现在看来,这些结论基本上都是错误的。因此打算把自己现在的有关理解比较完整地记录下来,一方面是因为我觉得现在的理解比较成熟了,可以拿出来与别人探讨,向别人请教。另一方面,如果以

后再有进一步的认识,把现在的理解给推翻了,那现在写的这个snapshot也是很有意义的。

因为打算写得比较多,所以会分几次慢慢写。也不知道是不是有时间慢慢写完整,会不会中断,写着看吧。

--------------------------------------------------------------------------

今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。

总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。

我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三

维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,

上面的这些性质中,最最关键的是第4条。第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。而第3条太特殊,其他的空间不需要具备,更不是关键的性质。只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。

认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是

对应空间中允许的运动形式而已。

因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:

1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?

2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?

我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:

L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ..., xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。

L2. 闭区间[a, b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据魏尔斯特拉斯定理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。这样就把问题归结为L1了。后面就不用再重复了。

所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。这里头大有文章,因为向量表面上只是一列数,但是其实由于它的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。这是另一个问题了,这里就不说了。

下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。

线性空间中的运动,被称为线性变换。也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。那么,线性变换如何表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象

发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。

简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。(chensh,说你呢!)

可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。

接着理解矩阵、、、

我们说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。

不过在我这个《理解矩阵》的文章里,“运动”的概念不是微积分中的连续性的运动,而是瞬

间发生的变化。比如这个时刻在A点,经过一个“运动”,一下子就“跃迁”到了B点,其中不需要经过A点与B点之间的任何一个点。这样的“运动”,或者说“跃迁”,是违反我们日常的经验的。不过了解一点量子物理常识的人,就会立刻指出,量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,具有这样一种跃迁行为。所以说,自然界中并不是没有这种运动现象,只不过宏观上我们观察不到。但是不管怎么说,“运动”这个词用在这里,还是容易产生歧义的,说得更确切些,应该是“跃迁”。因此这句话

可以改成:

“矩阵是线性空间里跃迁的描述”。

可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁。再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。附带说一下,这个仿射空间跟向量空间是亲兄弟。做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。

一旦我们理解了“变换”这个概念,矩阵的定义就变成:

“矩阵是线性空间里的变换的描述。”

到这里为止,我们终于得到了一个看上去比较数学的定义。不过还要多说几句。教材上一般是这么说的,在一个线性空间V 里的一个线性变换T,当选定一组基之后,就可以表示为矩阵。因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基。线性变换的定义是很简单的,设有一种变换T,使得对于线性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有:

T(ax + by) = aT(x) + bT(y),

那么就称T为线性变换。

定义都是这么写的,但是光看定义还得不到直觉的理解。线性变换究竟是一种什么样的变换?我们刚才说了,变换是从空间的一个点跃迁到另一个点,而线性变换,就是从一个线性空间V的某一个点跃迁到另一个线性空间W的另一个点的运动。这句话里蕴含着一层意思,就是说一个点不仅可以变换到同一个线性空间中的另一个点,而且可以变换到另一个线性空间中的另一个点去。不管你怎么变,只要变换前后都是线性空间中的对象,这个变换就一定是线性变换,也就一定可以用一个非奇异矩阵来描述。而你用一个非奇异矩阵去描述的一个变换,

一定是一个线性变换。有的人可能要问,这里为什么要强调非奇异矩阵?所谓

非奇异,只对方阵有意义,那么非方阵的情况怎么样?这个说起来就会比较冗长了,最后要把线性变换作为一种映射,并且讨论其映射性质,以及线性变换的核与像等概念才能彻底讲清楚。我觉得这个不算是重点,如果确实有时间的话,以后写一点。以下我们只探讨最常用、最有用的一种变换,就是在同一个线性空间之内的线性变换。也就是说,下面所说的矩阵,不作说明的话,就是方阵,而且是非奇异方阵。学习一门学问,最重要的是把握主干内容,迅速建立对于这门学问的整体概念,不必一开始就考虑所有的细枝末节和特殊情况,自乱阵脚。

接着往下说,什么是基呢?这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。就这意思。

好,最后我们把矩阵的定义完善如下:

“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。就好像我们熟悉的面向对象编程中,一个对象可以有多个引用,每个引用可以叫不同的名字,但都是指的同一个对象。如果还不形象,那就干脆来个很俗的类比。

比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话。

好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:

若矩阵A与B是同一个线性变换的两个不同的描述(之所以会

不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:

A = P-1BP

线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。俗了一点,不过能让人明白。

而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系。关于这个结论,可以用一种非常直觉的方法来证明(而不是一般教科书上那种形式上的证明),如果有时间的话,我以后在blog里补充这个证明。

这个发现太重要了。原来一族相似矩阵都是同一个线性变换的描述啊!难怪这么重要!工科研究生课程中有矩阵论、矩阵分析等课程,其中讲了各种各样的相似变换,比如什么相似标准型,对角化之类的内容,都要求变换以后得到的那个矩阵与先前的那个矩阵式相似的,为什么这么要求?因为只有这样要求,才能保证变换前后的两个矩阵是描述同一个线性变换的。当然,同一个线性变换的不同矩阵描述,从实际运算性质来看并不是不分好环的。有些描述矩阵就比其他的矩阵性质好得多。这很容易理解,同一头猪的照片也有美丑之分嘛。所以矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个线性变换。

这样一来,矩阵作为线性变换描述的一面,基本上说清楚了。但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。

(三)

然而这一拖就是一年半。一年半以来,这两篇粗糙放肆的文章被到处转载,以至于在Google 的搜索提示中,我的名字跟“矩阵”是一对关联词汇。这对于学生时代数学一直很差的我来说,实在是令人惶恐的事情。数学是何等辉煌精致的学问!代表着人类智慧的最高成就,是人与上帝对话的语言。而我实在连数学的门都还没进去,不要说谈什么理解,就是稍微难一些的题目我也很少能解开。我有什么资格去谈矩阵这样重要的一个数学概念呢?

更何况,我的想法直观是直观,未见的是正确的啊,会不会误人子弟呢?因此,算了吧,到此为止吧,我这么想。

是时不时收到的来信逐渐改变了我的想法。

一年半以来,我收到过不下一百封直接的来信,要求我把后面的部分写出来。这些来信大部分是国内的网友和学生,也有少数来自正在国外深造的朋友,大部分是鼓励,有的是诚挚的请求,也有少数严厉斥责我不守承诺。不管是何种态度,这都表明他们对我这一点点小小的思考成果的鼓励,特别是对于我这种思维的视角和尝试的鼓励。他们在信中让我知道,尽管我的数学水平不高,但是我这种从普通人(而不是数学家)视角出发,强调对数学概念和规则的直觉理解的思路,对于很多人是有益的。也许这条路子在数学中绝非正道,也不会走得很远,但是无论如何,在一定的阶段,对一部分人来说,较之目前数学教材普遍采用的思路,这种方式可能更容易理解一些。既然是可能对一部分人有帮助的事情,那么我就不应该心存太多杂念,应该不断思考和总结下去。

所以,下面就是你们来信要求我写出来的东西。

首先来总结一下前面两部分的一些主要结论:

1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。

2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。

3. 运动是瞬时的,因此也被称为变换。

4. 矩阵是线性空间中运动(变换)的描述。

5. 矩阵与向量相乘,就是实施运动(变换)的过程。

6. 同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。

下面让我们把视力集中到一点以改变我们以往看待矩阵的方式。我们知道,线性空间里的基本对象是向量,而向量是这么表示的:

[a1, a2, a3, ..., an]

矩阵呢?矩阵是这么表示的:

a11, a12, a13, ..., a1n

a21, a22, a23, ..., a2n

...

an1, an2, an3, ..., ann

不用太聪明,我们就能看出来,矩阵是一组向量组成的。特别的,n维线性空间里的方阵是由n个n维向量组成的。我们在这里只讨论这个n阶的、非奇异的方阵,因为理解它就是理解矩阵的关键,它才是一般情况,而其他矩阵都是意外,都是不得不对付的讨厌状况,大可以放在一边。这里多一句嘴,学习东西要抓住主流,不要纠缠于旁支末节。很可惜我们的教材课本大多数都是把主线埋没在细节中的,搞得大家还没明白怎么回事就先被灌晕了。比如数学分析,明明最要紧的观念是说,一个对象可以表达为无穷多个合理选

择的对象的线性和,这个概念是贯穿始终的,也是数学分析的精华。但是课本里自始至终不讲这句话,反正就是让你做吉米多维奇,掌握一大堆解偏题的技巧,记住各种特殊情况,两类间断点,怪异的可微和可积条件(谁还记得柯西条件、迪里赫莱条件...?),最后考试一过,一切忘光光。要我说,还不如反复强调这一个事情,把它深深刻在脑子里,别的东西忘了就忘了,真碰到问题了,再查数学手册嘛,何必因小失大呢?

言归正传。如果一组向量是彼此线性无关的话,那么它们就可以成为度量这个线性空间的一组基,从而事实上成为一个坐标系体系,其中每一个向量都躺在一根坐标轴上,并且成为那根坐标轴上的基本度量单位(长度1)。

现在到了关键的一步。看上去矩阵就是由一组向量组成的,而且如果矩阵非奇异的话(我说了,只考虑这种情况),那么组成这个矩阵的那一组向量也就是线性无关的了,也就可以成为度量线性空间的一个坐标系。结论:矩阵描述了一个坐标系。

“慢着!”,你嚷嚷起来了,“你这个骗子!你不是说过,矩阵就是运动吗?怎么这会矩阵又是坐标系了?”

嗯,所以我说到了关键的一步。我并没有骗人,之所以矩阵又是运动,又是坐标系,那是因为——

“运动等价于坐标系变换”。

对不起,这话其实不准确,我只是想让你印象深刻。准确的说法是:

“对象的变换等价于坐标系的变换”。

或者:

“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换。”

说白了就是:

“运动是相对的。”

让我们想想,达成同一个变换的结果,比如把点(1, 1)变到点(2, 3)去,你可以有两种做法。第一,坐标系不动,点动,把(1, 1)点挪到(2, 3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2, 3)了。方式不同,结果一样。

从第一个方式来看,那就是我在《理解矩阵》1/2中说的,把矩阵看成是运动描述,矩阵与向量相乘就是使向量(点)运动的过程。在这个方式下,

Ma = b

的意思是:

“向量a经过矩阵M所描述的变换,变成了向量b。”

而从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:

Ma = b

的意思是:

“有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I的度量下,这个向量的度量结果是b。”

这里的I是指单位矩阵,就是主对角线是1,其他为零的矩阵。

而这两个方式本质上是等价的。

我希望你务必理解这一点,因为这是本篇的关键。

正因为是关键,所以我得再解释一下。

在M为坐标系的意义下,如果把M放在一个向量a的前面,形成Ma的样式,我们可以认为这是对向量a的一个环境声明。它相当于是说:

“注意了!这里有一个向量,它在坐标系M中度量,得到的度量结果可以表达为a。可是它在别的坐标系里度量的话,就会得到不同的结果。为了明确,我把M放在前面,让你明白,这是该向量在坐标系M中度量的结果。”

那么我们再看孤零零的向量b:

b

多看几遍,你没看出来吗?它其实不是b,它是:

Ib

也就是说:“在单位坐标系,也就是我们通常说的直角坐标系I中,有一个向量,度量的结果是b。”

而 Ma = Ib的意思就是说:

“在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!”

这哪里是什么乘法计算,根本就是身份识别嘛。

从这个意义上我们重新理解一下向量。向量这个东西客观存在,但是要把它表示出来,就要把它放在一个坐标系中去度量它,然后把度量的结果(向量在各个坐标轴上的投影值)按一定顺序列在一起,就成了我们平时所见的向量表示形式。你选择的坐标系(基)不同,得出来的向量的表示就不同。向量还是那个向量,选择的坐标系不同,其表示方式就不同。因此,按道理来说,每写出一个向量的表示,都应该声明一下这个表示是在哪个坐标系中度量出来的。表示的方式,就是 Ma,也就是说,有一个向量,在M矩阵表示的坐标系中度量出来的结果为a。我们平时说一个向量是[2 3 5 7]T,隐含着是说,这个向量在 I 坐标系中的度量结果是[2 3 5 7]T,因此,这个形式反而是一种简化了的特殊情况。

注意到,M矩阵表示出来的那个坐标系,由一组基组成,而那组基也是由向量组成的,同样存在这组向量是在哪个坐标系下度量而成的问题。也就是说,表述一个矩阵的一般方法,也应该要指明其所处的基准坐标系。所谓M,其实是 IM,也就是说,M中那组基的度量是在 I 坐标系中得出的。从这个视角来看,M×N也不是什么矩阵乘法了,而是声明了一个在M坐标系中量出的另一个坐标系N,其中M本身是在I坐标系中度量出来的。

回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象

”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见?

请看:

Ma = Ib

我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a 在I中一量,就得到b了。

我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解。比如,你画一个坐标系,x 轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2, 3)。而让它原形毕露的办法,就是把原来那个坐标系:

2 0

0 3

的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了。保持点不变,那个向量现在就变成了(2, 3)了。

怎么能够让“x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3”呢?就是让原坐标系:

2 0

0 3

被矩阵:

1/2 0

0 1/3

左乘。而这个矩阵就是原矩阵的逆矩阵。

下面我们得出一个重要的结论:

“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”

再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。

如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N 在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。

在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样。简单地说,是因为:

1. 从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换。

2. 从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵。

3. 至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算。我把这个结论的推导留给感兴趣的朋友吧。应该说,其实到了这一步,已经很容易了。

综合以上1/2/3,矩阵的乘法就得那么规定,一切有根有据,绝不是哪个神经病胡思乱想出来的。

我已

经无法说得更多了。矩阵又是坐标系,又是变换。到底是坐标系,还是变换,已经说不清楚了,运动与实体在这里统一了,物质与意识的界限已经消失了,一切归于无法言说,无法定义了。道可道,非常道,名可名,非常名。矩阵是在是不可道之道,不可名之名的东西。到了这个时候,我们不得不承认,我们伟大的线性代数课本上说的矩阵定义,是无比正确的:

“矩阵就是由m行n列数放在一起组成的数学对象。”

好了,这基本上就是我想说的全部了。还留下一个行列式的问题。矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积。对于这一点,我只能感叹于其精妙,却无法揭开其中奥秘了。也许我掌握的数学工具不够,我希望有人能够给我们大家讲解其中的道理了。

我不知道是否讲得足够清楚了,反正这一部分需要您花些功夫去推敲。

此外,请大家不必等待这个系列的后续部分。以我的工作情况而言,近期内很难保证继续投入脑力到这个领域中,尽管我仍然对此兴致浓厚。不过如果还有(四)的话,可能是一些站在应用层面的考虑,比如对计算机图形学相关算法的理解。但是我不承诺这些讨论近期内会出现了。

矩阵方程求解方法

矩阵方程求解方法 本文所述的矩阵方程是指形如Ax=b的方程,其中A是一个mxn的矩阵,称为方程的系数 矩阵。x和b是mx1的矩阵。特别的,当b=0时,这种方程又称为其次方程。本文将讨论 这种矩阵的有解条件和求解方法。 矩阵方程的有解条件 为了解释矩阵方程的有解条件,我们首先要熟悉一些概念。 一个矩阵方程的增广矩阵是系数矩阵A和b并在一起构成的矩阵,记作(A,b)。 假定 , ,则矩阵方程的增广矩阵就是 矩阵的秩定义为其行向量中极大线性无关组中包含向量的个数,等价的说法是,矩阵的秩 是r,则矩阵通过行列初等变换,变换成左上角是一个r阶单位矩阵,其他都是0的矩阵。矩阵A的秩记作r(A),其中r是英文单词rank的缩写。 有了这两个基本概念,我们就可以准确描述矩阵方程的有解条件了:矩阵方程Ax=b的有 解条件是矩阵A的秩等于增广矩阵(A,b)的秩,也就是r(A)=r(A,b)。 证明很简单,既然矩阵A的秩是r,那么肯定可以找到两个可逆的矩阵P,Q,满足 --1) 其中I r表示r阶单位矩阵。 应用到原来的方程,可以得到: --2) 我们把Q-1x当作一个未知的变量,PAQ当作系数,这就构成一个新的矩阵方程。而这个矩 阵方程的左侧系数除了前r行是有1的之外,其余行是0。为了它有解,Pb的后m-r行必 须也是0。这样(A,b)的秩必然是r。 必须注意到Q-1是可逆的,因此以Q-1x为未知变量的方程有解意味着以x为未知变量的原 方程也是有解的。

矩阵方程的解 对于矩阵方程Ax=b,如果满足r(A)=r(A,b),则矩阵方程是有解的。为了求它的解,我们首先把矩阵方程通过行列初等变换变化成前文2)式的形式,代入1)式后得到: --3) 其中Q-1x和Pb是一个列向量,我们可以把它们分割成rx1和(n-r)x1的两个矩阵,分别记作x’1和x’2,及b’1和b’2。则很显然我们可以得到: --4) 很显然,b’2必须为0,因为展开后b’2等于0 x’1 +0 x’2 =0 而由4式可以看出,x’1= b’1,x’2可以为任意向量。 所以方程最后的解为: --5) 从解的形式可以看出解空间有如下特性: 1.方程Ax=b的解空间的秩是n=r(A) 2.如果A是满秩的,则方程的解唯一。

矩阵函数的求法

二、利用零化多项式求解矩阵函数. 利用Jordan 标准型求解矩阵函数的方法比较复杂,它需要求J 和P 。下面我们介绍根据零化多项式求解矩阵函数的一种方法。 定律:n 阶方阵A 的最小多项式等于它的特征矩阵的第n 个(也就 是最后一个)不变因子n d ()λ。(可参见张远达《线性代数原理》P215) 设n 阶方阵A 的不变因子反向依次为n d (),λn 11d (),,d ()-λλ ,由它们给出的初等因子分别为 12r m m m 12r (),(),,()λ-λλ-λλ-λ ;s r 1m m r 1s (),,()++λ-λλ-λ ; ,s i i 1 m n ==∑ 由于1223n 1n d ()|d (),d ()|d (),,d ()|d ()-λλλλλλ ,故 1o r 1s ~+λλ必定出现在1r ~λλ中; 2o 若i j (i r)(j r)λ>=λ≤则i j m m ≤ 根据上述定理,A 的最小多项式 12r m m m 012r ()()()()?λ=λ-λλ-λλ-λ 即 12r m m m 12r (I A)(I A)(I A)O λ-λ-λ-= 令r i i 1m m ==∑,则可见m A 可以由02m 1A I,A,A ,,A -= 线性表示,从 而m i A (0)+λ>亦可由02m 1A I,A,A ,,A -= 线性表示。所以,矩阵函数f(A)若存在,也必定可由0m 1A ~A -线性表示。 因此,我们定义一个系数待定的(m -1)次多项式m 1 i i i 0g()c -=λ=λ∑,根据 以上论述,适当选择系数0m 1c ~c -,就可以使f (A )=g (A )

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵n次方的几种求法的归纳

矩阵n 次方的几种求法 1.利用定义法 () () ,,ij kj s n n m A a B b ??==则() ,ij s m C c ?=其1122...ij i j i j in nj c a b a b a b =+++ 1 n ik kj k a b ==∑称为A 与B 的乘积,记为C=AB ,则由定义可以看出矩阵A 与B 的乘积C 的第i 行第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的第j 列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相[]1 同。 例1:已知矩阵34 125310210134A ??? ?=- ? ???,44 5 130621034510200B ??? ? ? = ? ? ??,求AB 解:设C AB ==() 34 ij c ?,其中1,2,3i =;1,2,3,4j = 由矩阵乘积的定义知: 111526533032c =?+?+?+?=121122543231c =?+?+?+?= 131321553030 c =?+?+?+?=14102051305 c =?+?+?+?= 21150623101c =-?+?+?+?= 22110224129c =-?+?+?+?= 23130125107c =-?+?+?+?= 24100021102c =-?+?+?+?= 310516334015c =?+?+?+?= 320112344222c =?+?+?+?= 330311354016c =?+?+?+?= 34001031403c =?+?+?+?= 将这些值代入矩阵C 中得:

C AB ==34 323130519721522163??? ? ? ??? 则矩阵A 的n 次方也可利用定义的方法来求解。 2.利用矩阵的分块来求解 这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵 由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义来求解这些小矩阵的乘积所构成的矩阵。即设 () () ,,ij kj s n n m A a B b ??==把A ,B 分解成一些小矩阵: 1111l t tl A A A A A ?? ?= ? ???K M O M L ,1111 r l lr B B B B B ?? ? = ? ??? K M O M L ,其中ij A 是i j s n ?小矩阵且1,2...i t =,1,2...j l =,且12...t s s s s +++= ,12...l n n n n +++=;ij B 是j k n m ?小矩阵且1,2...j l =,1,2...k r =;且12...l n n n n +++=, 12...r m m m m +++=;令C AB ==1111r t tr C C C C ?? ? ? ??? K M O M L ,其中ij C 是i j s m ?小矩阵且1,2...i t =,1,2,...,j r =,且12...t s s s s +++=, 12...r m m m m +++=;其中1122...ij i j i j il lj C A B A B A B =+++。这里我们应注意:矩阵A 列的分法必须与矩阵B 行的分法一[]1 致。

计算方法_矩阵LU分解法

clear all; %A=LU矩阵三角分解法 n=input('输入方矩阵的维数: '); for i=1:n for j=1:n A(i,j)=input('依次输入矩阵元素:'); end end %输入一个n阶方形矩阵 for j=1:n L(j,j)=1; %Doolittle分解,L对角元素全为1 end for j=1:n U(1,j)=A(1,j); end %U的第一行 for i=2:n L(i,1)=A(i,1)/U(1,1); end %L的第一列 for k=2:n for j=k:n sum1=0; for m=1:k-1 sum1=sum1+L(k,m)*U(m,j); end %求和 U(k,j)=A(k,j)-sum1; end for i=k+1:n sum2=0; for m=1:k-1 sum2=sum2+L(i,m)*U(m,k); end %求和 L(i,k)=(A(i,k)-sum2)/U(k,k); end end L %输出下三角矩阵L U %输出上三角矩阵U

运行结果:(示例) 输入方矩阵的维数: 4 依次输入矩阵元素: 1 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 3 依次输入矩阵元素:0 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素:-1 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 5 依次输入矩阵元素:9 A=LU分解后则可以求解Ax=b线性方程组,相关计算参考计算方法,这里不再详细介绍。

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

图的矩阵表示及习题-答案汇总

177 图的矩阵表示 图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。 定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n 其中: 1j i v v v v a j i j i ij =???=无边或到有边到 i ,j =1,…,n 称A (G )为G 的邻接矩阵。简记为A 。 例如图9.22的邻接矩阵为: ?????? ? ? ?=011110101101 1010)(G A 又如图9.23(a)的邻接矩阵为: ?????? ? ? ?=0001101111000010 )(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质: ①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178 ③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。 ?????? ? ? ?='001010110001 1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可 得到A ′(G )。称A ′(G )与A (G )是置换等价的。 一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。 虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。 ④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j 的入度。 ⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。 设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。 设A 2=AA ,A 2=(2 ij a )n ×n ,按照矩阵乘法的定义, nj in j i j i ij a a a a a a a +++= 22112 若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长 度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过 v k 无长度为2的路,k =1,…,n 。故2 ij a 表示从v i 到v j 长度为2的路的条数。 设A 3=AA 2,A 3=(3 ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++= 若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2 的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0, ik a =0或2kj a =0, 则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3 ij a 表示从v i 到v j 长度为3的路的条数。 …… 可以证明,这个结论对无向图也成立。因此有下列定理成立。 定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素 k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。 推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

几何光学中的矩阵方法

几何光学中的矩阵方法 几何光学是基于几何学研究光学的基本方法。几何光学,尤其是矩阵方法在研究光学系统成像时有着巨大的优势。本文通过论述矩阵方法在几何光学中的应用,介绍描述傍轴光线成像的光学ABCD矩阵。同时进一步将矩阵方法拓展至非傍轴光线,得到描述任意光线成像的严格ABCD矩阵。 在光学研究中,当光波长远小于研究对象的尺寸时,通常会利用几何光学方法来研究光线的传播。几何光学中光线的传播遵循三个基本定律:1. 光在自由空间中沿直线独立传播;2. 光的折射定律;3. 光的反射定律。虽然几何光学忽略了光的波动性,无法解释干涉、衍射等物理现象,但是其在光学系统成像性质的研究中有着巨大的优势。 光学系统成像的核心是光学系统变换。1840年C. Gauss建立了高斯光学,用来研究理想光学系统傍轴成像(即满足傍轴近似的光线的成像)性质。傍轴近似下,光线与光学系统中心轴的夹角很小,可以使用小角近似关系,。在这种近似下,光学系统变换退化为线性变换,因此可以用矩阵方法来进行描述。矩阵方法最初是由R. A. Sampson引入几何光学,用来处理几何像差等问题错误!未找到引用源。。之后矩阵方法拓展至研究非傍轴成像,为非傍轴成像的研究提供了新的方法。 本文分为两部分,第一部分着重于傍轴近似下的矩阵方法,介绍ABCD矩阵对光学系统变换的描述。第二部分拓展至包括非傍轴光线的任意光线的传播,介绍并推导严格ABCD矩阵。 一傍轴光线成像与矩阵 上述结论基于傍轴近似,研究的是理想光学系统的傍轴成像。然而实际成像系统中,非傍轴光线成像造成的影响往往是不可忽略的。非傍轴光线与傍轴光线往往不是成像于同一点,即非傍轴光线与傍轴光线成像之间存在差异,称之为几何像差。实际成像中,我们需要关注成像质量,即需要去衡量几何像差的大小。这种情况下,傍轴ABCD矩阵是无法解决的。我们需要引入可以描述非傍轴光线的ABCD矩阵,即严格ABCD矩阵。 二任意光线成像与严格ABCD矩阵 对于任意光线的成像,我们希望同样能够用矩阵进行描述,同时能够保持与傍轴ABCD矩阵相似的形式。因此我们尝试去除傍轴近似,来得到严格的变换关系,即严格ABCD矩阵错误!未找到引用源。。 对于共轴光学系统,光线成像依旧可以分成自由空间传播、折射与反射三种情况。首先我们讨论折射情况。从几何学的角度,我们首先作出入射光线与折射光线所在直线。设折射点为,在入射光线所在的直线上作,在折射光线所在直

行阶梯形矩阵方法总结

行阶梯形矩阵方法总结 导读:行阶梯形矩阵,Row—Echelon Form,是指线性代数中的矩阵。 阶梯形矩阵 如果: 所有非零行(矩阵的行至少有一个非零元素)在所有全零行的上面。即全零行都在矩阵的底部。 非零行的首项系数(leading coefficient),也称作主元,即最左边的首个非零元素(某些地方要求首项系数必须为1),严格地比上面行的首项系数更靠右。 首项系数所在列,在该首项系数下面的元素都是零(前两条的推论)。 这个矩阵是行阶梯形矩阵: 化简后的行阶梯形矩阵(reduced row echelon form),也称作行规范形矩阵(row canonical form),如果满足额外的条件:每个首项系数是1,且是其所在列的唯一的非零元素。例如: 注意,这并不意味着化简后的行阶梯形矩阵的左部总是单位阵。例如,如下的矩阵是化简后的行阶梯形矩阵: 因为第3列并不包含任何行的首项系数。 矩阵变换到行阶梯形 通过有限步的行初等变换,任何矩阵可以变换为行阶梯形。由

于行初等变换保持了矩阵的行空间,因此行阶梯形矩阵的行空间与变换前的原矩阵的行空间相同。 行阶梯形的.结果并不是唯一的。例如,行阶梯形乘以一个标量系数仍然是行阶梯形。但是,可以证明一个矩阵的化简后的行阶梯形是唯一的。 一个线性方程组是行阶梯形,如果其增广矩阵是行阶梯形。类似的,一个线性方程组是简化后的行阶梯形或'规范形',如果其增广矩阵是化简后的行阶梯形。 【行阶梯形矩阵方法总结】 1.数学线性代数之矩阵学习总结 2.线性代数矩阵课件 3.银行工作总结的写作方法 4.矩阵检测试题 5.琵琶行描写音乐的方法 6.学习方法的总结 7.新人银行柜员个人总结 8.银行后勤总结 上文是关于行阶梯形矩阵方法总结,感谢您的阅读,希望对您有帮助,谢谢

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵求逆方法大全-

求逆矩阵的若干方法和举例 红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的 读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积 A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ??? ? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ???? ? ??-100012001210010411 →??? ? ? ??----123200124010112001→?? ???? ? ?----21123100124010112001

思维导图经典案例--如何画思维导图

Mind Mapping

1. 最重要 把握什麼? 2.需要準備 什麼? 3. 怎麼畫? 捕捉腦/圖間的思維 流動互動 聯結 讓腦內/內在 資 訊自由的延伸疏展 只要把握基本原則: 自由度 & 流暢度 畫的好不好不是重點 一般工具 紙 最好白紙 或任何可以書寫的紙筆多種顏色書寫筆 修正帶 修改用 取代工具 電腦/ Mind Map 軟體 白板/ 白板筆 ..... 畫Mind Map 的心情 & 意願 試試看的心 不做任何的預期,看看會畫出什麼? 讓心緒/思緒在紙上自由的遊走! 補捉腦中資訊 出來什麼寫下來、畫下來 用關鍵字 腦會聯想,不用全記 突顯資訊 運用圖像 儘量分支對比顏色粗體字 加框/加邊 捉不到 算 了 捉下一個 最後總會回來的 想不出來停下,做別的事 出去遊盪一陣子 腦需要一些化學反應(醞釀)的時間 再 想! 想出來後,給自己一點掌聲 不要管 這樣畫對不對?好不好?這樣畫符不符合規則? 應該用什麼關鍵字? 分支擺在這裡對不對? .................. 如何畫Mind Map ?(1)

4. 小竅門 5. 手畫 V.S. 電 腦 有順序的畫空間利用比較好順時針 或反時針 分支的要有 曲度 不要直線 書寫空間較大 運用圖像 生動 易於聯想 和感覺連結訓練右腦 表達文字以外的訊息 留白 清爽、清晰 用顏色 生動、有生氣 給自己一點新鮮感 如何用關鍵字? 自然即可 who, what, when, where,whey, how...用問句當分支主題 一頁寫不下怎麼辦?另外寫一頁,編頁碼 將分支當主題,另畫一頁分支有錯怎麼辦?用連結線修正註解、說明 如何畫圖? 補捉腦中影像,畫出來 不會畫圖怎麼辦? 只用文字、不畫圖 剪貼、描繪 練習畫圖 愈畫愈煩怎麼辦?問最關鍵的是什麼?用正向字眼 腦太快,手較慢→調整協調性 手畫 不用解字,更流暢 手腦間距更短補捉思緒較快 較隨心所欲寫字畫圖 顏色 聯結 .... 較人性/溫暖毫無頭緒時較適用 擴散度低 電腦要有電腦 & 軟體 較有組織、邏輯性 便於修改 擴散性高 需要思慮周密時使用 適用於組織想法及資料 較冷感 如何畫Mind Map ?(2)

思维导图法之创意空间站测试答案

课后测试 恭喜您顺利通过考试! 单选题 ?1、下列哪项是思维导图的呈现形式?(10 分) A 图文并茂式 B 全文字式 C 全图式 D 以上都是 正确答案:D ?2、在老师的讲述中,下列哪个国家,从幼儿园开始一直到大学毕业,将思维导图作为必修课?(10 分) A 韩国 B 中国 C 新加坡 D 英国 正确答案:C ?3、1981年诺贝尔奖获得者:罗杰·斯佩里,当时发现大脑的皮质区,分为左右两边,那左右两边它有不同的心智能力。所以,下列哪项不是右脑所负责的选项?(10 分)

A 图像 B 完形 C 空间 顺序 正确答案:D ?4、史坦教授说:多少百分比的人是以左脑处理语言?(10 分) A 7% B 97% C 9% D 67% 正确答案:B ?5、老师在圆周率的案例中,老师使用下列哪种方法进行思维的转换?(10 分) A 图像的联想 抽象到具象 C 图像到具象 D 抽象的联想 正确答案:B

?6、在老师的案例中,《秋思》是运用了思维导图的哪种呈现形式? (10 分) A 全图式 B 全文字式 C 图文并茂式 D 逻辑式 正确答案:A ?1、我们要是用几力来呈现:思维导图和思维导图法对我们能力的提升的话,下列哪几项是正确的?(10 分) A 思考力 B 逻辑力 C 沟通力 D 理解力 正确答案:A B C D ?1、东尼·博赞先生在1974年,把这样的一个图解的这个工具通过《启动大脑》和BBC的广播推向了全世界?(10 分)

正确 B 错误 正确答案:正确 ?2、根据耶鲁大学耗时五年的研究所知,旋转的舞者顺时针旋转时,当下我们更多的是在使用我们的左脑?(10 分) A 正确 B 错误 正确答案:错误 ?3、脑速是可以通过训练来得到一个提高?(10分) A 正确 B 错误 正确答案:正确

矩阵算法描述

矩阵乘法: 设C=A*B; A的列数(A.n)必须等于B的行数(B.m); C的列数=B的列数,C的行数=A的行数; C[i][j]为A的第i行与B的第j列乘积累加; 具体实现: for(i=0;im = dat.m; res->n = mul.n; for(i=0; iarray[i][j] = 0;//因为指针指向了一个奇怪的数值 for(k=0; karray[i][j] += dat.array[i][k] * mul.array[k][j]; } } } return 1; } 矩阵求逆: 必须为方阵; 对于k从0到n-1作如下几步,n为方阵维数; 1.从第k行,第k列,开始的右下角子阵中选取绝对值最大的元素a[r][c],并记住此元素所在的行号和列号,分别以一维数组is[n],与js[n]保存, 设r为绝对值最大的行号,c为绝对值最大的列号,is[k]=r , js[k]=c, 如果a[k][k]的右下角矩阵全为0,则该矩阵无法求逆; 再通过行交换与列交换将它交换到主元素位置上.这一步称全选主元; a[k][j]<->a[r][j]; j =0,1,2…n-1; r != k; a[i][k]<->a[i][c]; i =0,1,2…n-1; c != k;

矩阵的特征根的求法及应用

矩阵的特征根的求法及应用 摘要 本文主要讨论关于矩阵特征值的求法及矩阵特征值一些常见的证明方法。对于一般矩阵,我们通常是采用求解矩阵特征多项式根的方法。 关键字 矩阵 特征值 特征多项式 1.特征值与特征向量的定义及其性质; 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值, 其对应的特征向量分别是n x x x ,,,21 ,则这组特征向量线性无关. (4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量.

(7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值. 2.特征值与特征向量的常规求法; 1.一般教科书[求特征值的传统方法是令特征多项式| λE- A| = 0, 求出A 的特征值, 对于A 的任一特征值λ, 特征方程(λE- A)X= 0的所有非零解X 即为矩阵A 的属于特征值的特征向量. 两者的计算是分割的, 一个是计算行列式, 另一个是解齐次线性方程组, 且计算量都较大.下面介绍利用矩阵的初等变换求特征值与特征向量的两种方法. 1:特征方程(λE- A)X= 0进行行列式计算,求特征值与特征向量。 列1:求实数域上矩阵122212221A -????=--????--?? 的特征值与特征向量。 传统解法;解 ()()()21 221422 12232221001 1411523E A λλλλλλλλλλλλ+--+---=-+=-+-+-+-??=-=-+ ?-+?? 令()()() ()() 11i j j i i i j i i j c c r r kc r k k c kc r kr π???? ?? ?+-0E A λ-=,得121λλ==(二重),35λ=-是A 的全部特征值。 当121λλ==时,对应的特征方程; 12312312322202220 2220x x x x x x x x x --=??-++=??-++=?

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤?? ?? ? ? ?----=11 145641321A 182423=C C 43334=C C 10122--=D 1 1564321 3-=D n m ?k n k m c c () n m ij a A ?=0,r D ≠()(). T R A R A =0,A ≠0. A ≠?? ? ?? ??=000007204321B 0 2021≠????? ??=010*********A ????? ??=001021B ????? ??=10 010011 C 1 250 3400 0D ?? ? = ? ?? ?2 123508153000720 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2 R D =()3 R E =

思维导图最简单的画法!

思维导图最简单的画法! 导语: 思维导图目前可以划分为博赞式思维导图(传统思维导图)和创新创意式思维导图,后者是基于传统的思维导图基础上,经过一些创意升级,比如鱼骨图、时间轴线图、概念图等。本文为你介绍最简单的画法! 用什么软件绘制创意思维导图? 要绘制有创意的思维导图,光靠Word和PPT是绝对不够的,你需要选一款专业的思维导图软件来绘制。MindMaster思维导图是一款跨平台、多功能的思维导图软件。它具有简洁的操作界面、稳定性高、自定义功能强大等特点,可以让你快速创作内容丰富、时尚精美的思维导图。 免费获取MindMaster思维导图软件:https://www.360docs.net/doc/922516182.html,/mindmaster/ MindMaster里创意的思维导图怎么画出来的? 丰富的模板、例子 颜色丰富,线条很优雅,这都是它自带的模板,无需耗费过多的时间和心思,就

能得到一个很“精美”的思维导图。 布局 可一键轻松切换思维导图的布局。 主题 内置的主题样式,可对思维导图上各类型元素的样式进行统一修改,包括主题的颜色、字体、线条、填充等等。 彩虹色 用于设置思维导图的色彩搭配模式,目前提供四种常用类型:单色,彩虹色,交替色和对称色。

【单色】所有分支变成单一颜色。 【彩虹色】每个分支显示不同的颜色。 【对称色】所有分支的颜色左右两边对称。 【交替色】所有分支交替使用两种颜色。

效果 将整个思维导图置为手绘风格。 图标 提供各种各种思维导图通用图标,比如:优先级、进度、箭头、旗帜、星星等。

剪贴画 可从剪贴画的库里按照目录进行查询,也可以通过搜索框,输入关键词进行搜索。

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

相关文档
最新文档