有机发光材料物质结构与性能关系

有机发光材料物质结构与性能关系
有机发光材料物质结构与性能关系

有机电致发光材料结构及性能

有机电致发光(EL)是当前国际上的一个研究热点。因有机具有低压直流驱动高亮度、高效率以及易实现全色大面积显示等优点。近年来,这方面的工作在世界各地引起了广泛关注。

有机EL器件具有与集成电路相匹配的直流低电压驱动的特性,且易于实现大面积直流显示。与液晶显示器件相比,其响应速度要快得多。另外,与无机EL器件相比,有机EL器件还具有易处理、可加工成不同的形状、机械性能良好以及成本低廉等优点。

在有机EL器件研制中,材料的选择是至关重要的。材料的性质、器件的结构和加工工艺决定了器件的最终性能。目前,有机EL材料大致包括小分子化合物和聚合物两大类。按照功能来分,有机EL材料又可分为电子传输材料、空穴传输材料和发光材料。其中,电子传输材料和空穴传输材料又可兼作发光材料。

1、有机电致发光原理

有机、聚合物薄膜EL器件是通过电子、空穴载流子的注入和复合而发光的。器件的结构包括单层和多层两大类。

单层EL器件由阴极、发射层和阳极组成。为了提高载流子的注入效率和发光效率。在阴极或阳极与发射层之问加入电子输运层或空穴输运层,从而得到了双层或多层EL器件。

有机EL器件的几种典型结构

由前面可知,EL器件由阳极、阴极、载流子(电子和空穴)传输层和发光层组成。阳极一般采用

ITO导电玻璃。对于小分子有机EL器件,一般采用真空蒸镀法依次将有机薄膜成形在ITO玻璃上,最后用同样的方法将阴极材料成膜在有机膜上。对于大分子聚合物EL器件,因为聚合物的熔点较高,不易升华,而且高温加热可能破坏其长链结构,因此,通常不采用真空蒸镀法。一般是将聚合物溶解在有机溶剂如氯仿、甲苯或二氯乙烷等中,然后再经过浸涂或旋涂成膜。但阴极薄膜以及多层结构中的其它小分子薄膜仍需要采用真空蒸镀的方法制备。值得注意的是,制备过程中所采用的工艺条件。温度、真空度、成膜速度以及膜层厚度等对器件的性能产生重要影响。通常要求真空度高于pa

蒸发速率为 0.2~0.4nm/s。在有机、

53-

10

聚合物EL器件中,典型的发光层、载流子输运层厚度为几十纳米。发光层厚度对发光效率、EL光谱以及起始电庄都会产生影响,随发光层厚度增大,起始电压将逐渐增大。

有机EL器件的发光属于注入型发光。在正向电压(ITO接正)驱动下,ITO 向发光层注入空穴,金属电极向发光层注入电子。注入的空穴和电子在发光层中相遇结合为激子,激子复合并将能量传递给发光材料,后者再经过辐射弛豫过程而发光。由于采用薄膜结构,通常在~10V的电压下便可以在发光层中产生

104~105V/cm的高场,从而可保证电子和空穴的有效注入。研究结果表明,有机小分子薄膜(电子导体)与ITO薄膜在交界面上形成类似无机半导体中的p-n结构,而与金属阴极形成欧姆接触。聚合物薄膜则与ITO薄膜形成欧姆接触,而与金属阴极形成肖特基结。

为了研究EL器件的发光机理,人们采用分区掺杂和电致发光瞬态分析等方法研究了器件中激子的产生和复合区域以及载流子、激子的行为。

有机、聚合物EL器件已从单层结构发展到多层结构。采用多层结构的目的就在于提高载流子的往入密度。载流子输运层的加入将影响到器件的发光特征。实验证明,采用多层结构后,EL器件的I—V特性曲线的非线性程度提高,而驱动电压则有所降低,电子和空穴在发光层中的复合几率得到提高。另外,载流子输运层的加入将提高发光亮度但不会改变发光颜色。

多层结构的EL器件还存在载流子输运层与发光层的能带匹配问题。载流子输运层的能隙必须宽于发光层的带隙,而且发光层的带隙应位于载流子输运层的带隙内,从而保证载流子较易注入到发光层中。

EL器件的发光颜色取决于发光材料的荧光光谱,为了改变器件的发光光谱,可以在发光层材料中掺入适当的掺杂剂。对于掺杂的EL器件,发光颜色决定于发光层基质材料和掺杂剂的荧光光谱以及两者之问的能量传递效率和相对的浓度大小。其中保证基质材料与掺杂剂之问的有效能量传递是很重要的,为此要求所选择的掺杂剂的能隙应小于基质材料的能带宽度。

对于聚合物EL器件,除可以通过小分子染料掺杂来改变发光颜色外,还可以采用改变侧链结构的方法来实现发光颜色的选择。对于特定的聚合物分子,不同的侧链及不同的侧链长度都将改变分子的禁带宽度。另外,不同的聚合物分子也可以互相掺杂,通过改变其配比也可以达到调节发光颜色的目的。

2、有机EL材料

有机EL材料可分类为阴极材料、阳极材料以及有机活性材料。所谓有机活性材料是指在器件中起载流子注入、传输以及发光作用的有机小分子和高分子材料。

1)阴极材料

阴极需采用低功函材料,以便电子可以在较低电压下注入到发光层中问,适当的阴极材料还应当在空气中具有较好的稳定性。可用作阴极材料的物质包括In、Cu、Au、Ca、Al、Mg、Ag等金属或合金。目前采用较多的是Mg:Ag合金和

Al。近来,有文献报道了一种新型阴极,是由碱金属化合物,如LiF、MgF

2、LiO

x

与Al组合而成的。这种新型阴极不采用对空气敏感的金属,大大提高了器件的性能和工作寿命。

2)阳极材料

必须选择高功函的材料以便于空穴注入到发光层中间,如氧化锢一氧化锡膜(ITO)。为了控制阳极表面的电压降,所用的ITO玻璃的表面电阻一般要求小于50 。ITO表面的不平整度被认为是导致EL器件中出现“黑点”缺陷的一个重要因素。因此理想的EL器件需要表面粗糙度小的、高质量的玻璃基片。

在有机EL器件中的各类有机材料是研究开发的重点。用作电致发光的有机材料应具备以下特征:1在可见光区内具有较高的荧光量子效率或具有较高的导电率,能有效地传递电子或空穴;2有较好的成膜性;3具有良好的稳定性和机械加工性能。

电致发光层中的发光材料可以通过控制或改变其能级来实现不同颜色之间的改变,这其中容易调节能级的以p-n材料为主。

1)线性 p-n 嵌段聚合物调节有机光电功能材料的能级

如何实现电子和空穴在有机/聚合物电致发光材料中注入及传输的平衡是获得高效、稳定而低耗发光器件的关键,而利用分子结构的化学修饰来实现载流子注入及传输的平衡对于简化器件结构、降低制作成本以及提高器件性能具有特别重要的意义。在各种化学修饰方法中,合成线性共轭聚合物是常用方法之一。考虑到二唑单元是一个吸电子基团,而噻吩是一个给电子基团,如果在单个聚合物链上集成不同共轭长度的噁二唑和噻吩片段,改变片段的共轭长度以及二者之间的连接方式会引起聚合物主链电子云的转移,这必将改变所得材料的能级。在该思路的指导下,Huang研究小组合成了一系列p-n嵌段聚

合物,并对其光电性能进行了表征,结果验证了p-n嵌段分子设计思想的正确性:不仅可以调节材料的能级,还可以调节材料的发光波长。

2)支化 p-n 嵌段聚合物调节有机光电功能材料的能级

在系统研究线性聚合物的基础上,Huang研究小组将研究注意力投向支化聚合物。通过将高度非平面构筑单元—

—螺环引入到聚芴类材料当中,大幅

提高了聚合物的玻璃化温度,有效抑制

其结晶化过程,从而削弱链间聚集体和

激基复合物的形成,提高了聚芴类材料

的光谱稳定性。在螺旋芴的2,7 位引入吸电子噁二唑基团,设计合成了

“载流子双通道传输材料”。实验证明噁二唑的引入可以降低聚芴的LUMO能级到?5.70 eV,明显改善了聚合物的电子传输性能。

将离子化的铱配合物引入到聚芴中,合成了一种红光聚合物,详细研究了不同铱配合物含量时聚合物的分子内和

分子间的能量传递、光物理以及能级

变化的情况。与共混掺杂体系相比,

该聚合物中主客体之间的能量传递更

加彻底,分子内的能量传递要比分子

间的能量传递更加有效。聚芴的HOMO

和LUMO能级分别为?5.8 和?2.12 eV,

在引入少量离子化铱配合物后,聚合

物的HOMO能级基本上保持不变,而LUMO能级稍有降低,铱配合物之间的引入并没有引起聚芴主链共轭结构的明显改变。该工作的意义在于在保持聚合物能级跟聚芴近似相等的情况下,利用主链上寡聚芴和铱配合物之间的能量传递来自掺杂实现红光。

3)结构明确的p-n嵌段寡聚物调节有机光电功能材料的能级

目前聚合物发光材料主要有聚芴、聚噻吩、聚唑、聚对苯乙烯撑以及它们的衍生物,这些材料的一个明显的缺

点是对电子和空穴传输不平衡,严重影响了器件的效率。为了解决该问题,常用方法是将具有良好电子传输作用(n型)和空穴传输作用(p型)的单体共聚来调节聚合物的HOMO和LUMO能级,以得到电子/空穴传输平衡的聚合物。但是线性p-n嵌段聚合物的LUMO和HOMO能级不能独立调节,载流子的注入、传输和发光特性不容易协调兼顾,常常出现以牺牲一定

荧光量子效率为代价来平衡载流子的注入与传输。此外,聚合物的结构具有多分散性特点,这导致研究结果的重复性不高,甚至会出现自相矛盾的结果。而寡聚物结构明确,结构与性能之间的正交关系直接,实验比较容易控制,并且材料纯度高,是研究结构-性能关系的最佳对象。因此,近年来Huang研究小组将结构明确的寡聚物作为验证p-n嵌段分子设计思想的研究对象,设计合成了一系列噻吩噁二唑的双嵌段以及三嵌段寡聚物,寡聚物T

2O,T

2

O

2

,T

4

O

2

,OT

2

O以及T

2

O

2

T

2

的LUMO和HOMO能级分别为?2.37/?5.37,?2.72/

?5.39,?2.70/?5.15,?2.40/?5.30 和?2.60/?5.38 eV,通过改变噻吩和噁二唑片段的共轭长度以及噻吩与噁二唑单元之间的连接方式,也较好地调节了所得寡聚物的HOMO和LUMO能级。

十字型p-n双嵌段寡聚物,即以苯环为中心,在中心苯环上引入独立的p型芴臂和n型噁二唑臂,p型芴臂形成空穴传输通道,n型噁二唑臂形成电子传输通道,从材料设计角度来实现电子和空穴传输的双重平衡。把电子传输性好的n 型噁二唑基团挂在p型噻吩的侧链,形成独立传输通道来解决载流子传输的不平衡问题。

如有侵权请联系告知删除,感谢你们的配合!

(完整word版)人教版高中化学选修3物质结构与性质教案

物质结构与性质 第一章原子结构与性质 第一节原子结构 第二节原子结构与元素的性质 归纳与整理复习题 第二章分子结构与性质 第一节共价键 第二节分子的立体结构 第三节分子的性质 归纳与整理复习题 第三章晶体结构与性质 第一节晶体的常识 第二节分子晶体与原子晶体 第三节金属晶体 第四节离子晶体 归纳与整理复习题 (人教版)高中化学选修3 《物质结构与性质》全部教学案 第一章原子结构与性质 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。

高中化学选修物质结构与性质历年高考题汇总

物质结构与性质(2014年-2019年全国卷) 1.[2019年全国卷Ⅰ] 在普通铝中加入少量Cu和Mg后,形成一种称为拉维斯相的MgCu2微小晶粒,其分散在Al中可使得 铝材的硬度增加、延展性减小,形成所谓“坚铝”,是制造飞机的主要村料。回答下列问题: (1)下列状态的镁中,电离最外层一个电子所需能量最大的是 (填标号)。 A. B. C. D. (2)乙二胺(H2NCH2CH2NH2)是一种有机化合物,分子中氮、碳的杂化类型分别是、。乙二 胺能与Mg2+、Cu2+等金属离子形成稳定环状离子,其原因是,其中与乙二胺形成的化合物 稳定性相对较高的是 (填“Mg2+”或“Cu2+”)。 (3)一些氧化物的熔点如下表所示: 解释表中氧化物之间熔点差异的原因。 (4)图(a)是MgCu2的拉维斯结构,Mg以金刚石方式堆积,八面体空隙和半数的四面体空隙中,填入以四 面体方式排列的Cu。图(b)是沿立方格子对角面取得的截图。可见,Cu原子之间最短距离x= pm,Mg原子之间最短距离y= pm。设阿伏加德罗常数的值为N A,则MgCu2的密度是 g·cm?3(列出计算表达式)。 2.[2019年全国卷Ⅱ]

近年来我国科学家发现了一系列意义重大的铁系超导材料,其中一类为Fe—Sm—As—F—O组成的化合物。回答下列问题: (1)AsH3的沸点比NH3的________(填“高”或“低”),其判断理由是______。 (2)Sm的价层电子排布式为4f66s2,Sm3+价层电子排布式为________。 (3)比较离子半径F- O2-(填“大于”、“等于”或“小于”) (4)一种四方结构的超导化合物的晶胞如图1所示。晶胞中Sm和As原子的投影位置如图2所示。 图中F-和O2-共同占据晶胞的上下底面位置,若两者的比例依次用x和1-x代表,则该化合物的化 学式表示为____________;通过测定密度ρ和晶胞参数,可以计算该物质的x值,完成它们关系表达式:ρ=_________g·cm-3。 以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子分数坐标,例如图1中原子1的坐标为(,,),则位于底面中心的原子2和原子3的坐标分别为___________、__________. 3.[2019全国卷Ⅲ] 磷酸亚铁锂(LiFePO4)可用作锂离子电池正极材料,具有热稳定性好、循环性能优良、安全性高等 特点,文献报道可采用FeCl3、NH4H2PO4、LiCl和苯胺等作为原料制备。回答下列问题: (1)在周期表中,与Li的化学性质最相似的邻族元素是,该元素基态原子核外M层电子的自旋状态(填“相同”或“相反”)。 (2) FeCl3中的化学键具有明显的共价性,蒸汽状态下以双聚分子存在的FeCl3的结构式为,其中Fe的配位数为。

(完整版)化学选修3《物质结构与性质》全国卷高考真题2011-2017

化学高考真题 选修3 2011-2017 全国卷1.[化学—选修3:物质结构与性质](15分) 硅是重要的半导体材料,构成了现代电子工业的基础。 请回答下列问题: (1)基态Si原子中,电子占据的最高能层符号 为,该能层具有的原子轨道数为、 电子数为。 (2)硅主要以硅酸盐、等化合物的形式 存在于地壳中。 (3)单质硅存在与金刚石结构类似的晶体,其中原子 与原子之间以相结合,其晶胞中共有8个 原子,其中在面心位置贡献个原子。 (4)单质硅可通过甲硅烷(SiH4)分解反应来制备。工 业上采用Mg2Si和NH4Cl在液氨介质中反应制得SiH4, 该反应的化学方程式 为。 (5)碳和硅的有关化学键键能如下所示,简要分析和 化学键C— C C— H C— O Si—S i Si— H Si— O 键能 /(kJ?mol- 1 356 413 336 226 318 452 ①硅与碳同族,也有系列氢化物,但硅烷在种类和数量上都远不如烷烃多,原因是。 ②SiH4的稳定性小于CH4,更易生成氧化物,原因是。 (6)在硅酸盐中,SiO4- 4 四面体(如下图(a))通过共用顶角氧离子可形成岛状、链状、层状、骨架网状四大类结构型式。图(b)为一种无限长单链结构的多硅酸根,其中Si原子的杂化形式为,Si与O的原子数之比为,化学式为。 2.[化学—选修3:物质结构与性质](15分) 前四周期原子序数依次增大的元素A,B,C,D中,A和B的价电子层中未成对电子均只有1个,平且A-和B+的电子相差为8;与B位于同一周期的C和D,它们价电子层中的未成对电子数分别为4和2,且原子序数相差为2。 回答下列问题: (1)D2+的价层电子排布图为_______。 (2)四种元素中第一电离最小的是________,电负性最大的是________。(填元素符号) (3)A、B和D三种元素责成的一个化合物的晶胞如图所示。 ①该化合物的化学式为_________________;D的配位数为___________; ②列式计算该晶体的密度_______g·cm-3。 (4)A-、B+和C3+三种离子组成的化合物B3CA6,其中化学键的类型有_____________;该化合物中存在一个复杂离子,该离子的化学式为_______________,配位体是____________。 3.〔化学—选修3:物质结构与性质〕(15分) 早期发现的一种天然准晶颗粒由三种Al、Cu、Fe元素组成。回答下列问题: (1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过方法区分晶体、准晶体和非晶体。 (2)基态铁原子有个未成对电子,三价铁离子的电子排布式为:可用硫氰化钾奉验三价铁离子,形成配合物的颜色为 (3)新制备的氢氧化铜可将乙醛氧化为乙酸,而自身还原成氧化亚铜,乙醛中碳原子的杂化轨道类型为;一摩尔乙醛分子中含有的σ键的数目 为:。乙酸的沸点明显高于乙醛,其主要原因是:。氧化亚铜为半导体材料,在其立方晶胞内部有四个氧原子,其余氧原子位于面心和顶点,则该晶胞中有个铜原子。 (4)铝单质为面心立方晶体,其晶胞参数a=0.405nm,晶胞中铝原子的配位数为。列式表示铝单质的密度g·cm-3(不必计算出结果) 4.[化学—选修3:物质结构与性质](15分)A、B、C、D为原子序数依次增大的四种元索,A2-和B+具有相同的电子构型;C、D为同周期元索,C核外电子总数是最外层电子数的3倍;D元素最外层有一个未成对电子。

新课标高中化学选修教材《物质结构与性质》—三种版本的

新课标高中化学选修教材《物质结构与性质》—三种版本的比较研究作者:蔡文联文章来源::《化学教学》2007年01期点击数:31 更新时间:2008-3-24 新课标高中化学选修教材《物质结构与性质》—三种版本的比较研究 蔡文联饶志明余靖知 摘要:根据2003年出版的《普通高中化学课程标准(实验》)编定的高中化学教材已通过审定的有三种版本,分别由人民教育出版社、江苏教育出版社、山东科技出版社出版。高中化学课程8个模块中选修3“物质结构与性质”是属于化学基本理论知识的模块。本文将对新版三种教材(选修3“物质结构与性质”)的设计思路、体系结构、栏目设置等方面进行比较研究,以期有助于教师理解新课标、选择教材、教法以及把握教学尺度。 为了适应我国21世纪初化学课程发展的趋势,化学课程标准研制组经过深入的调查研究,多次讨论修改,于2003年出版了《普通高中化学课程标准(实验)》。他们将高中化学课程采用模块的方式分为必修和选修两部分,共8个模块,其中必修模块2个,选修模块6个。新课程“在保证基础的前提下为学生提供多样的、可供选择的课程模块”,兼顾“学生个性发展的多样化需要”,适应不同地区和学校的条件。目前以高中化学课程标准和基础教育课程改革纲要为指导编写的新版高中化学教材经全国中小学教材审定委员会初审通过的共有3种,分别是由人民教育出版社出版(宋心琦主编,以下简称人教版),江苏教育出版社出版(王祖浩主编,以下简称苏教版),山东科技出版社出版(王磊主编,以下简称山东科技版)。 在6个选修模块中,选修3“物质结构与性质”模块突出化学学科的核心观念、基本概念原理和基本思想方法。在以“提高学生的科学素养”为主旨的高中化学课程改革中,如何将新课程理念很好地融合进化学基本概念和基础理论的教学中,转变学生的学习方式,培养学生的逻辑思维能力,提高学生学习本课程的意义,是值得广大化学教师研究、推敲的。因此,针对上述三种版本的教材(选修3物质结构与性质)进行具体的分析、比较、评价, 对教师在选择教材、教法以及把握教学尺度方面都具有十分重要的意义。 1.“物质结构与性质”模块教材的简介

发光材料的检测方法与相关技术

本技术提供一种发光材料的检测方法,包括:(1)取待测的发光材料,进行研磨;(2)对发 光材料进行XRD检测:将研磨后的发光材料置于XRD检测仪中进行检测,得到发光材料的XRD图谱,将XRD图谱与标准卡片进行比对,确定发光材料的基质成分;(3)对发光材料进行激发光谱检测:将研磨后的发光材料置于荧光光谱仪中进行激发光谱检测,得到发光材料的激发光谱;(4)对发光材料进行发射光谱检测:将研磨后的发光材料置于荧光光谱仪中进行发射光谱检测,得到发光材料的发射光谱;(5)对发光材料的激发光谱和发射光谱进行分析,确定发光材料的掺杂成分以及发光性质。本技术方法能够减小发光材料检测误差、提高实验效率。 权利要求书 1.一种发光材料的检测方法,其特征在于,包括: (1)取待测的发光材料,进行研磨; (2)对发光材料进行XRD检测:将研磨后的发光材料置于XRD检测仪中进行检测,得到发 光材料的XRD图谱,将XRD图谱与标准卡片进行比对,确定发光材料的基质成分; (3)对发光材料进行激发光谱检测:将研磨后的发光材料置于荧光光谱仪中进行激发光谱检测,得到发光材料的激发光谱; (4)对发光材料进行发射光谱检测:将研磨后的发光材料置于荧光光谱仪中进行发射光谱检测,得到发光材料的发射光谱; (5)对发光材料的激发光谱和发射光谱进行分析,确定发光材料的掺杂成分以及发光性质。 2.根据权利要求1所述的发光材料的检测方法,其特征在于,所述XRD检测仪的工作参数为:

使用金属Cu靶(辐射源为K线,λ=0.15406nm)作为阳极,仪器阳极加速电压设置为40KV,工作电流为30mA,扫描速度为2°/min,选用的2θ角扫描步长为0.02°,测量的2θ角度范围为20°~60°。 3.根据权利要求1所述的发光材料的检测方法,其特征在于,所述荧光光谱仪的工作参数为: 用150W的氙灯作为激发光源,R928光电倍增管作为检测器,分辨率为1.0nm,扫描速度为2400nm/min。 4.根据权利要求1所述的发光材料的检测方法,其特征在于,还包括:根据发光材料的激发光谱和发射光谱得到发光材料的色坐标,以进行发光材料的色度学分析。 技术说明书 一种发光材料的检测方法 技术领域 本技术涉及发光材料技术领域,尤其涉及一种发光材料的检测方法。 背景技术 当今的发光材料和激光材料的研究,在国民经济及国家安全的实际应用中,占主导和最重要地位。在进入新世纪后,稀土发光材料科学和技术成为今后占主导地位的平板显示,第四代新照明光源,现代医疗电子设备,更先进的光纤通信等高新技术的发展和创新可靠的依据和

有机发光材料物质结构与性能关系

有机电致发光材料结构及性能 有机电致发光(EL)是当前国际上的一个研究热点。因有机具有低压直流驱动高亮度、高效率以及易实现全色大面积显示等优点。近年来,这方面的工作在世界各地引起了广泛关注。 有机EL器件具有与集成电路相匹配的直流低电压驱动的特性,且易于实现大面积直流显示。与液晶显示器件相比,其响应速度要快得多。另外,与无机EL器件相比,有机EL器件还具有易处理、可加工成不同的形状、机械性能良好以及成本低廉等优点。 在有机EL器件研制中,材料的选择是至关重要的。材料的性质、器件的结构和加工工艺决定了器件的最终性能。目前,有机EL材料大致包括小分子化合物和聚合物两大类。按照功能来分,有机EL材料又可分为电子传输材料、空穴传输材料和发光材料。其中,电子传输材料和空穴传输材料又可兼作发光材料。 1、有机电致发光原理 有机、聚合物薄膜EL器件是通过电子、空穴载流子的注入和复合而发光的。 器件的结构包括单层和多层两大类。 单层EL器件由阴极、发射层和阳极组成。为了提高载流子的注入效率和发光效率。在阴极或阳极与发射层之问加入电子输运层或空穴输运层,从而得到了双层或多层EL器件。 有机EL器件的几种典型结构 由前面可知,EL器件由阳极、阴极、载流子(电子和空穴)传输层和发光层组成。阳极一般采用ITO导电玻璃。对于小分子有机EL器件,一般采用真空蒸镀法依次将有机薄膜成形在ITO玻璃上,最后用同样的方法将阴极材料成膜在有机膜上。对于大分子聚合物EL器件,因为聚合物的熔点较高,不易升华,而且高温加热可能破坏其长链结构,因此,通常不采用真空蒸镀法。一般是将聚合物溶解在有机溶剂如氯仿、甲苯或二氯乙烷等中,然后再经过浸涂或旋涂成膜。但阴极薄膜以及多层结构中的其它小分子薄膜仍需要采用真空蒸镀的方法制备。值得注意的是,制备过程中所采用的工艺条件。温度、真空度、成膜速度以及膜层厚度等对器件的性能产生重要影响。通常要求真空度

物质结构与性质知识点归纳

物质结构与性质知识点总结 专题一了解测定物质组成和结构的常用仪器(常识性了解)。 专题二第一单元 1.认识卢瑟福和玻尔的原子结构模型。 2.了解原子核外电子的运动状态,了解电子云的概念。 3.了解电子层、原子轨道的概念。 4.知道原子核外电子排布的轨道能级顺序。知道原子核外电子在一定条件下会发生跃迁。 5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。 第二单元 1.理解元素周期律,了解元素周期律的应用。 2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。 3.了解元素第一电离能、电负性的概念及其周期性变化规律。(不要求用电负性差值判断共价键还是离子键) 4.了解第一电离能和电负性的简单应用。 专题三第一单元 1.了解金属晶体模型和金属键的本质。 2.能用金属键理论解释金属的有关物理性质。了解金属原子化热的概念。 3.知道影响金属键强弱的主要因素。认识金属物理性质的共性。 4.认识合金的性质及应用。 注:金属晶体晶胞及三种堆积方式不作要求。 第二单元 1.认识氯化钠、氯化铯晶体。 2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。 3.知道影响晶格能大小的主要因素。 4.离子晶体中离子的配位数不作要求。 第三单元 1.认识共价键的本质,了解共价键的方向性和饱和性。 2.能用电子式表示共价分子及其形成过程。认识共价键形成时,原子轨道重叠程度与共价键键能的关系。 3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。注:大π键不作要求 4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。 5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。 第四单元 1.知道范德华力和氢键是两种最常见的分子间作用力。 2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。 3.了解氢键的概念和成因,了解氢键对物质性质的影响。能分析氢键的强弱。

材料的性能与表征课程教学大纲

材料的性能与表征课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的性能与表征 所属专业:材料化学 课程性质:专业基础课 学分:2 (二)课程简介、目标与任务: 材料的物理性能是材料的重要性能之一。外接因素(温度、电场、磁场等)作用于材料,引起材料内部原子、分子、电子的微观运动状态的改变,在宏观上表现为一定的感应物理量,即呈现某一物理性能。具体地讲,最常见的材料物理性能有材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能,每一种物理性能对应一定的物理基础。而材料的物理性能强烈依赖于物质不同层次的结构组成,同时也受环境因素的强烈影响。每一种材料物理性能都具有一定的分子和测试方法,而物理性能分析也是材料研究的重要手段。通过本课程的学习,对材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能的物理本质和表征参量、影响因素、分析测试方法有较全面地认识,并了解物理性能分析在材料研究中的应用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接: 先修课程:力学,热学,电磁学,普通物理(光学与原子物理),材料科学基础 (四)教材与主要参考书。 教材:刘勇,陈国钦编著. 材料物理性能. 北京:北京航空航天大学出版社, 2015.09 主要参考书: 吴雪梅主编;诸葛兰剑等编著. 材料物理性能与检测. 北京:科学出版社, 2012.01. 关振铎,龚江宏,唐子龙著. 无机材料物理性能第2版. 北京:清华大学出版社, 2011.06. 高智勇,隋解和,孟祥龙编著. 材料物理性能及其分析测试方法. 哈尔滨:哈尔滨工业大学出版社, 2015.11.

(完整版)苏教版化学选修3物质结构与性质专题3知识点

第一单元 金属键 金属晶体 金 属 键 与 金 属 特 性 [基础·初探] 1.金属键 (1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。 (2)特征:无饱和性也无方向性。 (3)金属键的强弱 ①主要影响因素:金属元素的原子半径、单位体积内自由电子的数目等。 ②与金属键强弱有关的性质:金属的硬度、熔点、沸点等(至少列举三种物理性质)。 2.金属特性 特性 解释 导电性 在外电场作用下,自由电子在金属内部发生定向移动,形成电流 导热性 通过自由电子的运动把能量从温度高的区域传 到温度低的区域,从而使整块金属达到同样的 温度 延展性 由于金属键无方向性,在外力作用下,金属原 子之间发生相对滑动时,各层金属原子之间仍 保持金属键的作用 [核心·突破] 1.金属键????? 成键粒子:金属离子和自由电子 成键本质:金属离子和自由电子间 的静电作用 成键特征:没有饱和性和方向性存在于:金属和合金中

2.金属晶体的性质 3.金属键的强弱对金属物理性质的影响 (1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。 (2)金属键对金属性质的影响 ①金属键越强,金属熔、沸点越高。 ②金属键越强,金属硬度越大。 ③金属键越强,金属越难失电子。如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。 【温馨提醒】 1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱金属元素的熔点都较低,K-Na合金在常温下为液态。 2.合金的熔点低于其成分金属。 3.金属晶体中有阳离子,无阴离子。 4.主族金属元素原子单位体积内自由电子数多少,可通过价电子数的多少进行比较。

高中化学选修3:物质结构与性质-知识点总结

选修三物质结构与性质总结 一.原子结构与性质. 1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度 越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子 层.原子由里向 外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述 .在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具 有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1. (3).掌握能级交错1-36号元素的核外电子排布式. ns<(n-2)f<(n-1)d

高中化学选修3 物质结构与性质 全册知识点总结

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

物质结构与性质(选考)

1.(2017·全国卷Ⅰ,35)钾和碘的相关化合物在化工、医药、材料等领域有着广泛的应用。回答下列问题: (1)元素K 的焰色反应呈紫红色,其中紫色对应的辐射波长为________nm(填标号)。 A .404.4 B.553.5 C .589.2 D .670.8 E .766.5 (2)基态K 原子中,核外电子占据的最高能层的符号是____________,占据该能层电子的电子云轮廓图形状为________。K 和Cr 属于同一周期,且核外最外层电子构型相同,但金属K 的熔点、沸点等都比金属Cr 低,原因是_________________________________________ ________________________________________________________________________。 (3)X 射线衍射测定等发现,I 3AsF 6中存在I + 3离子。I + 3离子的几何构型为____________,中心原子的杂化类型为________。 (4)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立体结构,边长为a =0.446nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为_____nm ,与K 紧邻的O 个数为________。 (5)在KIO 3晶胞结构的另一种表示中,I 处于各顶角位置,则K 处于________位置,O 处于________位置。 答案 (1)A (2)N 球形 K 的原子半径较大且价电子数较小,金属键较弱 (3)V 形 sp 3 (4)0.315或 2 2 ×0.446 12 (5)体心 棱心 解析 (1)紫色光对应的辐射波长范围是400~430nm 。(2)K 原子位于第四周期,原子结构示 意图为 ,核外电子排布式为1s 22s 22p 63s 23p 64s 1,最高能层为N 层,第4电子层为 4s 原子轨道,为球形。K 原子半径大,且价电子数少(K 原子价电子数为1,Cr 原子价电子排

发光材料荧光性能测试实验报告

发光材料荧光性能测试 实验目的 1、掌握光致发光的基本过程,掌握激发光谱和发射光谱的基本含义 2、掌握发光材料发射光谱和激发光谱的测试方法。 实验原理 发光材料主要是指材料吸收外来能量后所发出的总辐射中超过热辐射的部分。发光材料的发光需要外界能量的激发,根据击发方式不同发光方式可以分为光致发光、阴极射线发光、电致发光、X射线及高能粒子发光等。以光致发光为例,当用激发光照射某些物质时,处于基态的分子吸收激发光发生跃迁,达到激发态,这些激发态经过弛豫过程损失一部分能量后,以无辐射跃迁回到激发态的低振动能级,再从此能级返回基态,此过程中多余的能量以光子的形式释放。激发光谱和发射光谱是表征发光材料两个重要的性能指标。激发光谱是指发光材料在不同波长激发下,该材料的某一波长的发光谱线的强度与激发波长的关系。激发光谱反映了不同波长的光激发材料的效果。根据激发光谱可以确定使该材料发光所需的激发光的波长范围,并可以确定某发射谱线强度最大时的最佳激发波长。激发光谱对分析材料的发光过程也具有重要意义。发射光谱是指在某一特定波长激发下,所发射的不同波长的光的强度或能量分布。激发光谱和发射光谱通常采用荧光分光光度计进行测量。其基本结构包括光源,单色器,试样室,单色器和探测器。常用光源为氙灯,单色器多为光栅,探测器多用光电倍增管。荧光分光光度计工作原理:由光源氙弧灯发出的光通过切光器使其变为断续之光以及激发光单色器变成单色光,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测试样品用的光电倍增管上,由其所发生的光电流经过放大器放大输出至记录仪,激发光单色器和荧光单色器的光栅均有电动机带动的凸轮所控制,当测绘荧光发射光谱时,将激发光单色器的光栅固定在最适当的激发光波长处,而让荧光单色器凸轮转动,将各波长的荧光强度讯号输出至记录仪上,所记录的光谱即为发射光谱,简称荧光光谱。当测绘荧光激发光谱时,将荧光单色器的光栅固定在最适当的荧光波长处,只让激发单色口的凸轮转动,将各波长的激发光的强度输出至记录仪,所记录的光谱即激光光谱。 实验步骤 1、打开电脑,打开光度计电源,间隔1-2分钟后方能打开仪器控制软件。 2、仪器预热30分钟,待灯源稳定。 3、在所提供的样品中随机选一样,小心装入样品盘,稍旋紧样品盖之后,置于样品室内。 4、设置软件参数 5、点击扫描,不断调整参数,找到使样品发出最大强度光的波长范围及样品发光波长范围。

(完整版)物质结构与性质知识点总结

高中化学物质结构与性质知识点总结 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。

四年高考(2017-2020)专题17 物质结构与性质(选修) (解析版)

专题17 物质结构与性质(选修) [2020新课标Ⅲ]35.[化学——选修3:物质结构与性质](15分) 氨硼烷(33NH BH )含氢量高、热稳定性好,是一种具有潜力的固体储氢材料。回答下列问题: (1)H 、B 、N 中,原子半径最大的是 。根据对角线规则,B 的一些化学性质与元素 的相似。 (2)33NH BH 分子中,N-B 化学键称为_____ 键,其电子对由_____ 提供。氨硼烷在催化剂作用下水解释放氢气: 333243623639NH BH H O NH B O H +- +=++ 336B O -的结构为 ,在该反应中,B 原子的杂化轨道类型由______变为______。 (3)33NH BH 分子中,与N 原子相连的H 呈正电性(H δ+),与B 原子相连的H 呈负电性(H δ-),电负性大小顺序是______。与33NH BH 原子总数相等的等电子体是______(写分子式),其熔点比33NH BH _______(填“高”或“低”),原因是在33NH BH 分子之间,存在_________,也称“双氢键”。 (4)研究发现,氨硼烷在低温高压条件下为正交晶系结构,晶胞参数分别为 a pm 、 b pm 、 c pm ,90αβγ===。氨硼烷的222??超晶胞结构如图所示。

氨硼烷晶体的密度ρ=_______3g cm -?(列出计算式,设A N 为阿伏加德罗常数的值) 【分值】15分 【答案】 (1)B Si (硅) (2)配位 N 3sp 2sp (2)N H B >> 33CH CH 低 H δ+与H δ-的静电引力 (4) 3062 10A N abc -? [2020新课标Ⅱ]35.【化学——选修3:物质结构与性质】(15分) 钙钛矿3()CaTiO 型化合物是一类可用于生产太阳能电池、传感器、固体电阻器等的功 能性材料。回答下列问题: (1)基态Ti 原子的核外电子排布式为 。 (2)Ti 的四卤化合物熔点如下表所示,4TiF 熔点高于其他三种卤化物,自4TiCl 至4 TiI 熔点依次升高,原因是 。 化合物 4TiF 4TiCl 4TiBr 4TiI 熔点/0C 377 -24.12 38.3 155 3)所示,其组成元素的电负性大小顺序是_ _;金属离子与氧离子间的作用力为___ ___,2Ca +的配位数是__ __。 (4)一种立方钙钛矿结构的金属卤化物光电材料的组成为2Pb +、I -和有机碱离子 33CH NH +,其晶胞如图(b )所示。其中2Pb +与图(a )中 的空间位置相同,有机碱 33CH NH +中,N 原子的杂化轨道类型是 ;若晶胞参数为nm α,则晶体密度为 3g cm -?(列出计算公式)。

发光材料的制备和特性研究274(实验)

材料物理综合实验报告 实验题目:发光材料的制备和特性研究 物理与能源学院材料物理专业 ___2011___级____1___班 学号__106072011274______ 姓名__赖婷婷___________ 指导老师:__林林老师______

发光材料的制备和特性研究(实验报告) 摘要:本实验用高温固相法制备钼酸钇镝,通过紫外分光光度计对材料的激发强度和发射强度进行测试,结果发现钼酸钇镝在波长为353nm时激发峰最强,在波长为383.5nm时的发射峰最强 引言:发光是物质将某种方式吸收的能量转化为光辐射的过程,是热辐射之外的另一种辐射。要确定某一种材料是否发光并没有明显的界限,一般激发条件下不发光的材料在非常强的能量激发下有微弱的发光。有些材料需要提高纯度,发光才能变强,有些材料则需要掺入一定量的激活剂才能发光发光材料在信息、能源、材料、航天航空、生物技术和环境科学等领域有着广泛的应用前景,对全球信息高速公路的建设及国家经济和科技的发展有着举足轻重的推动作用。稀土离子掺杂材料的上转换发光,是一种吸收两个或两个以上的低能光子发射出一个高能光子的发光过程。掺杂在晶体或玻璃态物质基质中的稀土离子,可以通过激发态吸收和各种能量传递过程被激发至高于泵浦能量的能级而向下跃迁产生上转换发射。 发光材料种类和应用 对固体发光材料而言,发光材料主要包括无机材料和有机材料两大类,根据其被激发的方式不同可以具体划分为以下几种类型:

稀土发光材料的发光原理: 三价稀土离子:La3+: [Xe] 4f0------Lu3+:[Xe]4f14 [Xe]=[Kr]4d105s25p6,三价稀土离子,4f电子能量最高。三价稀土离子的发射和激发绝大多数是由4f电子在f组态内不同能级之间的跃迁而产生的,称为4f-4f跃迁,4f-4f跃迁种类丰富,谱线很多。4f电子能量高于5s和5p,但比5s和5p电子离核近,处于内层。5s25p6形成了良好的电屏蔽,三价稀土离子掺入晶体时,在晶体中比较独,4f能级位置受晶体的影响不大,在所有晶体中都差不多在+3价稀土离子中,Y3+和La3+无4f电子,Lu3+的4f亚层为全充满的,都具有密闭的壳层。因此是光学惰性的,适用于作基质材料。从Ce3+到Yb3+,电子依次填充在4f轨道,从f 1 到 f 13,其电子层中都具有未成对电子,其跃迁可产生发光。这些离子适于作为发光材料的激活离子。 Dieke图:三价稀土离子在LaCl3晶体中的4f电子能级图

物质结构与性质汇总(精华版)

物质结构与性质补充练习 1.(1)中国古代四大发明之一——黑火药,它的爆炸反应为: 2KNO3 + 3C + S == A + N2↑+ 3CO2↑ (已配平) ①除S外,上列元素的电负性从大到小依次为; ②在生成物中,A的晶体类型为,含极性共价键的分子的中心原子轨道杂化类型 为; ③已知CN-与N2结构相似,推算HCN分子中σ键与π键数目之比为; (2)原子序数小于36的元素Q和T,在周期表中既处于同一周期又位于同一族,且原子序数T比Q 多2。T的基态原子外围电子(价电子)排布为,Q2+的未成对电子数是(3)在CrCl3的水溶液中,一定条件下存在组成为[CrCl n(H2O)6-n]x+(n和x均为正整数)的配离子,将其通过氢离子交换树脂(R-H),可发生离子交换反应: 交换出来的H+经中和滴定,即可求出x和n,确定配离子的组成。 将含0.0015 mol [CrCl n(H2O)6-n]x+的溶液,与R-H完全交换后,中和生成的H+需浓度为0.1200 mol·L-1 NaOH溶液25.00 mL,该配离子的化学式为。 2.(2010省质检)X元素在第3周期中电负性最大,Y、Z元素同主族且位置相邻,Y原子的最外层电子排布为ns n np n+2。请填写下列空白。 (1)第一电离能:Y Z(填“>”、“<”或“=”); (2)XY2是一种高效安全的消毒剂,熔点-59.5℃,沸点10℃,构成该晶体的微粒之间的作用力是; (3)ZX2常用于有机合成。已知极性分子ZX2中Z原子采用np3杂化,则该分子的空间构型是,分子中X、Z原子之间形成键(填“σ”或“π”); (4)胆矾晶体(CuSO4·5H2O)中4个水分子与铜离子 形成配位键,另一个水分子只以氢键与相邻微粒结合。 某兴趣小组称取2.500g胆矾晶体,逐渐升温使其失水, 并准确测定不同温度下剩余固体的质量,得到如右图所示 的实验结果示意图。以下说法正确的是(填标号); A.晶体从常温升至105℃的过程中只有氢键断裂 B.胆矾晶体中形成配位键的4个水分子同时失去 C.120℃时,剩余固体的化学式是CuSO4·H2O D.按胆矾晶体失水时所克服的作用力大小不同, 晶体中的水分子可以分为3种 (5)右图中四条曲线分别表示H2、Cl2、Br2、I2分子的 形成过程中能量随原子核间距的变化关系,其中表示v的是 曲线(填“a”、“b”或“c”),理由是。 3.(2010年厦门质检卷)A、B、C、D、E、F、G七种前 四周期元素,其原子序数依次增大。A的原子中没有成对 电子;B的基态原子中电子占据三种能量不同的原子轨道,

2018专题复习选修三物质结构与性质部分(共10题)无答案

物质结构与性质部分(共10题) 1、【2018 江苏 (物质结构与性质)】臭氧(O 3)在[Fe(H 2O)6]2+ 催化下能将烟气中的SO 2、NO x 分别氧化为24SO -和3NO - ,NO x 也可在其 他条件下被还原为N 2。 (1)24SO -中心原子轨道的杂化类型为___________;3NO - 的空间构型为_____________(用文字描述)。 (2)Fe 2+ 基态核外电子排布式为__________________。 (3)与O 3分子互为等电子体的一种阴离子为_____________(填化学式)。 (4)N 2分子中σ键与π键的数目比n (σ)∶n (π)=__________________。 (5)[Fe(H 2O)6]2+ 与NO 反应生成的[Fe(NO)(H 2O)5]2+ 中,NO 以N 原子与Fe 2+ 形成配位键。请在[Fe(NO)(H 2O)5]2+结构示意图的相应位置补填缺少的配体。 2、【2018 全国Ⅰ35(15分)】 Li 是最轻的固体金属,采用Li 作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题: (1)下列Li 原子电子排布图表示的状态中,能量最低和最高的分别为_____、_____(填标号)。 A . B . C . D . (2)Li + 与H ? 具有相同的电子构型,r (Li + )小于r (H ? ),原因是______。 (3)LiAlH 4是有机合成中常用的还原剂,LiAlH 4中的阴离子空间构型是______。中心原子的杂化形式为______,LiAlH 4中,存在 _____(填标号)。 A .离子键 B .σ键 C .π键 D .氢键 (4)Li 2O 是离子晶体,其品格能可通过图(a)的 born ?Haber 循环计算得到。 可知,Li 原子的第一电离能为 kJ·mol ?1 ,O=O 键键能为 kJ·mol ?1 ,Li 2O 晶格能为 kJ·mol ?1 。 (5)Li 2O 具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为 nm ,阿伏加德罗常数的值为N A ,则Li 2O 的密度为______g·cm ?3 (列出计算式)。 3、【2018 全国Ⅱ35.(15分)】硫及其化合物有许多用途,相关物质的物理常数如下表所示: H 2S S 8 FeS 2 SO 2 SO 3 H 2SO 4 熔点/℃ ? >600(分解) ? 沸点/℃ ? ? 回答下列问题: (1)基态Fe 原子价层电子的电子排布图(轨道表达式)为__________,基态S 原子电子占据最高能级的电子云轮廓图为_________ 形。 (2)根据价层电子对互斥理论,H 2S 、SO 2、SO 3的气态分子中,中心原子价层电子对数不同其他分子的是_________。

相关文档
最新文档