实验室误差分析大全,是时候让送检人知道了

实验室误差分析大全,是时候让送检人知道了
实验室误差分析大全,是时候让送检人知道了

第一部分误差理论简介

在日常检测工作中,我们虽然有最好的检验方法、有检定合格的仪器设备、有满足检验要求的环境条件和熟悉检验工作的操作人员,但是,得到的检验结果却往往不可能是绝对准确的,即使是同一检测人员对同一检测样品、对同一项目的检测,其结果也不会完全一样,总会产生这样或那样的差别,也就是说,任何物理量的测定,都不可能是绝对准确的,在测得值与真实值之间总是或多或少的存在着差别,这就是误差。误差是客观存在的,用它可以衡量检测结果的准确度,误差越小,检测结果的准确度越高。

一、术语和定义

1准确度

准确度指,检测结果与真实值之间相符合的程度。(检测结果与真实值之间差别越小,则分析检验结果的准确度越高)

2 精密度

精密度指,在重复检测中,各次检测结果之间彼此的符合程度。(各次检测结果之间越接近,则说明分析检测结果的精密度越高)

3 重复性

重复性指,在相同测量条件下,对同一被测量进行连续、多次测量所得结果之间的一致性。

重复性条件包括:相同的测量程序、相同的测量者、相同的条件下,使用相同的测量仪器设备,在短时间内进行的重复性测量。

4 再现性(复现性)

在改变测量条件下,同一被测量的测定结果之间的一致性。

改变条件包括:测量原理、测量方法、测量人、参考测量标准、测量地点、测量条件以及测量时间等。

如,实验室资质认定现场操作考核的方法之一:样品复测即是样品再现性(复现性)的一种考核、样品复测包括对盲样(即标准样品)的检测,也可以是对检验过的样品、在有效期内的再检测。或是原检测人员或是重新再安排检测人员。※通常再现性或复现性好,意味着精密度高。精密度是保证准确度的先决条件,没有良好的精密度就不可能有高的的准确度,但精密度高准确度不一定高;反之,准确度高,精密度必然好。

二、误差的种类、来源和消除

根据误差的来源和性质,误差可以分为以下几种:

1 系统误差(又称规律误差)

1.1系统误差的定义

※系统误差是指,在偏离检测条件下,按某个规律变化的误差。

※系统误差是指,同一量的多次测量过程中,保持恒定或可以预知的方式变化的测量误差。

1.2 系统误差的特点

系统误差又称可测量误差,它是由检测过程中某些经常性原因引起的,再重复测定中会重复出现,它对检测结果的影响是比较固定的。

1.3系统误差的主要来源

a)方法误差

主要由于检测方法本身存在的缺陷引起的。如重量法检测中,检测物有少量分解或吸附了某些杂质、滴定分析中,反应进行的不完全、等当点和滴定终点不一致等;

b)仪器误差

由仪器设备精密度不够,引起的的误差。如天平(特别是电子天平,在0.1-0.9mg之间)、砝码、容量瓶等;

C)试剂误差

试剂的纯度不够、蒸馏水中含的杂质,都会引起检测结果的偏高或偏低;

d)操作误差

由试验验人员操作不当、不规范所引起的的误差。如,有的检验人员对颜色观察不敏感,明明已到等当点、颜色已发生突变,可他却看不出来;或在容量分析滴定读数时,读数时间、读数方法都不正确,按个人习惯而进行的操作。

1.4 系统误差的消除

a)对照试验

即用可靠的分析方法对照、用已知结果的标准试样对照(包括标准加入法),或由不同的实验室、不同的分析人员进行对照等。(实验室资质认定要求做比对计划,如人员比对、样品复测及实验室之间的比对等都属于比对试验)。

b)空白试验

即在没有试样存在的情况下,按照标准检测方法的同样条件和操作步骤进行试验,所得的结果值为空白值,最终,用被测样品的检验结果减去空白值,即可得到比较准确的检测结果。(即实测结果=样品结果-空白值)(再例:重量法中的空白坩埚)。

c)校正试验

即对仪器设备和检验方法进行校正,以校正值的方式,消除系统误差。

被测样品的含量 = 样品的检测结果×标样含量/标样检测结果

公式中:标样含量/标样检测结果—即校正系数K

例题:若样品的检测结果为5.24,为验证结果的准确性,检测时带一标准样品,已知标准样品含量为1.00,则检测的结果可能出现三种情况:

a)检测结果 > 1.00 假设标样(标物)检测结果为:1.05

b)检测结果 = 1.00 假设标样(标物)检测结果为:1.00

c)检测结果 < 1.00 假设标样(标物)检测结果为:0.95

校正系数K分别为:

a)校正系数为:K = 1.00÷1.05 =0.95

(检测结果>标准值,则校正系数<1)

b)校正系数为:K = 1.00÷1.00 =1.00

(检测结果 = 标准值,则校正系数=1)

c)校正系数为:K = 1.00÷0.95 =1.05

(检测结果<标准值,则校正系数>1

通过校正后,其真实结果应分别为:

a)5.24 ×0.95 =4.978 ≈ 4.98

(点评:∵标样检测结果高于标样明示值,则说明被检样品检测结果也同样偏高,∴为了接近真值,用<1的校正系数进行较正,其结果肯定比原检测值低)

b)5.24 ×1.00 =5.240 = 5.24

c) 5.24 ×1.05 =5.502 ≈ 5.50

(点评:∵标样检测结果低于标样明示值,则说明被检样品检测结果也同样偏低,∴为了接近真值,用>1的校正系数进行较正,其结果肯定比原检测值高)

【检测结果的校正非常重要,特别是在检测结果的临界值时,加入了校正系数后,结果的判定可能由合格→不合格,也可能由不合格→合格两种完全不同的结论,尤其是对批量产品的判定有着更重大的意义】

2 误差偶然(随机误差、不定误差)

2.1误差偶然(也称随机误差、不定误差)定义

偶然误差指,由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。

2.2 误差偶然(随机误差、不定误差)特点

误差偶然(随机误差、不定误差)特点就个体而言是不确定的,产生的的这种误差的原

因是不固定的,它的来源往往也一时难以察觉,可能是由于测定过程中外界的偶然波动、仪器设备及检测分析人员某些微小变化等所引起的,误差的绝对值和符号是可变的,检测结果时大时小、时正时负,带有偶然性。但当进行很多次重复测定时,就会

发现,误差偶然(随机误差、不定误差)具有统计规律性,即服从于正态分

布。

如果用置信区间〔-△、△〕,来限制这条曲线(因为我们不可将试验无限次的做下去,

即使做得再多,检测结果的误差愈来愈接近于零,但永远也不会等于零),这样得到截尾正态分布,该正态分布图较好地描述了符合该类分布的偶然误差(随机误差,不定误差)出现的客观规律,且具有以下的基本性质(偶然误差的四性)。

a)单峰性:绝对直小的误差比绝对值大的误差,出现的机会多得多(±1σ占68.3﹪)

b)对称性:绝对值相等的正、负误差出现的概率相等;

c)有界性:在一定条件下,有限次的检测中,偶然误差的绝对值不会超出一定的界限;

d)抵偿性:相同条件下,对同一量进行检测,其偶然误差的平均值,随着测量次数的

无限增加,而趋于零。

【抵偿性是偶然误差最本质的统计特性,凡有抵偿性的误差都可以按偶然误差处理】。显然,从误差的曲线本身就提供了决定了这类误差的理论根据,即用在相同条件下的

一系列测量数值的算术平均值来表示分析结果,这样的平均值是比较可靠的。但,在

实际工作中,进行大量的、无限次的测定显然是不真实的。因而,必须根据实际情况、根据对检测结果要求的不同,采取适当的检测次数。

采用数理统计方法以证明:

标准偏差在±1σ内的检测结果,占全部结果的68.3﹪;

标准偏差在±2σ内的检测结果,占全部结果的95.5﹪;

准偏差在±3σ内标的检测结果,占全部结果的99.7﹪;

而误差>±3σ内的检测结果,仅占全部结果的0.3﹪;

而且,由正态分布曲线可以看出,σ3 > σ2 > σ1,σ值愈小,曲线愈陡,偶然误差的

分布愈密集,反之,σ值愈大,曲线愈平坦,偶然误差的分布就愈分散。

3 粗大误差(简称粗差、也称过失误差、疏忽误差)

3.1粗大误差定义:

※粗大误差指,在一定测量条件下,测量值明显偏离实际值所形成的误差(亦称离群值)。

※粗大误差指,明显超出测定条件下预期的误差,即是明显歪曲检测结果的误差。

3.2粗大误差的来源

产生粗大误差的原因有主观因素,也有客观因素。例如,由于实验人员的疏忽、失误,造成检测时的错读、错记、错算或电压不稳

定到致使仪器波动导致检测结果出现的异常值等。含有粗大误差的检测结果成为“坏值”,坏值应想办法予以发现和剔除。

3.3粗大误差的消除

剔除粗大误差最常用的方法是莱依达(即3S)准则(3S即3倍的标准偏差),该准则要求

检测结果的次数不能小于10次,否则不能剔除任何“坏值”,对于非从事计量检测工作而言,进行检验10次以上的分析化学不太现实,因此,我们采取4 法和Q检验法。在后面将逐一以介绍。

以上我们较详细的介绍了系统误差、偶然误差及粗大误差。区别三类误差的主要依据

是人们对误差的掌握程度和控制的程度,能掌握其数值变化规律的,则认为是系统误差;掌握其统计规律的,则认为偶然(随机)误差;实际上未掌握规律的认为是粗大误差。由于掌握和控制的程度受到需要和可能两方面的制约,当检测要求和观察范围不同时、掌握和控制的程度也不同,就会出现同一误差在不同的场合下属于不同的类别。因而,系统误差与偶然误差没有一条不可逾越的明显界限(只能是一个过渡区)。而且,两者

在一定条件下可能互相转化。例如,某一产品,由于其用途不同其精度要求也不同,

对于精度要求高的,出现的粗大误差,对于精度要求低的产品而言属于随机误差。同样,粗大误差和数值很大随机误差间的也没有明显的界限,也存在类似的转化。因而,如果想刻意的划定不同类别间的误差的界限,是没有必要的。

三、误差理论在质量控制中的应用

利用误差理论对日常检验工作进行质量控制,有着重要的意义。如在《实验室资质认

定评审准则》的5.7结果质量控制中的5.7.1提出了质量控制的几种方法:

a)定期使用有证标准物质,开展内部质量控制;

b)参加实验室之间的比对或能力试验;

c)使用不同的方法进行重复性检测;

d)对留存样品进行再检测;

e)分析同一样品不同特性结果的相关性。

3.1利用系统误差和偶然误差对日常检验工作进行质量控制

为保证检测结果的稳定性和准确性,通过用标准物质进行质量监控,具体的做法是:

用一标准物质或用检测结果稳定、均匀的在有效期内的样品,在规定的时间间隔内,

对同一(标物)样品进行重复检测,将检测结果汇成曲线,

通过坐标上检测点的结果,将其联成线,通过曲线可判定误差的类型:

a)假设我们每10天检测一次,共有10个点,而这10个点在标准值之间上下波动,无规律可言,则说明是偶然误差,是正常状态;

b)当检测的结果呈现出规律性,或在真值线以上、或在真值线以下、或呈现一条斜线,则视为出现了系统误差,这种情况下,应查找出现系统的原因,并找到消除系统误差

的原因。

3.2参加实验室间比对和能力验证

a)实验室间比对

参加实验室之间的比对,也是进行质量控制的一种方法,在进行实验室比对时,应充

分考虑比对样品的均匀度及稳定性,如果比对样品满足不了以上条件,则比对结果毫

无意义。

b)能力验证是指,利用实验室检测数据的的比对,确定实验室从事特定测试活动的技

术能力。能力验证一般由省级以上技术监督局或国家认监委组织。

3.3 使用不同的方法进行重复性检测

通过使用不同的检测方法,用同一样品、同一检测人员、相同环境条件下进行的重复

性检测,以减少检测方法带来的系统误差。

3.4 对留存样品进行再检测

对留样进行再检测,即实验室资质认定现场考核方法之一,称之为“样品复测”。样

品复测包括“盲样检测”即用已知结果的标准物质进行的检测;另一种样品复测的方法,即在样品的有效期内,对样品进行的再检测。样品的再检测是考核样品结果的复现性

或再现性,即在不同时间、不同人员(也可是原检测人员)、不同地点及不同检测方法等,通过样品的复现性用以考核检测人员独立操作的能力,通过结果误差的分析,对

实验室的质量进行有效控制。

3.5分析同一样品不同特性结果的相关性

每个产品或样品的各项结果都有相关性,正如人的正常高度和体重有一定的比例一样,当过重或过轻都不正常一样。如酱油的全氮与氨基酸态氮有一定的比例关系,其关系

为正比关系、电流和电阻有一定的关系,其关系是反比关系一样,任何样品或产品不

同特性结果都有相关性,通过特性结果的相关性,可判断产品的正常与否,正如一份

发酵酒,如果它的固形物很低,而含糖量又符合要求,其特性结果的相关性存在问题,就应考虑产品的质量问题了。

第二部分有效数字及其运算

一、有效数字及其有效数字的保留

1 有效数字的定义

有效数字指,保留末一位不准确数字,其余数字均为准确数字。有效数字的最后一位

数值是可疑值。

如:0.2014为四位有效数字,最末一位数值4是可疑值,而不是有效数值。

再如: 1g、1.000g其所表明的量值虽然都是1,但其准确度是不同的,其分别表示为准确到整数位、准确到小数点后第三位数值。因此有效数值不但表明了数值的大小,

同时反映了测量结果的准确度。

2 有效数字的表留

由于有效数字最末一位是可疑值,而不是准确值。因此,计算过程中,计算的结果应

比标准极限或技术指标规定的位数要求多保留一位,最后的报出值应与标准对定的位

数相一致。

如:在标准的极限数值(或技术指标)的表示中,××≧95 表明结果要求保留到整数位。因此,计算结果一定要保留到小数点后一位,最后再修约到整数位,如计算结果为94.6报出结果为95(-);因为94.6结果的0.6为可疑值,要想保留到整数位结果为准确值,计算结果必须要多保留一位。

如,分析天平的分辨率为0.1mg(即我们常说的万分之一天平),如果我们称取的量是10.4320g.,则实际的称取结果结果为10.4320±0.0002g(万分之一的天平误差)。因为再精确的仪器设备都有误差,因此,在重量法中,如果检验方法中要求:直至恒重,

即前后两次差不大于0.0002g即为恒重了。(讲电子天平的准确度)

如GB/T601-2002《化学试剂标准滴定溶液的制备》,要求保留4为有效数字,因此在标定计算结果中,应保留5位有效数字,最后再修约到4为有效数字(如果直接保留到

4为有效数字,实际上是保留了三位有效数字,因最后一位是可疑值,则由标准溶液

的浓度的不准确,会引进系统误差。

二、“0”在数字中的作用

“0”作为一个特殊的数字,在数值的不同的位置,有着不同的作用,只有明确了“0”在数字中的作用,才能更好的掌握有效数字及其加减乘除的运算规则。“0”在数字中不同的位置,有不用的作用,根据“0”在数字的位置,起三种作用。即定位(无效)、定值(有效)及不确定作用。

2.1 定位(无效)

当“0”在小数点后,又在数字之前(前提:小数点前为“0”)时,为定位。如:

0.0001(数字前4个零)0.02040(数字前2个零)均为定位作用;

2.2 定值(有效)

当“0”在小数点后的数值中间或数尾(前提:小数点前必为“0”)时。如:

0.002040.300020

当“0”在小数点后,而小数点前为非“0”时。如1.000 1.0204

均为有效作用

2.3 不确定作用:当“0”在整数后。

如:4500有效数值是几位?回答是:不确定

将4500用三为有效数字表示:0.450×104 4.50×103

将4500用四为有效数字表示:0.4500×104 45.00×102

三、数字修约规则(GB8170)

3.1 数字修约规则例题:将下列各数修约到小数点后一位数。

修约前修约后

四舍六如五考虑, 12.44 12.4

12.46 12.5

五的情况有三种: 12.35 12.4

五后为零看前位, 12.45 12.4

五前为奇要进一 12.451 12.5

五前为偶要舍去,

五后非零则进一。

3.2 检验结果的修约

根据技术标准的指标要求,在原始记录中,通常检验计算的结果应比标准规定的位数要多保留一位,但被多保留的一位数值,应该体现出修约的情况,或一步修约到位,但不能存在连续修约的现象

a)检验结果修约后,应体现出修约的情况

如标准值×× <0.5

检测结果为:0.456 第1步修约:0.46(-)(四舍六入)

报出值:0.5(-) 判定:合格

如:标准值××≥15

检测结果为:14.55 第1步修约:14.6(-) 报出值:15(-)

按全数值比较法(15(-))判定不合格、按修约值比较法(15)判定合格

14.55(5后非零要进一。讲评:在拟舍弃的数字中即14.55的第一个“5”,虽然“5”前为偶数,但“5”后非“0”,所以要进一。)

如,若检验结果为:14.35

第1步修约:14.4(+) (修约原则,四舍六入) 报出结果:14

最终的报出结果只有修约到标准值上时,才用+、-表示。

例题:将检验结果保留到整数位

检测值修约值报出值

15.4546 15.5(-) 15

16.5203 16.5(+) 17

17.5000 17.5 18

10.5020 10.5(+) 11

由以上例题可见,被多保留的数字的修约原则仍是是四舍六五单双

b)一步修约到位 (这种修约更直接和更直观)

例题:将下列结果修约到整数位

检测结果报出值

15.4546 15

16.5203 17

17.5000 18

14.5500 15

10.5020 11

c)不准连续修约

拟修约数字应在确定修约位数后,应一次修约获得结果,而不准多次修约即连续修约。如15.4546一次修约结果为:15

※连续修约:15.455 — 15.46-15.5-16

※按多保留一位的修约法: 15.5(-)

因为.5(-)

即修约后到5(-) ,但不足5(<5),所以不进,最终结果为15。

四、数值的修约方

4.1 数值的修约方法有两种,即修约值比较法和全数值比较法

a)修约值比较法:数值修约后,体现不出数值的修约情况;

b)全数值比较法:数值修约后,能够体现出数值的修约情况。

4.2 如何选择修约值的方法

a)当检测项目牵涉到卫生指标、安全指标等,应首选用全数值比较法;

b)只有当检测结果修约到标准值上时,方采用全数值比较法。

举例:

标准值

检测结果

修约值比较法

判定

全数值比较法判定

≤0.5

0.47

0.5

合格

0.5(-)

合格

0.51

0.5

合格

0.5(+)

不合格

0.2-0.4 0.16

0.2

合格

0.2(-)

不合格

0.34

0.3

合格

0.3

合格

0.38

0.4

合格

0.4(-)

合格

0.45

0.4

合格

0.4(+)

不合格

> 95

94.99

95

不合格

95(-)

不合格

95.01

95

不合格

95(+)

合格

≥95

94.99

95

合格

95(-)

不合格

95.01

95

合格

95(+)

合格

由上表可以看出,一般情况下全数值比较法严与修约值比较法。

五、加减乘除运算规则

5.1加减法运算规则

在参与运算的各数中,以小数点后位数最少的的为准,其余各数均修约成比位数最少的要多一位,最终结果与位数最少的相一致。(与小数点位数有关)

例题1:

12.455 + 23.1 +14.345

= 12.46 + 23.1 +14.34

= 49.90 第17页

≈49.9

例题2:

2.155 + 0.0012 +10.445 + 25.1

= 2.16 + 0.00 +10.44 + 25.1

= 37.70

≈37.7

例题3:

1.000 + 0.125 +9.555 + 0.1

= 1.00 + 0.12 +9.56 + 0.1

= 10.78

≈10.8

例题4:

0.999 + 1.0 +14.999 + 24.450

= 1.00+ 1.0 + 15.00+ 24.45

= 41.45

≈41.4

例题5:

0.1 + 10.515 +0.001 + 10.000

= 0.1 + 10.52 +0.00 + 10.00

= 26.62

≈26.6

5.2 乘除(乘方、开方)法

在参与运算的各数中,以有效位数最少的为准,其余各数均修约成比有效位数最少的要多一位,最终结果与有效位数最少的相一致。(与有效位数有关)

例题1:

10.54 × 1.001 ×0.10

= 10.5 × 1.00 ×0.10

= 1.05

≈1.0

例题2:

0.1 × 1.00 × 0.101× 10.145

= 0.1 × 1.0 × 0.10× 10

= 0.10

≈ 0.1

例题3:

0.999 × 1.00 ×10.04 × 0.0010

= 1.00 ×1.00 × 10.0× 0.0010

= 0.0100

= 0.010

例题4:

2.24 × 0.5 × 0.554× 0.5451

= 2.2 × 0.5 × 0.55×0.55

= 0.33

≈ 0.3 第19页

例题5:

2.5 × 2.451 × 2.255

= 2.5 × 2.45 × 2.26

= 13.8

≈ 14

酸碱中和滴定实验误差分析

酸碱中和滴定实验误差分析 1.用已知物质的量浓度的酸(或碱)来测定未知物质的量浓度的碱(或酸)的方法叫做酸碱中和滴定。 2.酸碱中和反应的实质:H++OH-=H2O 公式:a.n(H +) =n(OH-)b.C(H+)V(H+)=C(OH-)V(OH-) 3.中和滴定过程中,容易产生误差的6个方面是: ①洗涤仪器(滴定管、移液管、锥形瓶); ②气泡; ③体积读数(仰视、俯视):俯视刻度线,实际加水量未到刻度线,使溶液的物质的量浓度增大; 仰视刻度线,实际加水量超过刻度线,使溶液的物质的量浓度减小; ④指示剂选择不当; ⑤杂质的影响; ⑥操作(如用力过猛引起待测液外溅等)。 具体分析如下: (1)滴定前,在用蒸馏水洗涤滴定管后,未用标准液润洗。(偏高) (2)滴定前,滴定管尖端有气泡,滴定后气泡消失。(偏高) (3)滴定前,用待测液润洗锥形瓶。(偏高) (4)取待测液时,移液管用蒸馏水洗涤后,未用待测液润洗。(偏低) (5)取液时,移液管尖端的残留液吹入锥形瓶中。(偏高) (6)读取标准液的刻度时,滴定前平视,滴定后俯视。(偏低) (7)若用甲基橙作指示剂,最后一滴盐酸滴入使溶液由橙色变为红色。(偏高) (8)滴定过程中,锥形瓶振荡太剧烈,有少量溶液溅出。(偏低) (9)滴定后,滴定管尖端挂有液滴未滴入锥形瓶中。(偏高) (10)滴定前仰视读数,滴定后平视刻度读数。(偏低) (11)滴定过程中向锥形瓶内加入少量蒸馏水。(无影响) (12)滴定过程中,滴定管漏液。(偏高) (13)滴定临近终点时,用洗瓶中的蒸馏水洗下滴定管尖嘴口的半滴标准溶液至锥形瓶中。(操作正确, 无影响) (14)过早估计滴定终点。(偏低) (15)过晚估计滴定终点。(偏高) (16)一滴标准溶液附在锥形瓶壁上未洗下。(偏高) (以上所指偏高偏低抑或无影响是指待测酸碱浓度) 分析技巧:1.分析不当操作对公式中四个变量其中一个或多个的大小影响, 2.根据公式,分析对V标准液的影响,V标准液比理论偏大,则待测液浓度测量值比实际值偏大,反之亦 然。故而V 标准液 是我们考察的重点。 3.对于(11),分析向已经准确量取好的待测液中滴加入水,虽然改变了待测液浓度和体积,但并不 影响n 待测液,所以V 标准液 不变化,对测量结果无影响。 3、误差分析 根据待测液浓度的计算公式:c(测)=进行分析,可见c(测)与V(标)成正比,凡是使V(标)的读数偏大的操作都会使c(测)偏大;反之,c(测)偏小。 (1)标准液配制引起的误差 ①称取5.2克氢氧化钠配制标准液时,物码倒置。(偏高) ②配制标准液时,烧杯及玻璃棒未洗涤。(偏高) ③配制标准液时,定容俯视。(偏低)

工业机器人运动学标定及误差分析(精)

工业机器人运动学标定及误差分析 运动学标定是机器人离线编程技术实用化的关键技术之一,也是机器人学的重要内容,在机器人产业化的背景下有十分重要的理论和现实意义。机器人运动学标定以运动学建模为基础,几何误差参数辨识为目的,为机器人的误差补 偿提供依据。工业机器人在以示教方式工作时,以重复精度为主要指标;在以离 线编程方式工作时,主要工作指标变为绝对精度。但是,工业机器人重复精度较 高而绝对精度较低,难以满足离线编程工作时的精度,所以需要进行运动学标定 来提高其绝对精度。随着机器人离线编程系统的发展,工业机器人运动学标定日益重要。本文首先综合分析了工业机器人运动学标定的一些基本理论,为之后的运动学建模和标定提供理论基础。根据ABB IRB140机器人实际结构,本文建立 了D-H运动学模型,并讨论了机器人的正运动学问题和逆运动学问题的解;然后 指出了该模型在标定中存在的缺陷,结合一种修正后的D-H模型建立了本文用于标定的模型。并根据最终建立的运动学模型建立了机器人几何误差模型。本文 还在应用代数法求解机器人逆运动学问题的基础上,进行了应用径向基神经网络求解机器人逆解的研究。该方法结合机器人正运动学模型,以机器人正解为训练样本训练经遗传算法优化后的径向基神经网络(GA-RBF网络),实现从机器人工 作变量空间到关节变量空间的非线性映射,从而避免复杂的公式推导和计算。本文在讨论了两种构造机器人封闭运动链进行运动学标定的方法的基础上,提出了一种新的机器人运动学标定方法——虚拟封闭运动链标定法。并对该方法的原理、系统构成进行了详细的分析和说明。该方法通过一道激光束将末端位置误 差放大在观测平板上,能够获得更高精度的关节角的值,从而辨识出更为准确的 几何参数。为了验证本文提出的虚拟封闭运动链标定方法的有效性和稳定性,本文以ABB IRB140机器人为研究对象,利用有关数据进行了仿真分析,最终进行了标定试验,得出结论。 同主题文章 [1]. 王金友. 中国工业机器人还有机会吗?' [J]. 机器人技术与应用. 2005.(02) [2]. 李如松. 工业机器人的应用现状与展望' [J]. 组合机床与自动化加工技术. 1994.(04) [3]. 赖维德. 工业机器人知识讲座——第一讲什么是工业机器人' [J]. 机械工人.冷加工. 1995.(02) [4]. 世界工业机器人产业发展动向' [J]. 今日科技. 2001.(11) [5]. 人丁兴旺的机器人大家族' [J]. 网络科技时代(数字冲浪). 2002.(01)

非接触式测量机器人的误差分析

非接触式测量机器人的误差分析 方海燕!,杨军良!,郭俊杰",邵伟!,朱利强",吴玉梅" (!#西安理工大学机械与精密仪器工程学院,陕西西安$!%%&’; "#西安交通大学机械学院,陕西西安$!%%&() 摘要:本文介绍了一种新型的非接触式机器人测量系统,该系统以串联机器手作为主体,激光位移传感器为测量探针,对球壳类、回转类部件的几何尺寸、表面缺陷进行非接触、高精度测量。该测量系统将机器人旋转关节的角位移测量转换成弧长测量。本文详细分析了这种方法的优缺点,以及机器人运动学参数的误差对机器人末端执行器位置精度的影响。 关键词:测量机器人;非接触;误差;精度 中图分类号:)*"&"++文献标识码:,++文章编号:!%%!-.’’!("%%&)!-!!(-. !""#"$%&’()*)#+,#%-#%.&-./#0#.*-12&)3"*%45().26 /,01234-536!,7,01896-:436;!,1<=896->4?",@2,=A?4!,B2H46NM 3O?FH6R?ON?K 46NH E?3M9O?E?6NM HI 3OF K4MU:3F?E?6N HI MU?F4I4?K K?R4F?M#)G4M U3U?O K4MF9MM?M NG?FG3O3FN?O4MN4FM HI NG4M 3UUOH3FG ,36K 363:5M?M NG??II?FNM HI W46?E3N4F U3O3E?N?O ?OOHOM H6UHM4N4H63FF9O3F5HI NG?OHVHN ?6K -?II?FNHO# 72(8#"9):YHVHN4F E?3M9O46;M5MN?E ;0H6FH6N3FN ;POOHO ;,FF9O3F5!"引言 随着科学技术和现代制造业的发展,工件的制造 精度越来越高,因此对测量设备的精度和功能的要求也越来越高,而且新型专用的测量设备的需求也日益增多。传统的测量机,大都基于一种几何坐标系,如笛卡儿坐标系,柱坐标系等。这些测量机,机械结构比较直观,控制算法简单,测量精度高,系统的误差模型经多年的研究已完善。但在有些特殊场合,这些测量机不能适应。而非正交坐标测量系统由于其所具 有高的灵活性已经成为坐标测量机的发展趋势[!] 。经大量的调查研究,方案比较,参数的计算与优化,计算机仿真。充分考虑精度,效率,可靠性,操作性,空间的兼容性等,在基于直角坐标系与原柱坐标系的固定桥式,关节机器人测量机等多种方案的基础上,为在有限的空间实现半球自动非接触测量,将机器人测量机与激光非接触测量传感器技术相结合,研制了 一种新型的非接触式测量机器人。 图!+测量机器人机械结构为了提高机器人旋转关节角位移的测量分辨率,本系统将对角位移的测量转换成弧长的测量,并且详细分析了这种方法的优缺点,以及其所引进的误差对系统测量精度的影响。在此基础上,对机器人运动学参数的误差对机器人末端执行器位置精度的影响进行了详尽分析,这对提高测量机器人的精度有很大的指导意义。 #"测量系统的机械结构 该系统的机械部分主要由基座、机器人、高精度回转台、两维调平工作台等组成。如图!所示。SSZ 激光位移传感器安装在机器人的末端。在测量中具有.个自由度的机器人作为测量主体。基座的中央安装了一个高精度的回转主轴,在回转主轴的上端,安装一个两维调平工作台,使被测件的回转轴与回转台的回转轴重合。测量时,将工件放在测量平台上,回转主轴转动一周,测量系统测量出半球中心的位置,将位置误差显示在面板上。在计算机提示操作下,将半球与回转轴调同心。然后,机器手移动到第一个测量位置,工作台旋转,激光传感器进行测量。随后机器手移动到下一个测量位置,重复上面过程。当整个球面扫描完成后,经过数据处理,就可以获得球体的各种被测要素。该测量系统不仅可以测量半球,还可以测量它们的各种组合型体和其它的回转类工件。 $"机器手关节位移的测量 关节位移的测量精度直接影响整个系统的测量精度。从本系统的整体精度要求出发,旋转关节的角度测量需达到秒级。常规的角度测量,都是在回转轴 ? :;;?《机床与液压》"%%&[0H[! 万方数据

滴定误差分析

滴定误差分析: (1)滴定管不润洗---偏大 (2)滴定管尖嘴气泡前无后有---偏小 (3)滴定管尖嘴气泡前有后无---偏大 (4)滴定管读数俯视---偏小 (5)滴定管读数仰视---偏大 (6)锥瓶润洗---偏大 (7)锥瓶摇动外溅---偏小 容量瓶配液误差分析: (1)不冷却室温---偏大 (2)不洗烧杯,玻棒---偏小 (3)溶液外溅---偏小 (4)定容俯视刻度线---偏大 (5)定容仰视刻度线---偏小 怎样区别强酸.弱酸.强碱.弱减 酸是由酸根离子和氢离子构成的,而碱是由金属离子和氢氧根离子组成的,区别强酸和弱酸的根本区别就在于酸和碱在水中是否能够完全电离,也就是酸是否能够完全电离成酸根离子和氢离子,如果可以,那么这种酸就是强酸,如果不可以那么就是弱酸碱是否能够完全电离成金属离子和氢氧根离子,如果可以那么这种碱就是强碱,如果不可以那么就是弱碱 从化学式观察: 常见的强酸:HClO4,H2SO4,HI,HBr,HCl,HNO3 酸中主要元素的非金属性越强,对应的酸的酸性越强 常见的强碱:NaOH,KOH,Ba(OH)2 如果这种碱是沉淀或者在水中微溶,那么这种碱就是弱碱如果这种碱在水中易溶,那么这种碱就是强碱 根据化学方程式的计算差量法应用 在化学反应中,固体物质或溶液的质量(含气体物质的体积),往往会发生变化,这种反应前后的变化差值,与该化学反应紧密联系,并与某些反应物或生成物的质量(含气体体积)成正比例关系应用差量法解某些化学计算题,十分简便 [例1] 在某硫酸铜溶液中,加入一个质量为1.12克的铁片,经过一段时间,铁片表面覆盖了一层红色的铜,取出洗净烘干称重,质量变为1.16克试计算在这个化学反应中溶解了铁多少克?析出了铜多少克? [分析] 把铁片放入硫酸铜溶液中,会发生置换反应,这个反应的化学方程式是: Fe+CuSO4=FeSO4+Cu 从化学方程式可以看出,铁片质量的增加,与铁的溶解和铜的析出直接联系,每溶解56克铁,将析出64克的铜,会使铁片质量增加: 64克-56克=8克

分析化学 滴定分析中误差的来源及误差如何避免

滴定分析中误差的来源及误差如何避免 摘要:本文通过对滴定分析各个过程的回顾,分析了误差的主要来源,以及避免误差的策略。另外借一些具体的事例来阐述误差避免的具体方法及操作规范。 关键词:滴定分析,误差来源,误差避免, 一、引言 滴定分析包括酸碱滴定、配位滴定、氧化还原滴定和沉淀滴定等。滴定分析法是通过标准溶液的浓度和滴定所消耗的体积算出试样中被测组分含量的一种方法,是十分重要的化学分析方法。为了使滴定分析的实验结果可靠、准确,我们从实验仪器、基本操作、滴定终点的判断和标准溶液的配制等四个方面来分析误差来源并讨论避免误差的策略。 二、误差来源及如何提高滴定的准确度 1、实验仪器 在滴定分析中用到的仪器主要有滴定管、移液管、锥形瓶等,如果清洗不干净,就很可能引入杂质;如果没有润洗或者润洗不到位都会造成浓度的降低,是一种潜在的“稀释”;滴定管注入液体时下端如果产生气泡,将会对滴定所耗体积造成“偏大”的影响,使计算结果不够准确;如果读取数据时滴定管、移液管与水平面不垂直,液面不稳定,显然会造成读数上的误差;另外,如果移液时移液管中的液体没有自然

地全部流出,会使待测液体积减小,所消耗的标准溶液体积减少,浓度会计算的偏低。 由此可见,由于仪器而产生的误差是完全可以避免的。针对上述的问题,可以采用仪器进行清洗、滴定管下端要放液体赶净液泡、读数要待大约30秒以后再准确读数等等方法来避免。毕竟滴定分析是一种较为精确的分析方法,半滴的误差都会带来很大改变。 2、基本操作 基本操作也就是对滴定管、移液管、锥形瓶的使用,误差来源主要有:在滴定过程中左手对酸式滴定管的旋塞控制不当,旋塞松动导致塞处漏液,将会导致滴定用液体积不够准确;碱式滴定管如果没有控制好玻璃球,就会产生气泡,造成读数比实际耗液体积减小,引起误差;操作时锥形瓶如果没有及时摇动,会使滴定终点的判断失去准确性,而且,可能会在后期待测液体反应不完全而用力摇动时溅出液体;滴定时流速过快造成锥形瓶内液体外溅,会使标准溶液滴加过量;锥形瓶下没有垫白纸或白瓷板作参比物,会使分析人员对锥形瓶中溶液颜色变化反应不灵敏,终点滞后;若锥形瓶中溶液变色后就立刻停止滴定,待测溶液未反应完全;滴定停止时,液面未稳定时立即读数会造成溶液读出体积偏大,因为还有一部分标准溶液黏在滴定管壁上。

机器人离线编程的误差来源分析与消除办法

机器人离线编程的误差来源分析与消除办 法 随着机器人应用领域越来越广,传统的示教编程这种编程手段有些场合变得效率非常低下,于是离线编程应运而生,并且应用越来越普及。但初用离线编程的朋友,总会被最后生成轨迹的误差所困惑,而导致这些误差的原因,包括前几期谈到的TCP、工件较准,还有另一个,那就是机器人绝对定位误差。 下面我们就总结一下离线编程中误差的来源以及如何使这些误差最小化。 【误差来源一:TCP测量误差】 首先就要说说TCP了,想必看过小萌文章的伙伴们对此都不陌生了。TCP就是工具中心点,如果机器人工作连自己拿着的工具的中心点都找不到在哪里,可想而知这个误差有多大。所以我们就要对TCP进行测量,测量后我们要将误差控制在认可范围内,然后对其测量结果进行验证,可以在固定点处进行重定位操作,检验机器人在固定点处进行多姿态运动时是否在规定误差范围之内。 这就对离线编程软件提出了要求,在离线编程软件中,可以输入测量的真实TCP,这些必备功能,在像RobotArt,RobotMaster这些国内外一线品牌中,都是基础功能。 【误差来源二:工件几何与定位误差】

其次就是工件误差了,有两方面: 一方面是工件模型的误差,本质是要保证离线编程环境中的虚拟模型尺寸与真实世界中是完全一样的。所以需要提高工件的精度以减少因工件本身而产生的误差。 另一个就是工件位置的误差。以国内的离线编程软件RobotArt为例,软件中提供的“工件校准”功能,就是为了消除这个误差。通过三点法做过的工件校准,能满足基本的精度要求。对于高精度的应用情况,为了减少工件位置的误差我们可以不仅仅只测三个点,我们可以多测量工件上的多个点这样同样也可以进一步减小误差。这个功能RobotArt比RobotMaster做的好用多了,为国产软件点个赞! 【误差来源三:机器人装配与绝对定位误差】 最后就是机器人误差了,也有两个方面: 一方面是机器人本身在加工与装配过程中所产生的误差,这就导致了最后生成出来的机器人,与其设计时的DH参数不可能完全一样,正如世界上没有两片完全一样的树叶,世界上也没有两个完全一样的机器人。 另一方面就是机器人绝对定位误差。所有机器人厂家都没有跟你讲过的一个事实。在各大机器人公开的标称参数中,都是重复定位精度,可以达到0.05mm,或者0.02mm,但不会有一家提供绝对定位精度的。绝对精度就是指实际值与理论值的一致程度。我们控制让机器人移动到每个目标点,机器人实际到达点与目标点之间存在着一定的距离误差。比如下图中,我们给定相同的坐标X,Y,Z,让机器人三次以不同的姿态指向它,结果竟是这样不靠谱,让当年年少的小萌对机器人的崇拜之心碎了一地。但情况其实并没有那么糟,这种绝对误差只有在机器人极限的姿态下才会比较大,而舒服的姿态时,误差相对比较小,而且也是因“人”而异。

最新高考-酸碱中和滴定实验误差分析

酸碱中和滴定实验误差分析 以一元酸和一元碱的中的滴定为例 因C标、V定分别代表标准液浓度、所取待测液体积,均为定值,代入上式计算。 但是实际中C标、V定都可能引起误差,一般可把各因素引起的误差转嫁到V读上,若V读偏大,则测定结果偏大;若V读偏小,则测定结果偏小,故通过分析V读的变化情况,可分析滴定的误差。 引起误差可能因素有以下几种: (1)视(读数) 注意:①滴定管中液体读数时精确到0.01mL ②一般需滴定2-3次,取其平均值 (2)洗(仪器洗涤) 正确洗法: 二管二洗——酸式滴定管和碱式滴定管先用蒸馏水清洗多次,再用待装液润洗几次。 一瓶一洗——锥形瓶只能用蒸馏水洗。 注意:一般滴定管装标准液,锥形瓶里装待测液。 错误洗法导致结果: ①滴定管仅用水洗,使标准液变稀,故消耗标准液体积一定变大,V读变大,结果偏大。 ②移液管仅用水洗,则待测液变稀,所取待测液溶质物质的量变少,V读变小,结果偏小。 ③锥形瓶用待测液洗过,则瓶内待测液的溶质量偏多,V读偏大,结果偏大。 ④第一次滴定完后,锥形瓶内液体倒去后,尚未清洗,接着第二次滴定,滴定结果如何,取决于上次滴定情况如何。 (3)漏(液体溅漏) ①滴定过程中锥形瓶内液体溅出,则结果偏小。 ②终点已到,滴定管下端尖嘴中有液滴,则V读偏大,测定结果偏大。 (4)泡(滴定管尖嘴气泡) 正确操作应在滴定前把尖嘴管中的气泡赶尽,最后也不能出现气泡。如滴定开始有气泡,后气泡消失,则结果偏大。若先无气泡,后有气泡,则结果偏小。 (5)色(指示剂变色控制与选择)

滴定时,眼睛应紧盯着锥形瓶内溶液的颜色变化。指示剂变色后应半分钟内不复原。如变色后立即复原,则结果偏小。另外,同一种滴定,选择的指示剂不同,测定结果不同。 (6)杂(标准物含杂质) 用于配制标准液的固体应该是纯净物。但其中有可能混有杂质,称量时又按需标准物固体质量来称取的,帮一般均会产生误差,在此杂质又分两种情况: ①杂质与待测液不反应 如NaOH中含NaCl,所配的NaOH溶液浓度变小,滴定盐酸时,NaCl不参与反应,所需标准液的体积偏大,故测定结果偏大。 ②若杂质与待测液反应,则应作具体分析。关键:比较与等物质的量的待测物反应消耗的杂质质量和标准物的质量。若消耗杂质的质量较大,则相当于削弱了原标准液的作用能力,故与一定量待测物反应时,消耗的标准体积变大,测定结果偏大。 或者可用等质量的杂质、标准物分别与待测物反应,根据消耗的待测物质量的多少来判断。如杂质作用待测物质量越多,说明作用能力被增强,故测定结果偏小。 3.例题精讲 例1.用0.01 mol/L H2SO4滴定0.01mol/L NaOH溶液,中和后加水至100ml,若滴定时终点判断有误差:①多加1滴H2SO4;②少加1滴H2SO4;(设1滴为0.05ml)则①和②[H+]的比值是() A、10 B、50 C、5×103 D、104 解析:①多一滴H2SO4[H+]= ②少一滴即OH过量,[OH-]=10-5mol/L.[H+]=10-9mol/L ①与②[H+]比值。故选D。 例2:草酸晶体的组成可用H2C2O4·xH2O表示,为了测定x值,进行如下实验:称取Wg 草酸晶体,配成100.00mL水溶液 (1)称25.00mL所配制的草酸溶液置于锥形瓶内,加入适量稀H2SO4后,用浓度为amol·L-1的KMnO4溶液滴定到KMnO4不再褪色为止,所发生的反应 2KMnO4+5H2C2O4+3H2SO4=K2SO4+10CO2↑+2MnSO4+8H2O 试回答:(1)实验中不需要的仪器有(填序号)___________,还缺少的仪器有(填名称)____________________________。 a.托盘天平(带砝码,镊子) b.滴定管 c.100mL量筒 d.100mL容量瓶 e.烧杯 f.漏斗 g.锥形瓶 h.玻璃棒球 i.药匙 j.烧瓶 (2)实验中,标准液KMnO4溶液应装在_____________________式滴定管中,因为______________________________________________________________________。 (3)若在接近滴定终点时,用少量蒸馏水将锥形瓶内壁冲洗一下,再继续滴定至终点,则所测得的x值会__________________________(偏大、偏小、无影响)

滴定分析中的误差及数据处理

滴定分析中的误差及数据处理 滴定分析是将已知准确浓度的标准溶液滴加到被测物质的溶液中直至所加溶液物质的量按化学计量关系恰好反应完全,然后根据所加标准溶液的浓度和所消耗的体积,计算出被测物质含量的分析方法。包括酸碱滴定法、配位滴定法、氧化还原滴定法、沉淀滴定法。 滴定分析时产生的误差被分为系统误差和随机误差。 系统误差是在相同条件下,对同一对象进行多次测量,有一种绝对值和符号不变,或按某一规律变化的误差,称为系统误差。系统误差由分析测量过程中确定性的影响因素所产生的,具有重复性、单向性和可测性。产生系统误差的原因有一下几种: (1)方法误差。 方法误差是由于分析方法本身在理论上和具体操作步骤上存在不完善之处。如反应不完全或存在副反应,指示剂的变色点不与化学计量点重合。 (2)仪器和试剂误差 仪器误差来源于一起本身的缺陷或没有按照规定使用仪器。如仪器检查不彻底,滴定管漏液;滴定管、移液管使用前没有润洗而锥形瓶误被润洗;注入液体后滴定管下端留有气泡;读数时滴定管、移液管等量器与水平面不垂直、液面不稳定、仰视(或俯视)刻度;液体温度与量器所规定的温度相差太远;移液时移液管中液体自然地全部流下。标准溶液误差①标准溶液浓度的大小造成的误差来源。滴定所需标准溶液体积的大小,滴定管读数的相对误差较大。一般使用的体积控制在20mL~24mL的范围内,使滴定管的读数误差不大于1‰,为此应使用适当浓度的标准溶液,从而控制标准溶液的体积。②标准溶液的配制不规范造成的误差来源。终点误差(指示剂误差)①指示剂用量过多或浓度过大,使其变色迟钝,同时指示剂本身也能多消耗滴定剂。②强酸滴定强碱时,用酚酞作指示剂。③强酸滴定弱碱时因生成的盐水解,等当点时溶液显酸性。同理强碱滴定弱酸在等当点时溶液呈碱性。若指示剂选用不当,等当点与滴定终点差距大,则产生误差。 (3)操作误差 操作误差通常是由于分析人员没有按正确的操作规程进行分析操作引起。操作方面误差可能有以下几点:①滴定中左手对酸式滴定管旋塞控制不当,旋塞松动导致旋塞处漏液;使用碱式滴定管时,左手拿住橡皮管中玻璃球用力挤压或按玻璃球以下部位,导致放手时空气进入出口管形成气泡。②右手握持锥形瓶没有摇动,待测液反应不完全或摇动时前后振荡溅出液体。③滴定时流速过快,锥形瓶中液体被溅出,也可能使标准溶液滴加过量。④锥形瓶下没有垫白纸或白瓷板作参比物,人眼对锥形瓶中溶液颜色变化反应不灵敏,使终点滞后。 ⑤锥形瓶中溶液变色后立即停止滴定,待测液可能未完全反应。⑥滴定停止后,立即读数也会产生误差,应等1min~2min到滴定管内壁附着液体自然流下再行读数。⑦进行平行测定,两次滴定所用标准液体积相差超过0.02mL,仍取平均值计算,产生误差,应通过科学的分析,找出可疑值的来源,重新进行实验。 (4)主观误差 主观误差是由于分析人员自身的一些主观因素造成。例如在分析过程中重点的判断,有些人对指示剂颜色的分辨偏深、有的人偏浅;有的人喜欢根据前一次的滴定结果来下意识地控制随后的滴定过程,导致测量结果系统地偏高或偏低。 偶然误差是指在相同条件下,对同一物理量进行多次测量,由于各种偶然因素,出现测量值时而偏大,时而偏小的误差现象,这种类型的误差叫做偶然误差。 偶然误差的特点:1)不确定性;2)不可测性;3)服从正态分布规律:大小相等的正误差和负误差出现的概率相等;小误差出现的概率大,大误差出现的概率小,极大误差出现的概率极小。 -------------------------------------------------------------------------------

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

酸碱中和滴定实验误差分析

酸碱中和滴定实验误差分析 上传: 何琼华更新时间:2012-5-19 20:47:38 酸碱中和滴定是中学化学实验中的重要定量实验,特别是其实验误差分析是学生学习和掌握本实验的重点和难点。在教学中,学生遇到有关实验误差分析总会出现困惑,直接影响到学生对实验结果的准确判断和相关问题的解决。为了突破这一教学难点,在教学中,首先引导学生从酸碱中和滴定原理入手,理解中和滴定原理,即:酸提供的H+的物质的量与碱提供的OH-的物质的量相等。然后把原理公式化,即:C(待)=n·C(标)·V(标)/V(待)(n表示酸碱反应的物质的量之比)。其次在误差分析中,明确公式中的n、V(待)和C(标)均为确定量,只有V(标)是变量,C(待)和V(标)成正,实验中引起的各种误差,只要造成V(标)偏大的所得C(待)都偏高,反之偏低。把引起误差因素最终归结到V(标)的变化上,再进行实验误差分析。根据引起误差的原因,对常见的分类归纳分析如下: 一、仪器洗涤不当 酸碱中和滴定实验中,滴定管、移液管和锥形瓶都要用蒸馏水洗净,且滴定管、移液管还要用待装液润洗2∽3次,锥形瓶不润洗。若洗涤不当就会引起误差,如: 1、滴定管蒸馏水洗后未用标准液润洗,就直接装入标准液,造成标准液稀释,溶液浓度降低,滴定中消耗V(标)偏大,C(待)偏高。 2、盛待测液滴定管或移液管水洗后,未用待测液润洗就取液加入锥形瓶,造成待测液被稀释,V(标)偏小,C(待)偏低。 3、锥形瓶水洗后,又用待测液润洗,再取待测液,造成V(标)偏大,C(待)偏高。 4、滴定前,锥形瓶用水洗涤后,或锥形瓶中残留水未干燥,或取完待测液后再向锥形瓶中加点水便于观察,虽然V(待)增大,但C(待)变小,其物质的量不变, 无影响。 二、读数不当 在读数时,应将滴定管直立在水平面上,两眼平视,视线与液面凹面最低处水平相切。若读数不当就会引起误差,如: 1、盛标准液的滴定管,滴定前仰视滴定管读数,滴定后平视滴定管读数, 造成V(标)减小,C(待)偏低。 2、盛标准液的滴定管,滴定前平视滴定管刻度线,滴定终了仰视刻度线,读数偏大,造成V(标)偏大,C(待)偏高。

工业机器人机构误差分析

工业机器人机构误差分析 一.机器人误差分析 在示教工作条件下,机器人的主要性能指标为其重复精度,机器人只要准确地以一定姿态重复到达示教的位置,即可以完成任务。但在大量的环境下,无法预先指定工作位姿,只能根据其在绝对坐标系中的位姿进行工作。这些工作对机器人的绝对精度提出了很高的要求。此时绝对精度成为主要的性能指标。 1.机器人重复精度 重复精度是在到达同一组关节角的重复指令控制下,末端执行器以一定的姿态到达一定位置的准确度。按ISO标准描述,在对每个目标点的多次测量时,存在一个实际测定点的系列分布,通过对其分布的标准偏差计算(多次,累积∑),就可以定义这一分布。一个±3次标准偏差(记做±3σ——亦即共6σ)可以覆盖无限个实际点中99.74%的位置分布情形。这个发散度即称作重复精度,它是指某一指定目标点处的重复精度。 通常,现代工业机器人的重复精度都是很高的,如IRB140机器人达到0.03毫 米(ISO试验平均值)。 2.机器人绝对精度 机器人的绝对精度表示其实际位姿与其控制器预期位姿的接近程度。绝对精度的高低是以机器人末端操作器的位姿误差来衡量的。机器人位姿误差即按某种操作规程指令所产生的末端实际位姿与该操作规程所预期产生的末端位姿之间的差异,可通过按正向运动变化矩阵计算出的空间位姿(X ,Y ,Z ,O ,A, T)与实际测量位姿(X ′,Y ′,Z ′,O ′,A′,T′)相减计算得到。 3.机器人误差分类 按照误差的来源和特性,可将它们分为不同的类型。从误差的来源来看,主要是指机械零件、部件的制造误差、整机装配误差、机器人安装误差,还包括温度、负载等的作用使得机器人杆件产生的变形,传动机构的误差,控制系统的误差(如插补误差、伺服系统误差、检测元器件)等。我们将与机器人几何结构有关的机械零件、部件的制造误差、整机装配误差、机器人安装误差、关节编码器的电气零点通常和关节的机械零点不相一致等因素引起的误差称为几何误差。根据误差特性来分,又可将误差分为确定性误差、时变误差和随机性误差三种。确定性误差不随时间变化,可以事先进行测量,如之前提到的几何误差就属于这一类。时变误差又可分为缓变和瞬变两类,如因为温度产生的热变形随时间变化很慢,属于缓变误差;而运动轴相对于数控指令间存在的跟踪误差取决于运动轴的动态特性,并随时间变化,属于瞬变误差。随机性误差事先无法精确测量,只能利用统计学的方法进行估计,如外部环境振动就是一种十分典型的随机性误差。

机器人动力学汇总

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

中和滴定误差分析

中和滴定误差分析 酸碱中和滴定是中学化学实验中的重要定量实验,特别是其实验误差分析是学生学习和掌握本实验的重点和难点。在教学中,学生遇到有关实验误差分析总会出现困惑,直接影响到学生对实验结果的准确判断和相关问题的解决。那么酸碱中和滴定的误差如何分析?为突破这一教学难点,在教学中,首先引导学生从酸碱中和滴定原理入手,理解中和滴定原理,即:酸提供的H+的物质的量与碱提供的OH-的物质的量相等。然后把原理公式化,即:C(待)=k·C(标)·V(标)/V(待)(k表示酸碱反应的物质的量之比)。其次在误差分析中,明确公式中的K、V(待)和 C(标)均为确定量,只有V(标)是变量,C(待)和V(标)成正,实验中引起的各种误差,只要造成V(标)偏大的所得C(待)都偏高,反之偏低。把引起误差因素最终归到V(标)的变化上,再进行实验误差分析。误差产生的方方面面归纳如下: 一、中和滴定的误差来源  1.仪器误差的来源 仪器检查不彻底,滴定管漏液;滴定管使用前没有润洗而锥形瓶误被润洗;注入液体后滴定管下端留有气泡;读数时滴定管等量器与水平面不垂直、液面不稳定、仰视(或俯视)刻度;液体温度与量器所规定的温度相差太远。 2.操作误差的来源 ①滴定中左手对酸式滴定管旋塞控制不当,旋塞松动导致旋塞处漏液;使用碱式滴定管时,左手拿住橡皮管中玻璃球用力挤压或按玻璃球以下部位,导致放手时空气进入出口管形成气泡。②右手握持锥形瓶没有摇动,待测液反应不完全或摇动时前后振荡溅出液体。③滴定时流速过快,锥形瓶中液体被溅出,也可能使标准溶液滴加过量。④锥形瓶下没有垫白纸作参比物,对锥形瓶中溶液颜色变化反应不灵敏,使终点滞后。⑤锥形瓶中溶液变色后立即停止滴定,待测液可能未完全反应。⑥滴定停止后,立即读数产生误差,应等1min~2min到滴定管内壁附着液

滴定分析中的误差及数据处理

滴定分析中的误差及数据处理滴定分析是将已知准确的滴加到被测物质的溶液中直至所加溶液物质的量按关系恰好反应完全,然后根据所加标准溶液的浓度和所消耗的体积,计算出被测物质含量的分析方法。包括酸碱滴定法、配位滴定法、氧化还原滴定法、沉淀滴定法。 滴定分析时产生的误差被分为系统误差和随机误差。 系统误差是在相同条件下,对同一对象进行多次测量,有一种绝对值和符号不变,或按某一规律变化的误差,称为系统误差。系统误差由分析测量过程中确定性的影响因素所产生的,具有重复性、单向性和可测性。产生系统误差的原因有一下几种: (1)方法误差。 方法误差是由于分析方法本身在理论上和具体操作步骤上存在不完善之处。如反应不完全或存在副反应,指示剂的变色点不与化学计量点重合。 (2)仪器和试剂误差 仪器误差来源于一起本身的缺陷或没有按照规定使用仪器。如仪器检查不彻底,漏液;滴定管、使用前没有润洗而误被润洗;注入液体后滴定管下端留有气泡;读数时滴定管、移液管等量器与水平面不垂直、液面不稳定、仰视(或俯视)刻度;液体温度与量器所规定的温度相差太远;移液时移液管中液体自然地全部流下。标准溶液误差①标准溶液浓度的大小造成的误差来源。滴定所需标准溶液体积的大小,滴定管读数的较大。一般使用的体积控制在20mL~24mL的范围内,使滴定管的读数误差不大于

1‰,为此应使用适当浓度的标准溶液,从而控制标准溶液的体积。②标准溶液的配制不规范造成的误差来源。终点误差(指示剂误差)①指示剂用量过多或浓度过大,使其变色迟钝,同时指示剂本身也能多消耗滴定剂。 ②强酸滴定强碱时,用作指示剂。③强酸滴定时因生成的盐水解,等当点时溶液显酸性。同理强碱滴定弱酸在等当点时溶液呈碱性。若指示剂选用不当,等当点与差距大,则产生误差。 (3)操作误差 操作误差通常是由于分析人员没有按正确的操作规程进行分析操作引起。操作方面误差可能有以下几点:①滴定中左手对旋塞控制不当,旋塞松动导致旋塞处漏液;使用时,左手拿住橡皮管中玻璃球用力挤压或按玻璃球以下部位,导致放手时空气进入出口管形成气泡。②右手握持锥形瓶没有摇动,待测液反应不完全或摇动时前后振荡溅出液体。③滴定时流速过快,锥形瓶中液体被溅出,也可能使标准溶液滴加过量。④锥形瓶下没有垫白纸或白瓷板作参比物,人眼对锥形瓶中溶液颜色变化反应不灵敏,使终点滞后。⑤锥形瓶中溶液变色后立即停止滴定,待测液可能未完全反应。⑥滴定停止后,立即读数也会产生误差,应等1min~2min到滴定管内壁附着液体自然流下再行读数。⑦进行平行测定,两次滴定所用标准液体积相差超过,仍取平均值计算,产生误差,应通过科学的分析,找出可疑值的来源,重新进行实验。 (4)主观误差 主观误差是由于分析人员自身的一些主观因素造成。例如在分析过程中重点的判断,有些人对指示剂颜色的分辨偏深、有的人偏浅;有的人喜

Delta机器人动力学建模与弹性误差分析

第!5卷第1期 机 电工程V)!5 No.1 2018 年 1月Journal of Mechanical &Electrical Engineering Jan.2018 D O I;10. 3969/j.is s n. 1001 -4551.2018.01.006 Delta机器人动力学建模与弹性误差分析$ 陈君杰,李攀磊,韩威,许杨剑,王效贵$ (浙江工业大学机械工程学院,浙江杭州310014) 摘要:针对D e lta机器人运动过程中因弹性变形导致的误差问题,基于有限元理论对其弹性动力学问题建立了数学模型并进行了研 究。根据机构特点,将机器人的各构件分别划分为刚性体与弹性体,形成了一个刚柔结合的系统,并充分考虑机构中平行四边形机 构的运动协调关系,推导出了各构件的运动协调矩阵,由此装配出了系统的弹性动力学方程,在此基础上,采用N e w m a k积分方法 对系统方程进行了求解,最后据此分析了 D e lta并联机器人杆件截面尺寸对其运动过程中弹性误差的影响。研究结果表明;增加驱 动杆截面的尺寸时,其弯曲刚度随之增加,可以减少机器人弹性变形;而从动杆截面的尺寸增加时会因为机构自重增加导致变形增大。 关键词!D e lta机器人;有限元方法;弹性动力学 中图分类号:T H113;TP24 文献标志码:A文章编号:1001 -4551 (2018 )01 -0033 -05 Dynamics modeling and elastic error analysis of delt^ robot CHEN Jun-jie,LI Pan-lei,HAN Wei,XU Yang-jian,WANG Xiao-gui (S c h o o l o f M e c h a n ic a l E n g in e e r in g,Z h e jia n g U n iv e r s ity o f T e c h n o lo g y,H a n g z h o u 310014,C h in a) Abstract ;A im in g at the problem o f elastic deform ation in D elta r obot m o tio n,the elastic dynam ic m odel was established elem ent theory.A cco rd in g to characteristics o f the s tru c tu re,the com ponents o f the robot were d ivid e d in to rig id sp e c tiv e ly,w hich consist o f a rig id-fle x ib le co u p lin g system.The m otion re la tio n o f tlie parallelogram structure was fu lly co n sid e re d,and the m otion com patible m a trix o f each com ponent was de duced.Then the elastic dynam ic equation o f the system was based,the in flu e n ce o f the cross-sectional dim e nsion o f D elta p a ra lle l robot’s rods on the e la s tic ity error in m otion in d ica te th a t the bending stiffness increases w ith the increase o f the cross section size o f the d rive ro d,elast reduced.A n d the self- w eigh t increases w ith the increase o f the cross section size o f the d rive n Key words;de lta ro b o t;fin ite elem ent m e thod(F E M); elastic dynam ics 〇引言 1985年,瑞士的C la v e l[1]发明了D e l t a并联机器人,该型机器人为三自由度空间平移机构,具有承载能力强、运动耦合弱、力控制容易等优点。随着并联机器人的应用领域不断得到拓展,其工作环境日趋复杂,并 联机器人不断向高速度、高加速度、高精度、重载荷和轻量化方向发展[2-],导致机构运行中弹性振动和运动误差也随之增加。传统的刚体动力学分析方法无法满足弹性误差分析的需求,考虑构件弹性的动力学分析成了研究重点。通过运动弹性动力学分析方法(k in e-t o-e la s t o-d y n a m ic,K E D),将机构位移视作弹性位移与刚体位移(名义位移)的叠加,在给定机构名义运动条件规律的条件下,确定机构的弹性响应。 P ir a S[4]利用有限元理论与弹性动力分析方法(K E D)研究了 3-P R R平面并联机器人的弹性动力学问题。刘善增等人[5]建立了刚柔耦合并联机构系统的整体动力学方程的步骤与方法,对3-R R S并联机器人的频率特性进行了分析。韩亚峰等人[6]利用有限元理论,采用平面梁单元对D e l t a机器人进行了弹性动力学建模。K u o等人[7]基于D-H方法定义了一组全局变量,在不使用约束方程的情况下,导出了D e lta 收稿日期=2017 -04-11 基金项目:国家自然科学基金资助项目(51375448) 作者简介:陈君杰(1989 -),男,湖北荆州人,硕士研究生,主要从事D e lta机器人精度方面的研究。E-m a il:331547808@q q. c m 通信联系人:王效贵,男,教授,博士生导师。E-m ail:hpcw xg@zj+ut edu. cn

相关文档
最新文档