包转发率与背板带宽

包转发率与背板带宽
包转发率与背板带宽

交换机两大概念:背板带宽和包转发率

交换机:包转发率

这个概念到底起什么作用?

包转发线速的衡量标准———是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488Mpps

记住以下的:

对于万兆以太网,一个线速端口的包转发率为14.88Mpps。

*对于千兆以太网,一个线速端口的包转发率为1.488Mpps。

*对于百兆以太网,一个线速端口的包转发率为0.1488Mpps

如:一台24个千兆端口的桌面交换机(连接电脑),其最大吞吐量应达到24*1.488Mpps=35.712Mpps,才能保证所有端口线速工作时,提供无阻塞的包交换。交换机:背板带宽

一、背板带宽

交换机背板带宽含义

交换机的背板带宽也叫背板容量,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。

背板概念:我个人一直理解成电脑的总线。

背板带宽计算方式:每种端口的速率乘以端口数量之和,再乘以2

背板带宽:

接入交换机:以24口接入交换机为例(24个千兆口)

24*1000x 2(Mbit/s) /1024(Mbit/s)= 46.875 (Gbit/s)

核心交换机:接入交换机数量乘以46.875 (Gbit/s)

实验:桌面型交换机带20台电脑上网

设备:桌面型交换机(俗称傻瓜交换机)

公布包转发率:35.7Mpps

接口:24个10/100/1000Base-TX以太网端口,(就是24个1000M)

计算:1.488Mpps*24 =35.712Mpps

包转发率:结果35.712Mpps =公布包转发率:35.7Mpps,满足全端口“线速转发”。公布背板带宽:48Gbps

计算:24*1000x 2(Mbit/s) /1024(Mbit/s)= 46.875 (Gbit/s)

背板带宽:结果46.875 (Gbit/s)<公布背板带宽:48Gbps,满足全端口

实验:某个公司有300台电脑上网,三层核心怎么选。初步预计要用15个千兆交换机。通过上面的实验已经证实,每一个交换机的包转发率要达到35.712Mpps,背板带宽要达到46.875 (Gbit/s)。

核心交换机背板带宽:接入交换机数量15X46.875 (Gbit/s)=703.125 Gbit/s

吞吐量包转发率:

接入交换机:1.488Mpps*2 =2.976Mpps(解释:一个端口上联到核心,但是有上行和下行。)

核心交换机包转发率:接入交换机数量15X2.976Mpps =44.64Mpps

背板带宽和最大吞吐的数据量的计算方法

背板带宽和最大吞吐的数据量的计算方法 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会上去。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2)满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。 一般是两者都满足的交换机才是合格的交换机。 背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效? ?专用芯片电路设计有问题;背板相对小。吞吐量相对大

的交换机,整体性能比较高。不过背板带宽是可以相信厂家的宣传的,可吞吐量是无法相信厂家的宣传的,因为后者是个设计值,测试很困难的并且意义不是很大。 交换机的背版速率一般是:Mbps,指的是第二层, 对于三层以上的交换才采用Mpps 补充一下1.488的由来: 具体的数据包在传输过程中会在每个包的前面加上64个preamble (前导符),然后在每个包之间会有96个bit的IFG(帧间隙),也就是原本传输一个64个字节的数据包,虽只有512个bit,但在传输过程中实际上会有512+64+96=672bit,也就是说,这时一个数据包的长度实际上是有672bit的。千兆端口线速包转发率=1000Mbps/672=1.488095Mpps,约等于1.4881Mpps,百兆端口线速包转发率=100Mbps/672=0.1488095Mpps,约等于0.14881Mpps。 下面有两个例子 2950G-48 背板=2×1000×2+48×100×2(Mbps)=13.6(Gbps) 相当于13.6/2=6.8个千兆口 吞吐量=6.8×1.488=10.1184Mpps 4506

数据包转发过程

路由器转发数据包过程详解 (2010-05-22 20:59:09) 转载 标签: 分类:学习交流 路由器 数据包转发 it 主机PC1向主机PC2发个数据包,中间经过B路由器,请问源地址和源MAC是怎么变化的? 答:就假设拓扑图是这个样子吧:PC1-----(B1-B2) -------PC2 B1和B2是路由器B上的两个接口, PC1和PC2是PC,由主机PC1向主机PC2发送数据包,那么在主机PC1形成的数据包的目的IP就是PC2的IP,源IP就是主机PC1的IP地址,目标MAC地址就是B1的MAC地址,源MAC地址就是PC1的MAC地址。 转发过程:假如是第一次通信PC1没有PC2的ARP映射表 PC1在本网段广播一个数据帧(目的MAC地址为:FFFF:FFFF:FFFF:FFFF)帧格式为: 段的路由。此时路由器给PC1回复一个应答数据包,告诉PC1自己的MAC地址就是PC1要通信的PC2主机的MAC地址。而此时PC1建立ARP映射表,将该MAC地址(即路由器的B1接口)与PC2的IP地址建立映射关系。实际上是路由器对其进行了“欺骗”。 其应答数据帧格式为: 对于路由器B同样建立了自己的ARP映射表:将PC1的MAC地址与PC1的IP地址映射。

数据包在流出B2接口的时候其数据包的帧格式为: PC2所在的网段各主机将自己的IP地址与数据包中的目的IP地址比对。若符合则将自己的MAC地址替换上广播MAC地址,并回复该数据帧: 的对应关系调出来。将PC1的MAC地址覆盖路由器B2接口的MAC地址。另一方面路由器更新ARP映射表,将PC2的MAC地址与PC2的IP地址映射。 此时流出路由器B1接口的数据包的帧格式为: 地址建立对应关系。 此后每次通信时由于PC1要与PC2通信时。由于PC1已经建立了到PC2IP地址的ARP映射,所以下次要通信时直接从本地ARP调用。 简单说一下,网络设备间(包括设备之间和计算机之间)如果要相互通信的话必需经过以下这几个步骤: (以TCP/IP协议通信为例) 1、发送端的应用程序向外发出一个数据包。 2、系统判断这个数据包的目标地址是否在同一个网段之内。 3、如果判断出这个数据包的目标地址与这台设备是同一个网段的,那么系统就直接把这个数据包封装成帧,这个数据帧里面就包括了这台设备的网卡MAC地址,然后这个帧就直接通过二层设备(也就是大家说的不带路由的交换机/HUB之类的~^-^)发送给本网段内的目标地址。

交换机转发率计算

100Mbit/s的以太网络,100M换算成byte则是100/8=12.5M byte/s,换算出来就是12500000bytes。 因为在以太网的数据包中,最小的数据包的大小是64byte/s,加上8个byte的前导字节以及12个byte帧间间隙,合计就是84byte。 那么用12500000/84=148809,所以就可以得到在100M吞吐量单向环境下的每秒最大的包转发个数148809,换算成k即为148.8k pps,也就是0.1488M pps。 0.1488M pps这个包转发率是100M的网络而言,那么1000M的网络,算出来的包转发率就应是1.488Mpps,对于10G网络对应的是14.88Mpps。 下面,我按这个数值来验证一下H3C的交换机在其网站上公布的数据,是否满足全端口“线速转发”。 1) 设备:H3C S3600-28P-EI 公布包转发率:9.6Mpps 接口:24个10/100Base-TX以太网端口,4个1000Base-X SFP千兆以太网端口(就是24个100M+4个1000M) 计算:0.1488Mpps*24+1.488Mpps*4=3.5712Mpps+5.952Mpps=9.5232Mpps 结果9.5232Mpps < 公布包转发率:9.6Mpps,满足全端口“线速转发”。 2) 设备:S5500-28C-EI

包转发率(整机): 95.2Mpps 接口:24个10/100/1000Base-T以太网端口,4个复用的1000Base-X千兆SFP端口,2个扩展插槽(每个扩展插槽接口卡最大配置2×10G接口); (也就是24*1000M+2×2*10GE) 计算:1.488Mpps*24+14.88Mpps*2*2=35.712Mpps+59.52Mpps=95.232Mpps 结果95.232Mpps=包转发率(整机): 95.2Mpps,满足全端口“线速转发”。 通过这样事例,可以清楚交换机厂商所公布的数据是“如何”的了吧! 这是在二层交换上面所能达到的包转发率,但是如果一个路由器在三层路由上面,甚至在开启nat的情况下,其包转发率会有很大降低,而这个值才是值得关心的,所以我们在看到很多商家在一直强调包转发个数148810个包,其实这是二层交换的理论极限值,而不是真正的路由器在三层工作时候的值。 包转发率得计算和背板带宽得计算 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps 不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: 1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数*相应端口速率*2(全双工模式)如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 2)第二层包转发线速 第二层包转发率=千兆端口数量×1.488Mpps+百兆端口数量*0.1488Mpps+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量*0.1488Mpps+其余类型端口数*相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。

传输带宽计算方法

比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比 特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s

例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1 个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps, 10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)X 10(摄像机的路 数)?5120Kbps=5Mbps上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为,即每路摄像头所需的数据传输带宽为,10路摄像机所需的数据传输带宽为: (视频格式的比特率)X 10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps即每路摄像头所需的数据传输带宽为2Mbps 10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)X 10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 像头所需的数据传输带宽为4Mbps 10路摄像机所需的数据传输带宽为:

路由器的工作原理

路由器的工作原理 路由器的是实现网络互连,在不同网络之间转发数据单元的重要网络设备。路由器主要工作在OSI参考模型的第三层(网络层),路由器的主要任务就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。为了完成这项工作,在路由器中保存着各种传输路径的相关数据——路由表(Routing Table),供路由选择时使用。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。因此,当路由器接收到来自一个网络接口的数据包时,首先根据其中所含的目的地址查询路由表,决定转发路径(转发接口和下一跳地址),然后从ARP缓存中调出下一跳地址的MAC地址,将路由器自己的MAC 地址作为源MAC,下一跳地址的MAC作为目的MAC,封装成帧头,同时IP数据包头的TTL(Time To Live)也开始减数,最后将数据发送至转发端口,按顺序等待,传送到输出链路上去。在这个过程中,路由器被认为了执行两个最重要的基本功能:路由功能与交换功能。 路由功能 路由功能是指路由器通过运行动态路由协议或其他方法来学习和维护网络拓扑结构,建立,查询和维护路由表。 路由表里则保存着路由器进行路由选择时所需的关键信息,包含了目的地址、目的地址的掩码、下一跳地址、转发端口、路由信息来源、路由优先级、度量值(metric)等。 路由信息可通过多种协议的学习而来,其来源方式可分为直连路由、静态路由、缺省路由和动态路由。一个路由器上可以同时运行多个不同的路由协议,每个路由协议都会根据自己的选路算法计算出到达目的网络的最佳路径,但是由于选路算法不同,不同的路由协议对某一个特定的目的网络可能选择的最佳路径不同。此时路由器根据路由优先级(决定了来自不同路由来源的路由信息的优先权)选择将具有最高路由优先级(数值最小)的路由协议计算出的最佳路径放置在路由表中,作为到达这个目的网络的转发路径。(优先级顺序:直连路由>静态路由>动态路由(OSPF>RIP)) 而对于一个特定的路由协议,可以发现到达目的网络的所有路径,根据选路

交换机交换容量和包转发率计算方式

[交换路由]交换容量和包转发率之间什么关系[复制链接] 交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。 *对于千兆以太网,一个线速端口的包转发率为。 *对于快速以太网,一个线速端口的包转发率为。 *对于OC-12的POS端口,一个线速端口的包转发率为。 *对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 -------------------------------------------------------------- //背板带宽计算公式: 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但 同时设计成本也会上去。但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。

VoLTE语音和视频业务带宽计算

VoLTE语音和视频业务带宽计算 一、概述 当空口全部采用共享信道来并发承载业务时,信道已不是一份固定的物理资源,并且不同业务也会互相抢占资源。容量不是一个固定的取值,也无法直接与接入用户数和阻塞率用显性表达式来描述,不变的是业务层对QoS的要求,变化的是承载能力。本文拟对VoLTE的业务带宽计算及其空口承载能力做一个较为系统性的阐述。 二、语音带宽计算 1、业务层带宽 语音采用AMR编码(帧格式)在网络中传输,规定义两种类型的帧格式:AMR IF1 和AMR IF2,由于IF2相比IF1减少了重复的Frame Quality Indicator, Mode Indication, Mode Request 和CRC 校验,因此ITU-T的H系列建议常使用IF2,3GPP则在TS 26.201和TS 26.101进一步明确了AMR-WB和AMR-NB在无线网络中的使用要求。

注*:为语音数据,即Class A/B/C比特数,如477bit=23.85kbps*20ms。 注**:AMR帧中数据的长度并不是字节(8bit)的整数倍,所以在有些帧的末尾需要增加bit填充,以使整个帧的长度达到字节的整数倍。 2、IP层带宽 表2 AMR带宽计算 注*:上述单位均为bit或kbps。 说明1:语音包大小=N*8;IP+UDP+RTP头共60Byte,RoHC压缩为4Byte(PDCP 和RLC层SN大小分别为12bit和10bit,若采用7bit和5bit可压缩为3Byte),假设语音静默比为0.5,PDCP+RLC+MAC头共6Byte。 说明2:上表应用到的计算公式。 单个语音业务占用带宽= (1秒的静默帧bit数+1秒的语音帧比特数)/1024 kbps 1秒的静默帧比特数=(静默帧大小+IP/UDP/RTP头)*1秒的最大静默帧个数*静默比*8 1秒的语音帧比特数=(语音帧大小+IP/UDP/RTP头)*1秒的最大语音帧个数*(1-静默比)*8

视频监控中常用码流计算(仅供参考)

视频监控中常用码流计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法简单介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。

监控存计算公式

视频监控存储空间计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。比特率是指每秒传送的比特(bit)数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则 情况刚好相反。码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小×摄像机的路数=网络带宽至少大小; 注:监 控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监 控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄 像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下:地方监控点:CIF 视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽 为512Kbps,10路摄像机所需的数据传输带宽为:512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频 格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像 头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为 2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为:2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为:4Mbps(视频格式的比特率)×10(摄像机的路数)=40Mbps(上行带宽) 即:采用1080P的视频格式各地方监控所需的网络上行带宽至少为40Mbps;监控中心:

交换机交换容量和包转发率计算方式

交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)

背板带宽与端口速率计算

背板带宽与端口速率计算 现在的交换机厂商在技术上到处忽悠我们的中国的用户,提出的技术参数在的不得了,让用户摸不清头脑,希望我们的用户能正确对待参数!!! 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数×相应端口速率×2(全双工模式)如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 (2)第二层包转发线速 第二层包转发率=千兆端口数量× 1.488Mpps+百兆端口数量× 0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 (3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量× 0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 二、端口速率计算

交换机交换容量和包转发率计算方式

[ 交换路由] 交换容量和包转发率之间什么关系[ 复制链接] 交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: 我总结一个公式: 转发带宽=包转发速率*8* (64+8+12)=1344*包转发速率我的公式推算: 假设交换机有A、B、C 三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12 的意思为:基于64 字节分组测试(以太网传输最小包长就是64 字节);8 以太网中,每个帧头都要加上了8 个字节的前导符;帧间隙最小为12 字节。再乘8是转换为Bit 为单位。所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8* (64+8+12)=(X+Y+Z)*1344; =交换机包转发率*1344

第二种计算方法: 第二层包转发率=千兆端口数量X +百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能W标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。那么,是怎么得到的呢包转发线速的衡量标准是以单位时间内发送64byte 的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/ (64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte 时,需考虑 8byte 的帧头和12byte 的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte 包时的包转发率为。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。*对于千兆以太网,一个线速端口的包转发率为。 * 对于快速以太网,一个线速端口的包转发率为。 *对于OC^ 12的POS端口,一个线速端口的包转发率为。 *对于OC^ 48的POS端口,一个线速端口的包转发率为468MppS

带宽计算公式

交换机性能参数学习总结 一、交换机背板是设计值,可以大于等于交换容量(此为达到线速交换机的一个标准)。厂家在设计的时候考虑了将来模块的升级,比如模块从开始的百兆升级到支持千兆、万兆,端口密度增加等。背板带宽一般是指模块化交换机。它决定了各模板与交换引擎间的连接带宽的最高上限。是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽。 二、交换容量(最大转发带宽、吞吐量)是指系统中用户接口之间交换数据的最大能力,用户数据的交换是由交换矩阵实现的。交换机达到线速时,交换容量等于端口数×相应端口速率×2(全双工模式)。 三、包转发率它体现了交换引擎的转发性能。标准的以太网帧尺寸在64字节到1518字节之间,在衡量交换机包转发能力时应当采用最小尺寸的包进行评价。指基于64字节分组,在单位时间内交换机转发的数据总数。当交换机达到线速时包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法 四、转发带宽与包转发速率关系 8*(64+8+12)*2*包转发速率/1024=转发带宽 注:最大传输带宽=交换容量(交换容量用单工计算) 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344 =交换机包转发率*1344 带宽计算公式说明 长空发表于2006-1-15 11:44:00 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下:

交换机背板带宽、包转发率计算方法

交换机背板带宽、包转发率的计算方法 1. 计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数×相应端口速率×2(全双工模式),如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 (2)第二层包转发线速 第二层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 (3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞。 背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 2. 端口速率计算 以太网传输最小包长就是64字节、POS口是40字节。包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488Mpps。快速以太网的线速端口包转发率正

视频监控存储空间大小与传输带宽计算方法

视频监控存储空间大小与传输带宽计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小;

注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为 1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为:

交换容量,背板带宽,包转发率含义

交换容量,背板带宽,包转发率含义 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会上去。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2、)满配置吞吐量(Mpps)=满配置GE端口数× 1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为 1.488Mpps。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64× 1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到 261.8Mpps(176x 1.488Mpps= 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。一般是两者都满足的交换机才是合格的交换机。 比如: 2950G-48 背板=2×1000×2+48×100×2(Mbps)= 13.6(Gbps)

相当于个千兆口 吞吐量= 6.8× 1.488= 10.1184Mpps 4506 背板64G 满配置千兆口 4306×5+2(引擎)=32 吞吐量=32× 1.488= 47.616 一般是两者都满足的交换机才是合格的交换机。 背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效率或专用芯片电路设计有问题;背板相对小。吞吐量相对大的交换机,整体性能比较高。不过背板带宽是可以相信厂家的宣传的,可吞吐量是无法相信厂家的宣传的,因为后者是个设计值,测试很困难的并且意义不是很大。(这句话好像说反了) 交换机的背版速率一般是: Mbps,指的是第二层, 对于三层以上的交换才采用Mpps 背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:

交换机交换容量和包转发率计算方式

交换机交换容量和包转 发率计算方式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

[交换路由]交换容量和包转发率之间什么关系[复制链接] 交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000, 000bps/8bit/(64+8+12)byte=1,488,095pps说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。 *对于千兆以太网,一个线速端口的包转发率为。 *对于快速以太网,一个线速端口的包转发率为。 *对于OC-12的POS端口,一个线速端口的包转发率为。 *对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 -------------------------------------------------------------- //背板带宽计算公式: 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但 同时设计成本也会上去。但是,我们如何去考察一个交换机的背板带宽是否够用呢显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑:

相关文档
最新文档