胶粘剂固化方法

胶粘剂固化方法

能够将两种或两种以上的同质或异质的制件(或材料)连接在一起,并且固化后具有足够强度的有机或无机的、天然或合成的一类物质,统称为胶粘剂或粘接剂、粘合剂,习惯上简称为胶。但是不同种类的胶粘剂的固化方法也是不同的。

胶粘剂的固化方法以物理法为主,例如热熔胶可通过冷却而固化;溶液胶粘剂可通过溶剂蒸发而固化;乳液胶粘剂通过水分的渗透、挥发而凝聚固化;而热固性胶粘剂则通过多官能度单体或固化剂进行交联反应而固化。胶粘剂采用的基料类别不同,采用的固化方法也不同,另一方面相同配方的胶粘剂,固化工艺条件的不同,其粘接特性也会发生变化,有时的影响还是很大的,它在一定程度决定了胶粘剂的特性和用途。因此,固化工艺设计本身也是胶粘剂组成设计的一个重要组成部分。

所有的固化方法中,压力、温度及其保持时间是固化过程的三个重要参数,每个参数的变化都将对固化过程及粘接特性产生直接的影响。

紫外光固化胶粘剂参数(耐酒精,耐水煮,玻璃粘合金属)

光固化胶粘剂 UV-903
产品简介 产品简介
UV-903 是为液晶显示器(LCD)专用的单组分无溶剂型紫外光固化胶粘剂,用于 LCD产 品封口以及LCD管脚装配。
产品特点 产品特点
1.优异的固化能力,可在较低照度下实现完全固化。 2.良好的与玻璃和金属的粘接能力,能确保外界杂质不会进入液晶盒内。 3.高纯度及稳定性,对液晶及PI无不良影响。 4.极佳的可靠性,具有优良的耐水煮和抗冷热冲击性能。
技术特性 技术特性
1.固化前特性 主要成分: 改性丙烯酸酯树脂 外 粘 比 观: 淡黄色透明液体 度: 20000±1000mPa.s(20℃,JD-1 型旋转粘度计,转速 6rpm) 重: 约 1.1(20℃,重量杯法,参照 GB/T 13354-92)
2
2.标准固化方法 紫外线照射量:1200mJ/cm 3.固化物特性 外 观:无色透明固体
2
粘接强度:10MPa(不锈钢/玻璃@1200mJ/cm 曝光量) 铅笔硬度:1~2B(测试方法:参照 GB6379-86)
包装规格 包装规格
遮光塑料瓶包装,1Kg/瓶
有效期限 有效期限
密封避光冷藏(5±5℃):6 个月。
注意事项 注意事项
1.避光冷藏(5±5℃)保存,避免受热和吸潮。使用前先不要开盖,常温下回温2小时 以上后再开盖。 2.本品一经倒出的未用完胶液不可倒回原包装瓶,以免造成污染。
文件编号 产品名称 版 次 更新日期
FR-SMS-B903 Fisher UV-903 A/00 2011.04.11

写 核 准
戚仁宏 王胜林 刘呈贵 2011.04.11
产品说明书
审 批
生效日期

UV胶紫外光固化胶优缺点与操作事项

U V胶紫外光固化胶优缺点与操作事项 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

U V胶(紫外光固化胶)优缺点与操作事项 产品特点 UV胶适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,东莞天诺科技TN-231UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。 优点 环境/安全 ●无VOC挥发物,对环境空气无污染; ●胶粘剂成分在环保法规中限制或禁止的比较少; ●无溶剂,可燃性低 经济性 ●固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率 ●固化后即可进行检测以及搬运,节约空间 ●节省能源,例如生产1g光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂相比可节约能耗90% ●固化设备简单,仅需灯具或传送带,节约空间 ●单组分系统,无需混合,使用方便 相容性 ●对于温度,溶剂和潮湿敏感的材料可以使用 ●控制固化,等待时间可以调整,固化程度可以调整 ●可以重复施胶多次固化 ●紫外灯可以容易地安装在已有的生产线,不需较大改动 缺点 ●原料成本高,不含低成本的溶剂和填料,胶粘剂价格高 ●紫外光对某些塑料或半透明材料穿透力较弱,固化深度有限,可固化产品的几何形状受到限制,不透光的部位及紫外光照射不到的死角不易固化 ●一般的UV胶只能粘接透光材料,粘接不透光材料需要配合其他技术,例如光延迟(阳离子)固化,光热双固化,光-湿气双固化等。 操作原理 无影胶上胶过程无影胶又叫紫外线胶水,它必须是通过紫外线照射到胶液的前提下才能固化,也就是无影胶中的光敏剂与接触到紫外线会与单体相接合,理论上没有紫外线光源的照射下无影胶几乎永远不固化。 紫外线的来源有自然日光和人造光源两种。紫外线越强固化速度越快一般固化时间在10-60秒不等。对于自然日光而言,晴朗的天气阳光中的紫外线会比较强固化速度越快。但是,没有强烈阳光时只能用人造紫外线光源了。人工紫外

聚氨酯胶粘剂分类

聚氨酯胶粘剂分类 聚氨酯胶粘剂的类型、品种较多,分类方法也多,通常是按照反应组成与用途、特性进行分类。 (1) 按反应组成分类按反应组成可分为多异氰酸酯胶粘剂、含异氰酸酯基的聚氨酯胶粘剂、含羟基聚氨酯胶粘剂和聚氨酯树脂胶粘剂。 (2) 按用途与特性分类,按用途与特性分类可分为通用型胶粘剂、食品包装用胶粘剂、鞋用胶粘剂、纸塑复合用胶粘剂、建筑用胶粘剂、结构用胶粘剂、超低温用胶粘剂、厌氧型胶粘剂、导电性胶粘剂、热溶型胶粘剂、压敏型胶粘剂、封闭型胶粘剂、水性胶粘剂以及密封胶粘剂等。 国外聚氨酯胶粘剂的发展动态 聚氨酯胶粘剂在国外已广泛用于纺织、土木建筑、交通运输、电子元件、制鞋、包装等工业,因此世界发达国家都很重视聚氨酯胶粘剂工业的技术开发。 (1)快速发展结构胶与密封胶汽车工业大量采用塑料零部伯,特别是高强度的FRP (玻璃纤维增强塑料)和SMC(板材模塑料复合材料)需用聚氨酯结构与密封胶进行粘接装配,主要用于汽车挡风玻璃的密封、SMC车板的框架的粘接等。 聚氨脂密封胶对各种建筑材料都具有良好的粘接性,可应用于建筑领域中各部门,并且比有机硅与聚硫密封胶便宜。因此,聚氨脂密封胸前的需求超过有机硅与聚硫密封胶而占主导地位。 (2)开发无公害胶粘剂聚氨化胶粘剂在工业上的大量使用也带来了公害问题,水性聚氨脂胶粘剂、无溶剂聚氨脂胶粘剂、以及热熔聚氨脂胶粘剂可代替有毒的溶剂型聚氨脂胶粘剂,也可选用低毒溶剂、提高固含量以及密闭通风操作及溶剂回收以降低有机挥发物的逸出量。 (3)快速固化聚氨脂聚氨脂胶粘剂为适应自动化装配线,开发了快速固化反应型聚氨脂胶、辐射或紫外线固化胶以及反应热熔胶等。 (4)开发新型施胶设备聚氨脂胶粘剂在推广使用时,为了适应用户粘接施工的要求,研制开了发一系列相关设备如粘笛稠物料的计量、混合、输送和施胶设备等。 今后聚氨脂胶粘剂的开拓和扩展应用除关注胶粘剂的分子结构外,还应致力于施胶工艺和工具方面的开发。

紫外光固化胶粘剂粘接强度的研究结果

紫外光固化胶粘剂粘接强度的研究结果 UV(紫外光)固化胶具有固化速率快、可大面积施工和生产效率高等优点,已在电子电器、医疗器械等领域中得到广泛应用。UV固化胶的粘接强度主要与配方、被粘接材料及其表面处理技术等有关,并且UV固化胶中低聚物的选择及配方设计极其重要。其粘接强度的影响因素如下: 1、稀释单体种类对胶粘剂粘接强度的影响 通过实验得知,当稀释单体为四氢呋喃丙烯酸酯和丙烯酸异冰片酯时,相应胶粘剂的粘接强度相对较高,体积收缩率相对较低。这是由于这两种稀释单体均属于单官能团单体,并且两者侧基体积均较大,故相应胶粘剂的体积收缩率均相对较低;另外,四氢呋喃丙烯酸酯对大多数塑料(包括PC)的溶胀能力均较强,从而有利于改善相应胶粘剂与塑料间的粘接强度。综合考虑,本研究选择四氢呋喃丙烯酸酯作为UV固化胶的稀释单体。 2、偶联剂种类及用量对胶粘剂粘接强度的影响 KH-560、KH-570对胶粘剂附着力的贡献相对较大(这是由于前者分子中环氧基与PC的亲和力较好,后者分子中双键可在UV辐照下参与固化反应,故相应胶接件的剥离强度明显提高)。综合考虑,选择KH-560为偶联剂时较适宜。 通过实验可知,胶粘剂剥离强度随KH-560用量增加基本上呈先快速上升后趋于稳定态势;当w(KH-560)=1.50%时,胶粘剂的剥离强度相对最高。这是由于过少的KH-560不能完全润湿、覆盖被粘物表面,致使胶接件的剥离强度相对较低;过多的KH-560会与水在胶接界面处发生缩合反应,致使胶粘剂的剥离强度不升反降。综合考虑成本与性能因素,选择w(KH-560)=1.00%时较适宜。 3、填料种类及用量对胶粘剂粘接强度的影响 填料既可以调节体系黏度,又具有补强作用,因此填料种类对胶粘剂性能影响较大。在其他条件保持不变的前提下[如w(二官能团PUA)=64%、w(四氢呋喃丙烯酸酯)=30%、w(KH-560)=1.00%、w(填料)=2.0%和w(HCPK)=3.0%等],通过改变填料类型来考察胶粘剂剥离强度的变化情况。 由实验可知,胶粘剂的剥离强度随填料种类不同而异;当填料为TiO2时,相应胶粘剂的剥离强度相对最低;当填料为nano-SiO2时,相应胶粘剂的剥离强度相对最高。这是由于TiO2能吸收大量UV辐射能,致使相应胶粘剂固化不完全,表现为胶粘剂的粘接强度极低;硅灰粉

单组分聚氨酯胶粘剂配方和合成机理剖析

单组分聚氨酯胶粘剂配方和合成机理 1.湿固化机理: 湿固化型聚氨酯胶粘剂中含有活泼的NCO基团,当暴露于空气中时能与空气中的微量水分子发生反应;粘接时,它能与基材表面吸附的水以及表面存在羟基大呢感活性氢基团发生化学反应,生成脲键结构。因此湿固化型聚氨酯胶粘剂固化后的胶层组成是聚氨酯胶粘剂—聚脲结构。 2.软木用聚氨酯胶: 将以NCO为端基的聚氨酯胶粘剂应用于软木碎屑的粘接,由林产化工厂于软木碎屑中加入胶粘剂,混合均匀,加热压制成型,制成软木板材、片材等制品,用作保温、隔音等材料,其特点是耐水、防腐蚀。该胶粘剂是聚氨酯湿固化胶粘剂和密封剂的基础粘料,若对配方稍加调整,亦即加入一定比例的三官团的聚氧化丙烯三醇(如N-330),制成的NCO端基的预聚体胶粘剂即可作为下列材料的粘料(基料): (1)聚氨酯浇注型橡胶的基料; (2)建筑用聚氨酯防水材料的粘料; (3)田径运动场地用聚氨酯橡胶跑道(塑胶跑道)胶面层的粘料; (4)聚氨酯密封胶粘剂的粘料。 该胶粘剂还可用于聚氨酯泡沫塑料、聚苯乙烯泡沫等的粘接,使用方便,无公害,受到用户欢迎。 3.配方 3.1配方1: 聚氧化丙烯多元醇(M=3000) 51份 MDI 26份 TDI(80/20) 8.7份 1,4-丁二醇 4.1份 将上述四组分原料混合,在80℃反应3h后,降温,用10份二甲苯稀释,制得NCO含量约7.3%的预聚体。该预聚体可作为弹性基材的胶粘剂。具有耐水、柔韧性好、强度高等优点。胶膜的拉伸强度可达43.1MPa,伸长率360%,在80℃热水中浸泡7天后仍能保持较好的强度。 3.2配方2: 聚氧化丙烯三醇(M=6000) 400份 聚氧化丙烯二醇(4/=2000) 1000份 MDI 315份 氢化萜烯酚醛树脂 180份 按以上配方原料制成预聚体,再加人气相法二氧化硅、滑石粉等填料以及增塑剂、叔胺和有机锡类催化剂,制成含填料的预聚体。 按HDI缩二脲1610份、r-巯丙基三甲氧基硅烷40份、二甲基硅烷427份、二甲基哌嗪1.3份制成硅烷化合物。 单组分聚氨酯胶粘剂按预聚体:硅烷化合物:萜烯增粘剂=271:6:70(质量份数)混合配制。用于玻璃-帆布、铝-铝、冷轧钢-冷轧钢的粘接。

聚氨酯胶粘剂的应用与研究

聚氨酯胶粘剂的应用与研究 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基团(-NCO)的胶粘剂。其具有胶膜坚韧、耐冲击、挠曲性好、剥离强度高、有很好的耐超低温性、耐油性以及耐磨性等特点。 我国聚氨酯胶粘剂的研发起步于上世纪60年代。80年代以后,我国对水性聚氨酯胶粘剂的研究更为活跃,但与国外水性聚氨酯胶粘剂系列化大工业的水平相比,仍处于开发阶段。90年代,各行各业引进了众多的生产线,一大批三资企业相继建立,进口的产品迫切需要国产化,相关的科研院所和生产单位加大开发力度,新产品不断涌现。迄今为止,除了原有的胶粘剂品种外,无溶剂型聚氨酯结构胶粘剂、反应性聚氨酯热熔胶等国外有的胶粘剂品种我国现在也基本都有。 虽然我国聚氨酯工业已有相当规模,但与发达国家相比仍有很大差距,主要的差距是聚氨酯的总体产量不大,此外,技术水平也仍然落后于一些发达国家。因此,我国的聚氨酯产业仍有相当大的发展空间。 聚氨酯胶粘剂作为一种环保型胶粘剂,已进入工业、农业、交通、医学、国防和日常生活的各个领域,在国民经济中正发挥着越来越大的作用。那么,聚氨酯胶粘剂都具有哪些优良性能呢?下面,洛阳天江化工新材料有限公司为大家列举了聚氨酯胶粘剂的两个典型特性: 1、聚氨酯胶粘剂的粘结力强,适用范围广 由于聚氨酯胶粘剂的分子链中-NCO可以和多种含活泼氢的官能团反应,形成界面化学键结合。因此,对多种材料具有极强的粘附性能。不仅可以粘结多孔性的材料,如泡沫塑料、陶瓷、木材、织物等,而且可以粘接多种金属、无机材料、塑料、橡胶和皮革等,是一种适用范围很广的胶粘剂。 2、聚氨酯胶粘剂具有突出的耐低温性能 在极低的温度下,一般的高分子材料都转化为玻璃态而变脆,而聚氨酯胶粘剂即使在-250℃以下仍能保持较高的剥离强度,同时其剪切强度随着温度的降低反而大幅度上升。 虽然聚氨酯胶粘剂优点良多,但同时也存在着一些缺陷与不足,下面是聚氨酯胶粘剂常见的一些不足之处以及洛阳天江化工的专家针对这些不足之处提出的几点改进方法:

紫外光固化技术及UV压敏胶的介绍

紫外固化技术及UV压敏胶的介绍 广州市常疆商贸有限公司 https://www.360docs.net/doc/9310502536.html,/

什么是紫外光固化技术 UV固化油墨或涂料(上光油)由:液态预聚固化油墨或涂料(上光油)由液态预聚物、单体、颜料、添加剂和光活性化合物(光引发剂)混合而成。当有适当波长和光强的紫外光投射该涂层时,其中的光引发剂便分解成游离基,游离基引发预聚物和单体上的不饱和基团发生快速的加成聚合反应。上的不饱和基团发生快速的加成聚合反应由于采用的是多功能单体和预聚物,以及游离基反应(例如接枝)的化学特性(快速加成聚合),使涂层迅速转化成不可溶性交联网状结构。

3该增长键近一步反应形成类似于乙烯基溶液聚合物3. 该增长键近步反应,形成类似于乙烯基溶液聚合物的那些聚合物链。如果增长着的分子含有一个以上的双键,则就会产生交联网状结构。 例如 例如:P* + CH 2=CHOOC—COOCH=CH 2 + CH 2=CH—R—CH= CH 2游离基稀释剂(单体)预聚物→~CH 2—CH—R—CH—CH 2—CHOOC—COOHC—CH 2P |||| CH 2CH 2交联聚合物网络|| CH CH R CH —CH—CH 2—R—CH | | 4UV 体系会因紫外灯源的红外辐射而经受额外的温升 4. UV 体系会因紫外灯源的红外辐射,而经受额外的温升。

紫外(UV)光谱 注:任何一种紫外线灯,都会同时产生紫外(UV)、可见光(VL)、红外线(IR ),紫外线和红外线都不可见,其中紫外线是固化过程所需要的,而红外线则是热量的主要来源。

UV灯(高压汞灯)灯管结构

胶粘剂的固化

为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。不同的胶粘剂往往采用不同的固化方式 热熔胶的固化 热塑性高分子物质加热熔融了之后就获得了流动性,许多高分子熔融体可以作为胶粘剂来使用。高分子熔融体在浸润被粘表面之后通过冷却就能发生固化,这种类型的胶粘剂称为热熔胶。 热熔胶的固化是一种简单的热传递过程,即加热熔化涂胶粘合,冷却即可固化。固化过程受环境温度影响很大,环境温度低,固化快。为了使热熔胶液能允分湿润被粘物,使用时必须严格控制熔融温度和晾置时间,对于粘料具结晶性的热熔胶尤应重视,否则将因冷却过头使粘料结晶不完全而降低粘接强度。 溶液型胶粘剂固化 热塑性的高分子物质可以溶解在适当的溶剂中成为高分子溶液而获得流动性,在高分子溶液浸润被粘物表面之后将溶剂挥发掉就会产生—定的粘附力。许多高分子溶液可以当作胶粘剂来使用,最常遇到的治液溶液胶粘剂剂是修补自行车内胎用的橡胶溶液,许多胶粘剂是溶液型的。 溶液型胶强剂固化过程的实质是随着溶剂的挥发。溶液浓度不断增大,最后达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外快速挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间长,效率低,还可能造成胶层中溶剂滞留,对粘接不利。在使用溶液胶时还应严格注意火灾与中毒现象。 乳液型胶粘剂的固化

聚氨酯胶的配方设计

聚氨酯胶的配方设计 胶粘剂的设计是以获得最终使用性能为目的,对聚氨酯胶粘剂进行配方设计,要考虑到所制成的胶粘剂的施工性(可操作性),固化条件及粘接强度,耐热性,耐化学品性,耐久性等性能要求。 1.聚氨酯分子设计——结构与性能聚氨酯由于其原料品种及组成的多样性,因而可合成各种各样性能的高分子材料,例如从其本体材料(即不含溶剂)的外观性严主讲,可得到由柔软至坚硬的弹性体,泡沫材料,聚氨酯从其本体性质(或者说其固化物)而言,基本上届弹性体性质,它的一些物理化学性质如粘接强度,机械性能,耐久性,耐低温性,耐药品性,主要取决于所生成的聚氨酯固化物的化学结构,所以,要对聚氨酯胶粘剂进行配方设计,首先要进行分子设计,即从化学结构及组成对性能的影响来认识,有关聚氨酯原料品种及化学结构与性能的关系。 2. 从原料角度对PU胶粘剂制备进行设计聚氨酯胶粘剂配方中一般用到三类原料:一类为NCO类原料(即二异氰酸酯或其改性物、多异氰酸酯),一类为oH类原料(即含羟基的低聚物多元醇、扩链剂等,广义地说,是含活性氢的化合物,故也包括多元胺、水等),另有一类为溶剂和催化剂等添加剂,从原料的角度对聚氨酯胶粘剂进行配方设计,其方法有下述两种。 (1).由上述原料直接配制最简单的聚氨酯胶粘剂配制法是0H类原料和NCO类原料(或及添加剂)简单地混合,直接使用,这种方法在聚氨酯胶粘剂配方设计中不常采用,原因是大多数低聚物多元醇分子量较低(通常聚醚Mr<6000,聚酯Mr<3000),因而所配制的胶粘剂组合物粘度小,初粘力小,有时即使添加催化剂,固化速度仍较慢,并且固化物强度低, 实用价值不大,并且未改性的TDI蒸气压较高,气味大,挥发毒性大,而MDI常温下为固态,使用不方便,只有少数几种商品化多异氰酸酯如PAPlDesmodur RDesmodur RFCoronate L等可用作异氰酸酯原料。不过,有几种情况可用上述方法配成聚氨酯胶粘剂例如 1)由高分子量聚酯(Mr5000-50000)的有机溶液与多异氰酸酯溶液(如Coronate L)组成的双组分聚氨酯胶粘剂,可用于复合层压薄膜等用途,性能较好,这是因为其主成分高分子量聚酯本身就有较高的初始粘接力,组成的胶粘剂内聚强度大; (2)由聚醚(或聚酯)或及水,多异氰酸酯,催化剂等配成的组合物,作为发泡型聚氨酯胶粘剂,粘合剂,用于保温材料等的粘接制造等,有一定的实用价值。 (2).NCO类及OH类原料预先氨酯化改性如上所述,由于大多数低聚物多元醇的分子量较低,并且TDI挥发毒性大,MDI常温下为固态,直接配成胶一般性能较差,故为了提高胶粘剂的初始粘度,缩短产生一定粘接强度所需的时间,通常把聚醚或聚酯多元醇

聚氨酯黏合剂原理及其应用

过去的一节课,我们讲粘合剂,着重讲了粘合工艺和原理、代表性粘合剂,侯兴旺刘红良等同学也给出了对导电粘合剂的浅显理解。但是我没有讲应用的问题,请同学们逆向思考:粘合剂的使用是为了粘合两种材料,假设在使用一段时间后粘合剂松开了,或者你想重新加工粘合两种材料,这样就需要除去或者洗脱掉原有的粘合剂,请至少列举一种粘合剂的应用以及其对应的后处理方法、并指出原理是什么。

一、聚氨酯黏合剂的应用 1、汽车用聚氨酯胶粘剂新型汽车结构中引入大量的轻质金属、复合材料和塑料,造成汽车用胶粘剂和密封胶持续增长。在汽车上应用最为广泛的聚氨酯胶粘剂主要有装配挡风玻璃用单组分程固化聚氨酯密封胶、粘接玻璃约维增强塑料和片状模塑复合村料的结构胶粘剂、内装件用双组分聚氨酯胶粘剂及水性聚氯酯胶等。此外,茎车内饰件也是胶粘剂用量增长的一个领域。汽车上应用广泛的水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂。大多数水性聚氨酯是线性热塑性聚氨酯,由于其涂膜没有交联,分子质量较低,因而耐水性、耐溶剂性、胶膜强度等性能还较差,必须对其进行改性,以提高其性能。聚酯和丙烯酸的杂和分散体与脲二酮和异氰脱脲酸酯配合制备的汽车修补清漆,不需要高速搅拌设备,容易混合在一起且具有良好的粘附性能。 2、木材用聚氨酯胶粘剂随着世界性森林资源急剧减少和我国天然林资源保护工程的实施,小木材拼大板就要求胶粘剂粘接强度和耐久耐候等性能优于木材本身。胶粘剂用量的多少,已成为衡量木材工业技术发展水平的标志。过去人们用的木村胶粘剂多为以甲醛为主要原料的脖醛树脂,酚醛树脂和三聚氰氨甲醛树脂,但由于游离的甲醛存在,产品使用期间会逐淋向周围散发甲醛气体,造成环境污染。木村加工行业已开始将目光投向新型的环保胶粘剂聚氯酯胶,以期减少对环境的行染。木工行业使用的单组分湿气固化聚氨酯胶粘剂是液态的,在室温下使用。通常其粘接强度高、柔韧性和耐水性好,并能和许多非木基材(如纺织纤维、金属、塑料、橡胶筑)粘接。单组分聚氨酯胶粘剂在测试中所表现出的干、返强度均要好于酚醛胶粘剂。粘接前,在粘接基材表面涂布羟甲基间苯二酚(HMR)偶合剂可以提高粘接强度。HMR可以加强所有热固型木村胶粘剂的粘接强度,当木村表面预涂HMR偶合剂时,单组分聚氨酯胶粘剂的强度和耐久性可以满足大部分严格的测试要求。 3、鞋用聚氨酯胶粘剂我国是一个制鞋大国,鞋用胶粘剂的发展经历三代后,随着全球性环保意识的提高,以及石油危机的加剧,促使第四代环保无溶剂型和水基型载用粘胶剂的出现。近年来,水性聚氨酯的制备工艺己日趋成熟。对于一些低极性鞋材如SBS等材质的粘接, 聚氨酯胶粘剂的剥高强度达不到要求。通过添加增粘树脂等进行改性,可开发出具有结晶度高、结晶速度快、内聚强度大和剥离强度较理想的聚氨酯鞋用胶粘剂。 4包装用聚氨酯胶粘剂软包装又称软罐头,以其轻质方便、保鲜期长、卫生、易贮存运输、易拆开、垃圾量少及货架效应良好等独特的综合性能,现己超过硬包装如塑料、玻璃瓶和罐等。聚氨酯胶粘剂由于其优异的性能,可将不同性质的薄膜材料粘接在一起得到耐寒、耐泊、耐药品、透明、耐磨等各种性能的软包装用复合薄膜。目前在国内外市场中, 聚氨酯胶粘剂已经成为软包装用复合薄膜加工的主要胶粘剂。在国内胶粘剂市场中,包装用复合薄膜制造业中, 聚氨酯胶粘剂用量仅次于制鞋业而居第二位。用于包装的聚氨酯胶粘剂品种繁多,如水基聚氨酯胶粘剂、热熔型聚氨酯胶粘剂、溶剂型聚氨酯胶粘剂以及无溶剂型聚氨酯胶粘剂等。其中常用的聚氨酯热熔胶又可分为热塑性聚氨酯弹性体热熔胶与反应型热熔胶两类。热塑性热熔胶的主要缺点是粘度较高,故对涂布表观质量的影响较大。反应型聚氨酯热熔胶粘剂是在传统热熔胶基础上发展起来的一类新型胶粘剂,它不仅有传统热熔胶初粘性好和后固化性能优的特点,又具有聚氮酯的组成结构多变和性能调节范围大的优点,对多种基材具有优良的粘接性能。另外,在包装用水

单组分聚氨酯胶粘剂配方和合成机理

单组分聚氨酯胶粘剂配方和合成机理 单组分聚氨酯胶粘剂配方和合成机理 湿固化型聚氨酯胶 1.湿固化机理:湿固化型聚氨酯胶粘剂中含有活泼的NCO基团,当暴露于空气中时能与空气中的微量水分子发生反应;粘接时,它能与基材表面吸附的水以及表面存在羟基大呢感活性氢基团发生化学反应,生成脲键结构。因此湿固化型聚氨酯胶粘剂固化后的胶层组成是聚氨酯胶粘剂—聚脲结构。 2.软木用聚氨酯胶:将以NCO为端基的聚氨酯胶粘剂应用于软木碎屑的粘接,由林产化工厂于软木碎屑中加入胶粘剂,混合均匀,加热压制成型,制成软木板材、片材等制品,用作保温、隔音等材料,其特点是耐水、防腐蚀。该胶粘剂是聚氨酯湿固化胶粘剂和密封剂的基础粘料,若对配方稍加调整,亦即加入一定比例的三官团的聚氧化丙烯三醇(如N-330),制成的NCO端基的预聚体胶粘剂即可作为下列材料的粘料(基料): (1)聚氨酯浇注型橡胶的基料; (2)建筑用聚氨酯防水材料的粘料; (3)田径运动场地用聚氨酯橡胶跑道(塑胶跑道)胶面层的粘料; (4)聚氨酯密封胶粘剂的粘料。 该胶粘剂还可用于聚氨酯泡沫塑料、聚苯乙烯泡沫等的粘接,使用方便,无公害,受到用户欢迎。 3.配方1:聚氧化丙烯多元醇(M=3000) 51份 MDI 26份 TDI(80/20) 8.7份 1,4-丁二醇 4.1份 将上述四组分原料混合,在80℃反应3h后,降温,用10份二甲苯稀释,制得NCO含量约7.3%的预聚体。该预聚体可作为弹性基材的胶粘剂。具有耐水、柔韧性好、强度高等优点。胶膜的拉伸强度可达43.1MPa,伸长率360%,在80℃热水中浸泡7天后仍能保持较好的强度。 配方2:聚氧化丙烯三醇(M=6000) 400份 聚氧化丙烯二醇(4/=2000) 1000份

胶粘剂的固化工艺

固化方法胶粘剂的固化通过物理方法,如溶剂的挥发,乳液凝聚和熔融体冷却与化学方法。 (1)热熔胶:高分子熔融体在浸润被粘表面之后通过冷却就能发生固化。 (2)溶液胶粘剂:随着溶剂的挥发、溶液浓度不断增大,渐达到固化具有一定强度。 (3)乳液胶:由于乳液中的水逐渐渗透到多孔性被粘物中并挥发掉,使乳液浓度不断增大,最后由于表面张力的作用,使高分子胶体颗粒发生凝聚。当环境温度较高时,乳液凝聚成连续的胶膜,而环境温度低与最低成膜温度(MFT),就形成白色的不连续胶膜。乳液胶主要是聚醋酸乙烯酯及其共聚物和丙烯酸酯的共聚物。 (4)热固性胶粘剂热固性树脂的多官能团单体或预聚体进行聚合反应,随着分子量的增大同时进行着分子链的变化和交联,形成不溶不熔的凝胶化或叫基本固化。在一定范围的延长固化时间和提高固化温度并不等效,降低固化温度难以用延长时间来补偿。因为胶粘剂和被粘物表面之间需要发生一定化学作用,这就是需要足够高的温度才能进行。固化压力: 有利于胶粘剂对表面的充分浸润;有利于排除胶粘剂固化反应产生的低分子挥发物;有利于排出胶层中残留的挥发性溶剂;有利于控制胶层厚度;粘度大的胶粘剂往往胶层较厚,固化压力的调节控制胶层的厚度范围。 在涂胶后放置一段时间,这叫做预固化。待胶液粘度变大,施加压力,以保证胶层厚度的均匀性。 固化温度 固化温度过低,胶层交联密度过低,固化反应不完全;固化温度过高,易引起胶液流失或使胶层脆化,导致胶接强度下降。加热有利于胶粘剂与胶接件之间的分子扩散,能有利于形成化学键的作用。 (1) 烘箱直接加热法:用鼓风装置,使其均匀传热。 (2) 外加热法:使热量迅速传到胶层内部,大大缩短固化时间。声波加热法:对具有粘弹性的胶粘剂、无溶剂胶液受热固化,不适用于热固性刚性胶。

聚氨酯胶粘剂的优缺点及应用介绍

聚氨酯胶粘剂的优缺点及应用介绍 我国聚氨酯胶粘剂的研发起步于上世纪60年代。80年代以后,我国对水性聚氨酯的研究更为活跃,但与国外水性聚氨酯胶粘剂系列化大工业的水平相比仍处于开发阶段。90年代,各行各业引进了众多的生产线,一批三资企业相继建立,进口的产品迫切需要国产化。相关的科研院所和生产单位加大开发力度,新产品不断涌现。 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团或异氰酸酯基的胶粘剂。按反应组成分类按反应组成可分为多异氰酸酯胶黏剂、含异氰酸酯基的聚氨酯胶黏剂、含羟基聚氨酯胶黏剂和聚氨酯树脂胶黏剂。按用途与特性分类按用途与特性分类可分为通用型胶黏剂、食品包装用胶黏剂、鞋用胶黏剂、纸塑复合用胶黏剂、建筑用胶黏剂、结构用胶黏剂、超低温用胶黏剂、发泡型胶黏剂、厌氧型胶黏剂、导电性胶黏剂、热熔型胶黏剂、压敏型胶黏剂、封闭型胶黏剂、水性胶黏剂以及密封胶黏剂等。但无论是哪种聚氨酯胶粘剂,都是体系中的异氰酸酯基团与体系内或者体系外含活泼氢的物质发生反应,生成聚氨酯基团或者聚脲,从而使得体系强度大大提高而实现粘接的目的。 迄今为止,除了原有的胶种外,无溶剂聚氨酯结构胶、反应性聚氨酯热熔胶等国外有的胶种,现在我国基本都有。虽然我国聚氨酯工业已有相当规模,但与发达国家相比仍有很大差距,主要是产量不大,技术水平仍较低。聚氨酯胶粘剂究竟具有哪些特性?它又应用于哪些领域呢?今天就由洛阳天江化工新材料有限公司给大家做一些简单介绍吧! 一、聚氨酯胶粘剂的特性 1、粘结力强,初粘力大,适用范围广 由于聚氨酯胶粘剂分子链中的-NCO可以和多种含活泼氢的官能团反应,形成界面化学键结合,因此对多种材料具有极强的粘附性能。不仅可以粘结多孔性的材料,如泡沫塑料、陶瓷、木材、织物等,还可以粘接多种金属、无机材料、塑料、橡胶和皮革等,是一种适用范围很广的胶粘剂。 2、突出的耐低温性能 在极低的温度下,一般的高分子材料都转化为玻璃态而变脆,而聚氨酯胶粘剂即使在-250℃以下仍能保持较高的剥离强度,同时其剪切强度随着温度的降

紫外光固化胶粘剂综述及应用

紫外光固化胶粘剂综述及应用 紫外光固化是辐射固化的一类,辐射固化是利用电磁辐射,如紫外线(UV)或电子束(EB)照射涂层,产生辐射聚合、辐射交联和辐射接技等反应。迅速将低分子量物质转变成高分子量产物的化学过程,固化是直接在不加热的底材上进行的,体系中不含溶剂或含极少量溶剂,辐照后液膜几乎100%固化,因而VOC(挥发性有机化合物)排放量很低。因此,自60年代末以来,这一技术在国际上得到飞速发展,其产品在许多行业都得到广泛应用。 一、概述: 紫外光固化是辐射固化的一类,辐射固化是利用电磁辐射,如紫外线(UV)或电子束(EB)照射涂层,产生辐射聚合、辐射交联和辐射接技等反应。迅速将低分子量物质转变成高分子量产物的化学过程,固化是直接在不加热的底材上进行的,体系中不含溶剂或含极少量溶剂,辐照后液膜几乎100%固化,因而VOC(挥发性有机化合物)排放量很低。因此,自60年代末以来,这一技术在国际上得到飞速发展,其产品在许多行业都得到广泛应用。 1、分类: 辐射固化按应用可分为辐射固化胶粘剂、辐射固化涂料、辐射固化油墨。按所用的辐射源可分为紫外(UV)光固化、电子束(EB)固化、可见光固化。如下图(1)、(2)。 2、紫外光基本知识: 紫外线(简称UV)是属于电磁波辐射的一段,电磁波谱包括无线电波、红处线、可见光、紫外线、X射线、γ射线,波长范围从10-14米至106米,如图3所示。紫外线只其中很窄的一段,波长范围为10~400nm(nm:纳米,1nm=10-9 m)可划分为长波紫外线(UVA)、中波紫外(UVB)、短波紫外线(UVC)、超短波紫外线。波长越短,能量越强,穿透能力越弱。 长波UVA,波长介于320~400nm,具有较强的穿透能力,能穿透玻璃,这一波段的紫外线能量与多数化学键能相当,容易引光化学反应,通常用于光固化的即是UVA。

紫外固化胶粘剂作用机理及研究进展

紫外固化胶粘剂作用机理及研究进展 摘要:阐述了UV胶(紫外固化胶粘剂)的作用机理、应用现状和新的研究进展。 关键词:UV固化;胶粘剂;研究进展,结构胶,发展前景。 1.前言: 紫外线胶又称无影胶、光敏胶、UV胶,它是指必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。紫外线固化技术,被认为是一种环境友好的绿色技术,近些年取得了快速发展,主要应用于涂料、油墨、胶粘剂等领域。在辐射固化领域中,UV固化胶粘剂虽然所占的比例仅为1%,但发展却是最为迅速的。UV固化胶粘剂中,结构性UV胶约占UV胶的20%。 近年来,自由基和阳离子引发体系、杂化引发体系以及双重固化体系都有大量研究报道,有很多成果应用于时间。预聚物和活性稀释单体的种类及质量都有很大提高,这些都促进了辐射固化胶粘剂的发展。 2.作用机理 粘结机理:人们对粘结机理进行了大量的研究,提出了很多粘结理论,其中主要有以下5种。 ①机械理论 机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上媳妇的空气,才能产生粘接作用。 ②吸附理论 吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫浸润,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶黏

剂进入固体表面的凹陷与孔隙就形成良好润湿。 ③扩散理论 扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长脸大分子聚合物时,扩散理论基本是适用的。 ④经典理论 经典理论又称为双电层理论,由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。但经典理论无法解释性能相同或相近的聚合物之间的粘接。 ⑤弱边界层理论 弱边界层理论认为,当粘接破获被认为是界面破坏时,实际上往往是内聚破坏或若边界层被破坏。 固化原理:UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联和接枝化学反应,使粘合剂在数秒内由液态转化为固态。 3.结构型UV胶的组成与传统结构胶的比较 结构型紫外线固化胶粘剂的固化属于光引发的自由基,其基本组成为:基础聚合物,即光交联性聚合物(相对分子质量一般在1000~5000);光聚合性单体,即单体或活性稀释剂(常带有可自由基聚合的乙烯基官能团);助剂,如阻聚剂(或稳定剂)、着色剂、触变剂、增粘剂、填充剂、增塑剂等;光引发剂,在紫外光照射下可产生活性自由基。 光交联性聚合物对UV固化胶粘剂的性能有决定性的影响,主要有聚酯类,聚醚类,环氧类,氨基甲酸酯类(甲基)丙烯酸酯等。合理选择光交联性聚合物,可以满足不同使用要求和不同性能紫外线固化胶的要求。配方设计时,要综合平衡胶液固化前的工艺性、稳定性以及固化物的特性和价格。 经过配方设计,结构型UV固化胶可以达到传统结构胶的各种性能。而室温固化环氧结构胶10~120min初固,7d才能达到最高强度;第二代丙烯酸酯结构胶1~30min 初固,24h才能达到最高强度;结构型UV胶1~5s初固,1h即可达到最高强度,可以满足自动化生产线节奏的需要,这是其他类结构胶无法比拟的。

聚氨酯胶粘剂制备工艺技术

1、一种新型水性双组份聚氨酯胶黏剂用丙烯酸改性树脂及包含该树脂的聚氨酯胶黏剂 2、耐高温油墨用聚氨酯胶黏剂的制备方法 3、一种阻燃耐水聚氨酯胶粘剂及其制备方法 4、无溶剂型双组分聚氨酯胶粘剂及其制备方法 5、耐高温水性聚氨酯胶黏剂的制备方法 6、一种豆油醇解物聚氨酯胶粘剂的生产方法 7、一种用于橡胶地砖的聚氨酯胶粘剂的制备方法 8、聚氨酯胶粘剂 9、聚氨酯胶辊 10、一种干式复合聚氨酯胶粘剂及其制造方法 11、一种鞋用聚氨酯胶黏剂及其制备方法 12、纳米聚氨酯胶粘剂及其制备工艺 13、一种聚氨酯胶粘剂粘贴墙体保温装饰一体化板材施工方法 14、一种圆织机梭子专用聚氨酯胶轮 15、一种纳米粒子改性的聚氨酯胶黏剂及其制备方法 16、双组份改性无水聚氨酯胶 17、冷轧用聚氨酯胶辊表面破损修复方法 18、一种用于复合软包装的水性聚氨酯胶粘剂的制备方法 19、一种水性聚氨酯胶粘剂及其制备方法 20、改性聚氨酯及水性聚氨酯胶粘剂组合物 21、一种用于人造草坪背胶的蓖麻油改性聚氨酯胶粘剂组合物 22、一种单组份高固含量水性聚氨酯胶粘剂的制备方法 23、一种RFID天线基材用水性聚氨酯胶粘剂 24、一种双组份聚氨酯胶粘剂的制备方法 25、聚氨酯输送带用乳液型水性聚氨酯胶黏剂及其合成方法 26、环保型低成本聚氨酯胶粘剂生产方法 27、低游离MDI单体双组份无溶剂聚氨酯胶粘剂 28、一种高强度耐黄变弹性聚氨酯胶及其制备方法和应用 29、一种酚醛树脂-聚氨酯胶粘剂的制备方法 30、一种有机蒙脱土改性双组份聚氨酯胶粘剂及其制备方法 31、一种长寿聚氨酯胶轮 32、植珠用水性聚氨酯胶黏剂及其制备方法 33、聚氨酯胶粘剂的制备方法 34、一种水性聚氨酯胶粘剂及其制造方法 35、一种双组分聚氨酯胶粘剂及其制备方法和应用 36、可常规喷涂风机叶片用聚氨酯胶衣组合物及其制备方法 37、阻燃及耐碱聚氨酯胶粘剂的制备方法 38、一种鞋用聚氨酯胶粒的配方 39、一种溶剂型双组份聚氨酯胶黏剂及其制备方法 40、一种双组份聚氨酯胶及其制备方法 41、聚氨酯胶专用纳米碳酸钙的制备方法 42、一种单组份聚氨酯胶黏剂及其制备方法 43、室外聚氨酯胶黏剂

粘合剂的配方,工艺,注意事项等等

粘合剂 配方 淀粉粘合剂是水、生淀粉、熟浆糊、苛性钠、硼砂和甲醛的混合物,大概比例是:水80%;淀粉20%(其中生淀粉占85%,熟淀粉占15%);苛性钠(淀粉总量的)2.4-2.8%; 硼砂(淀粉总量的)2.7-3.2%,约10摩尔;甲醛微量。 美国一些纸箱厂使用的淀粉大多是玉米淀粉。有的是未经处理的纯玉米粉,有的则经过了化学处理,特别是经过处理的专用淀粉具有良好的稳定粘性和极好的含水性能。有些淀粉呈粉状,有些为粒状。颗粒只是粉末围成的松块,用于下糊糟中调配整批糊。 有的工厂使用经过特殊处理的玉米淀粉专门制造一种单一粘度的粘合剂,其胶化点为61℃开始,63℃完成。虽然胶化点较低,但粘合剂在粘结时像一般的双面机糊一样,胶化迅速。粘度通常在27~32秒之间。680加仑的浆糊用500公斤淀粉。 淀粉在常温水中搅动后,其质点分散成乳状,但不会溶解,也不会吸收水分。如果停止搅动,淀粉则沉淀于底部逐渐结成硬块,一旦硬块型成,再分散就不那么容易了。分散于水中的淀粉,加热时即开始吸收水分而膨胀。粘合剂配方中使用的是生淀粉,大约在70℃开始膨胀。温度升高到90℃,膨胀作用完成。胶化的淀粉很粘稠,其程度视水中的淀粉量而定。 原料工艺 硼砂 硼砂也有粉状和粒状之分,细粒状的硼砂最好。硼砂根据强度分两种级别。10摩尔硼砂有10个水分子,称10级水硼砂。5摩尔硼砂有5个水分子,称5级水硼砂。5摩尔硼砂的浓度较高。0.35公斤的5摩尔硼砂相当于0.454公斤10摩尔硼砂。同样量的两种硼砂用错的话,产生的后果是严重的。如果将硼砂加入生淀粉和水乳液中,然后将混合物加热,淀粉吸水后迅速膨胀,并变得比没加硼砂时更粘稠。 硼砂的添加量有一定的限度,否则的话,会影响淀粉的膨胀,胶化的浆糊会变脆,干燥时呈粉末状态。

聚氨酯胶粘剂的发展史

聚氨酯胶粘剂的发展史 来源:阿里巴巴发布时间:2009-5-24 11:21:01 聚氨酯(PU)胶粘剂是分子链中含有氨酯基(--NHCOO--)和/或异氢酸酯基(--NCO)类的胶粘剂。聚氨酯胶粘剂由于性能优越,在国民经济中得到广泛应用,是八大合成胶粘剂中的重要品种之一。1940年德国法本公司(I.G.FarBen,Bayer公司的前身)的研究人员发现异氢酸酯具有特殊的粘合性能,并将三苯基甲烷-4,4',4"-三异氢酸酯成功地用于金属与冬钠橡胶的粘接,在第二次世界大战中使用到坦克履带上。50年代以后,Bayer公司开发了Desmodurs系列(二异氢酸酯和多异氢酸酯)和Desmophens系列(低分子量端羟基聚酯多元醇)。按一定量的Desmodurs和Desmophens配置成Polystal 系列商品(双组分溶剂型聚氨酯胶粘剂)。Polystal系列双组分聚氨酯胶粘剂具有可低温固化、粘合强度好以及耐水、耐溶剂、耐低温等优点,是当时最好的胶粘剂,为日后聚氨酯胶粘剂工业的发展奠定了基础。 美国于第二次世界大战后开始学习德国的聚氨酯工艺,1953年引进了聚氨酯胶粘剂技术,同时开发一蓖麻油和聚醚多醇为原料的聚氨酯胶粘剂,美国B.F.Goodrich公司也开发了聚酯型热塑性聚氨酯胶粘剂。1968年Goodyear公司开发了无溶剂型聚氨酯结构胶粘剂“Pliogrip”,成功地应用于汽车玻璃纤维增强塑料部件的粘接。1978年又开发了单组分湿固化型聚氨酯胶粘剂,并开始在其趁工业与建筑部门应用。1984年美国市场上又出现了反应型热熔聚氨酯胶粘剂,解决了聚氨酯胶粘剂使用时的公害问题。 日本于1954年引进德国和美国聚氨酯技术,1960年生产聚氨酯材料,1966年开始生产聚氨酯胶粘剂。1975年日本光洋公司开发成功“乙烯类聚氨酯”水性胶粘剂,并于1981年投入工业化生产。日前日本聚氨酯胶粘剂的研究与生产十分活跃,并与美国、西欧一起成为聚氨酯生产、出口大国。 我国大连染料厂于1956年最早研制并生产三苯基甲烷三异氢酸酯(列克纳胶),牌号定位JQ-1,很快又生产了甲苯二异氢酸酯(TDI),为我国聚氨酯工业打下了基础.上海合成树脂研究所首先研究成功双组分溶剂型聚氨酯胶粘剂,后又上海新光化工厂将该胶的制备工艺进行改进,于1966年开始投入生产,牌号定位铁锚-101,至今荏为我国聚氨酯胶粘剂中产量最大的品种.80年代以来,各工业部门陆续从国外引进许多先进的生产线和产品,其中需要大量进口的聚氨酯胶粘剂与其配套,因此,促进了国内研究单位加速聚氨酯胶粘剂的开发,特别是在1986年以后,我国聚氨酯工业进入许素发展时期.1994年国家正式批准成立"中国聚氨酯工业协会",下设"聚氨酯胶粘剂委员会",该委员会业已成为全国聚氨酯 胶粘剂技术与信息交流的中心。 国外聚氨酯胶粘剂的市场发展动态欧洲(主要是德、法、英三国)聚氨酯胶粘剂1988年产量为6.85万吨,1993年为7.2万吨;聚氨酯密封剂市场销量为1.5万吨,1993年增长到1.9万吨。年均增长率分别为1%和5%。生产聚氨酯胶粘剂的主要厂家有15个。 美国聚氨酯胶粘剂1990年消耗量为4.6万吨(100%固含量计),1995年达到5.9万吨,平均年增长率为4.8%,预计2000年将达到7.3万吨。聚氨酯密封胶1990年产量为2.8万吨,销售额为 1.24亿美元。美国聚氨酯胶粘剂生产厂家有115家,其中专业生产厂家有15个。主要消费市场是纺织、木材、包装。其中纺织与木材工业上的应用发展最快,纺织应用胶粘剂几乎占聚氨酯胶粘剂总量的1/2,主要用作地毯背衬胶粘剂。 日本聚氨酯胶粘剂1980年产量为5808吨,1990年达到3.3万吨,平均年增长率为20%。根据最近报道,日本生产的聚氨酯胶粘剂一半是用于食品包装复合薄膜,其次为制鞋与木材工业。聚氨酯密封胶1988年产量为2.3万吨,1990年达到2.8万吨。日本聚氨酯胶粘剂生产厂家有34个。 目前世界胶粘剂年总产量约为1000万吨,而聚氨酯胶粘剂仅有20万吨,因此聚氨酯胶粘剂是正在发展中的一类胶粘剂。 国外聚氨酯胶粘剂的技术发展动态 由于聚氨酯胶粘剂具有许多优异性能,在国外已广泛用于纺织、土木建筑、交通运输、电子元件、制

UV胶紫外光固化胶优缺点与操作事项

UV胶(紫外光固化胶)优缺点与操作事项 产品特点 UV胶适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,东莞天诺科技TN-231UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。 优点 环境/安全 ●无VOC挥发物,对环境空气无污染; ●胶粘剂成分在环保法规中限制或禁止的比较少; ●无溶剂,可燃性低 经济性 ●固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率 ●固化后即可进行检测以及搬运,节约空间 ●节省能源,例如生产1g光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂相比可节约能耗90% ●固化设备简单,仅需灯具或传送带,节约空间 ●单组分系统,无需混合,使用方便 相容性 ●对于温度,溶剂和潮湿敏感的材料可以使用 ●控制固化,等待时间可以调整,固化程度可以调整 ●可以重复施胶多次固化 ●紫外灯可以容易地安装在已有的生产线,不需较大改动

●原料成本高,不含低成本的溶剂和填料,胶粘剂价格高 ●紫外光对某些塑料或半透明材料穿透力较弱,固化深度有限,可固化产品的几何形状受到限制,不透光的部位及紫外光照射不到的死角不易固化 ●一般的UV胶只能粘接透光材料,粘接不透光材料需要配合其他技术,例如光延迟(阳离子)固化,光热双固化,光-湿气双固化等。 操作原理 无影胶上胶过程无影胶又叫紫外线胶水,它必须是通过紫外线照射到胶液的前提下才能固化,也就是无影胶中的光敏剂与接触到紫外线会与单体相接合,理论上没有紫外线光源的照射下无影胶几乎永远不固化。 紫外线的来源有自然日光和人造光源两种。紫外线越强固化速度越快一般固化时间在10-60秒不等。对于自然日光而言,晴朗的天气阳光中的紫外线会比较强固化速度越快。但是,没有强烈阳光时只能用人造紫外线光源了。人工紫外线光源的种类很多,功率差异也非常巨大,小功率的可以小到几瓦,大功率的可以达到上万瓦。 不同厂家生产的无影胶或不同的型号固化速度不同。用于无影胶必须被光照射才能固化,因此用于粘接的无影胶一般只能粘接透明的两个物件或其中之一必须是透明的,以便是紫外线光可以透过而照射到胶液上面。 操作指导 1、将被粘接的两物体有一个是透明的且表面清洗干净、干燥并无油脂; 2、将UV无影胶涂在其中的一个表面上,合拢两平面,用合适波长(通常为365nm -400nm)及能量的紫外灯或照明用高压汞灯进行照射,光照时要从中央向周边,并确认光线确实能照透至粘合部位; 3、建议光照6s左右、初步定位时,去除工件上剩余胶水再重新光照至完全固化; 4、固化时间应根据不同的备战材料、胶厚、紫外线强度的不同而有所区别。建议用户购置紫外线强度测试仪,粘接前作光线强度测试以减少废品率; 5、气温对胶水的活性也有少许影响,气温低时固化时间应适当延长; 6、操作时不应用力挤压和反复磨擦需粘接的材料,并建议使用固定工具; 7、塑料粘接时,应考虑塑料中的紫外线吸收剂的含量,偏高的含量将严重影响紫外线的透过率,因而也对胶水的固化效率产生明显的影响,甚至导致胶水无法

相关文档
最新文档