组蛋白和非组蛋白 histones and non-histone proteins

组蛋白和非组蛋白 histones and non-histone proteins
组蛋白和非组蛋白 histones and non-histone proteins

组蛋白和非组蛋白histones and non-histone proteins

组蛋白是存在于染色体内的与DNA结合的碱性蛋白质,染色体中组蛋白以外的蛋白质成分称非组蛋白。绝大部分非组蛋白呈酸性,因此也称酸性蛋白质或剩余蛋白质。组蛋白于1834年由德国科学家A.科塞尔发现。

组蛋白对染色体的结构起重要的作用。染色体是由重复单位──核小体组成。每一核小体包括一个核心8聚体(由4种核心组蛋白H2A、H2B、H3和H4的各两个单体组成);长度约为200个碱基对的脱氧核糖核酸(DNA);和一个单体组蛋白H1。长度约为140个碱基对的DNA盘绕于核心8聚体外面。在核心8聚体之间则由长度约为60个碱基对的DNA 连接。这种DNA称为“接头”DNA。

组蛋白的组分几乎所有真核细胞染色体的组蛋白均可分成5种主要的组分,分别用字母或数字命名,命名方法也不统一,如H1或称F1,Ⅰ;H2A或称F2A2,Ⅱb1;H2B或称F2B,Ⅱb2;H3或称F3,Ⅲ;H4或称F2A1,Ⅳ。有核的红细胞或个别生物体中,还存在特别的组蛋白成分,红细胞中为H5或F2C,Ⅴ,鲑鱼组织中为H6或T。H2A、H2B、H3、H4组成核小体的核心,也称核心组蛋白。根据组蛋白的一级结构,又可将它们分为3种类型:赖氨酸含量特别丰富的组蛋白(H1);赖氨酸含量较丰富的组蛋白(H2A和H2B);精氨酸含量丰富的组蛋白(H3和H4)。从整体来说,组蛋白在进化过程中保守性很强。其中H1变化较大,H3和H4变化最小。如对小牛胸腺的5种组蛋白,豌豆苗组蛋白的H3、H4和兔胸腺组蛋白H1等的一级结构比较中发现,小牛胸腺和豌豆苗的组蛋白H4间只在60位和77位上的两个氨基酸残基不同。但已知的真菌和原生动物的组蛋白的部分一级结构和动、植物的组蛋白间的差异较大。

组蛋白合成后的修饰这是形成组蛋白各组分微不均一性的主要原因。修饰的方式有:①乙酰化。有两种,一种是H1、H2A、H4 组蛋白的氨基末端乙酰化,形成α-乙酰丝氨酸,组蛋白在细胞质内合成后输入细胞核之前发生这一修饰。二是在H2A、H2B、H3、H4的氨基末端区域的某些专一位置形成N6-乙酰赖氨酸。②磷酸化。所有组蛋白的组分均能磷酸化,在细胞分裂期间,H1的1~3个丝氨酸可以磷酸化。而在有丝分裂时期,H1有3~6个丝氨酸或苏氨酸发生磷酸化,其他四个核心组蛋白的磷酸化可以发生在氨基末端区域的丝氨酸残基上。组蛋白的磷酸化可能会改变组蛋白与DNA的结合。③甲基化。仅发现于H3的9和27位和H4的20位的赖氨酸,鸭红细胞组蛋白H1和H5的组氨酸。④ADP-核糖基化。组蛋白H1、H2A、H2B及H3和多聚ADP-核糖的共价结合,ADP-核糖基化被认为是在真核细胞内启动复制过程的扳机。

非组蛋白染色质中一大群分子量5000~15000的蛋白质的总称。真核细胞的非组蛋白可能有100种以上。由于非组蛋白本身具有聚合特性,它们和组蛋白、核酸等也有结合能力,用电泳和层析技术完全分离非组蛋白比较困难,用双向电泳技术曾在兔肝和诺维科夫肝癌细胞分别分离到69个和84个组分。非组蛋白大致包含下列三类蛋白质:①细胞核内大量的酶。包括DNA合成及修复过程中的DNA多聚酶和连接酶,核糖核酸(RNA)聚合酶,以及核酸和蛋白质如组蛋白在修饰过程中所需要的酶;②在染色体中起结构作用的蛋白质;

③其他尚未阐明功能的蛋白质。非组蛋白在各种组织和细胞的分化及发育过程中以及在正常细胞向肿瘤细胞的转化过程中均会发生变化。各种不同的动物和组织中的非组蛋白成分也有较大的变化。非组蛋白能够选择性地和同源DNA结合,它们在RNA聚合酶作用下在体外能促进DNA的转录,所以有人认为染色质中的具有专一功能的非组蛋白在基因转录的选择性调控上起重要作用。

龚祖埙

从染色质到染色体的四级结构模型

染色质和染色体的基本成分相同,主要包括DNA和组蛋白,除此之外,还有非组蛋白和RNA。这些成分通过螺旋化和折叠,形成了一定的结构。根据多方面的研究成果,人们提出了从染色质到染色体的四级结构模型。

图6-5 核小体的结构模式图

1.一级结构:染色质是一系列核小体相互连接成的念珠状结构。核小体的核心是由组蛋

白H

2A、H

2

B、H

、H

各两个分子构成的八聚体,在八聚体的表面缠绕有13/4圈的双螺旋DNA。

在相邻的两个核小体之间,由DNA连接,称为连接线,在连接线部位结合有一个组蛋白分子

H

1

(图6-5)。现在普遍认为,在组蛋白H1存在时,每个核小体间紧密接触,形成直径为10 nm 的纤维状结构,此时,DNA的长度被压缩了约7倍。这就是染色体构型变化的一级结构(图

6-6,1)。

2.二级结构:由核小体连接起来的纤维状结构经螺旋化形成中空的螺线管,这就是染色体构型变化的二级结构。螺旋管的每一圈包括6个核小体,外径约为30 nm 。因此,DNA的长度在一级结构的基础上又被压缩了6倍(图6-6,2)。

3.三、四级结构:由螺线管进一步形成染色体的方式,现在有不同的看法。据Bak等(1977年)的研究,从人胚胎的成纤维细胞中分离出来的染色体,经温和的破坏后,在光学显微镜下可见到有伸展的、直径约为400 nm的细丝结构。在电子显微镜下观察这些细线时,判明它就是由直径30 nm的螺线管螺旋化形成的筒状结构,称为超螺线管。这就是染色体构型变化的三级结构(图6-6,3)。超螺线管再进一步螺旋折叠则形成染色单体,这是染色体构型变化的四级结构(图6-6,4)。

染色单体是由一条连续的DNA长链,经过四级的盘旋、折叠而形成的。一条DNA的长链经过一级结构即形成核小体后,其长度被压缩了7倍。二级结构,即形成螺旋管后,DNA长度又被压缩了6倍。三级结构,即由螺线管形成超螺线管后,DNA的长度在二级结构的基础上被压缩了40倍,在由三级到四级结构,即形成染色单体后,DNA的长度在三级结构的基础上被压缩了5倍。因此由一条DNA长链,经过多级螺旋化,可以使几厘米长的DNA与组蛋白等物质共同形成几微米长的染色体,其长度总共被压缩了8 000~10 000倍。

图6-6从染色质到染色体的四级结构模型

精子细胞核

位于精子头部的中央偏后,表面包有核膜,其内为核质,核质主要为高度浓缩的染色质。电镜下核内染色质呈不规则的纤维颗粒状,在浓密的核染色质中,常可见不规则的透亮区,称为核泡(nuclear vacuole),核泡是在染色质浓缩过程中形成的,较大的核泡可能是染色体排列发生畸变引起的,核染色质主要由DNA和精核蛋白组成,和体细胞相比,精子的DNA 和核蛋白的组成有其独特性。这种差异主要表现在2个方面:①由于精子是单倍体,故DNA 量仅是体细胞的一半·同时由于精子除合成少量功能蛋白外,基本上处于休止状态,故其染色质的致密度明显高于体细胞,体积也很小,有利于精子的穿透功能。②体细胞的核蛋白主要是组蛋白,而精子的核蛋白主要是精核蛋白,后者为一种富含精氨酸和半胱氨酸的碱性蛋白。

精核蛋白(protamine)是精子细胞中特有的一种低分子量的碱性蛋白质,最早由鱼类精子的头部分离所得,所以又称为鱼精蛋白,以后发现人类精子的核蛋白也以鱼精蛋。人精子核内的精核蛋白分为2大类:一类为P1精核蛋白,存在于所有哺乳动物精子核中,人精子核中的称HPl(humanprotamine 1);另一类为P2族精核蛋白,由2、P3和P4组成,P2族精核蛋白只存在于人类及很少几种哺乳动物(如小鼠、仓鼠等)。人精核蛋白是在精子发生过程中形成的。在精原细胞和精母细胞的核中仍以组蛋白为主,因此在精子形成过程中,核内蛋白质经历了组蛋白一精核蛋白的取代过程。在精子细胞的变态过程中,核内的组蛋白首先转换成两种过渡蛋白,称TPl.和(transitionprotein,TP),接着精子细胞新合成的TP3和S12取代了TPl和TP2,形成成熟精子内的精核蛋白。研究发现HPl由50个氨基酸残基组成,哺乳动物的PI均结构相同,整个Pl含有3个结构区域:①从N末端的顺序为丙、精、酪、精、胱,为一高度保守区;②中央区域含有4个精氨酸丛,也为高度保守区;③c末端为高度可变区,此外P1的第8、10和12位为丝氨酸和苏氨酸。P2除含有丰富的精氨酸外,还有许多组氨酸残基。人精子中已发现有P2a和P2b两种变异体,m2a为57个氨基酸,P2b 为54个氨基酸,N末端比P2a少3个氨基酸,其余的氨基酸序列相同。P2a有可能是P2b 的前体分子。在细胞核内,精核蛋白主要和DNA结合,关于结合方式,有2种假设:一种认为精核蛋白分子位于DNA双螺旋的大沟内,蛋白分子中央区的精氨酸丛能与DNA分子上的磷酸基相互作用,而蛋白分子的N端和C端则充填在DNA双螺旋的小沟内,与邻近的DNA或精核蛋白发生作用;另一种假设是,精核蛋白分子位于DNA螺旋的小沟内,在邻近DNA螺旋的大沟内,蛋白质N端和c端的一个精氨酸,可与邻近DNA螺旋大沟内的基团形成氢键,同时蛋白分子上的半胱氨酸可形成分子间的二硫键,使平行排列的染色质丝更趋于稳定。与组蛋白相比,鱼精蛋白与DNA的这种结合方式更为紧密,电镜观察,未染色的电镜标本,精核蛋白区的密度高于组蛋白,但用重金属离子(如铀)染色后,则结果相反。这是由于组蛋白区内,核DNA上的负电荷与离子结合,使电子密度加大,而在精核蛋白区由于DNA的负电荷被中和了,无法与金属离子结合,故电子密度低。精核蛋白的主要作用是通过精氨酸上的正电荷与DNA的负电荷和半胱氨酸间的二硫键,使核染色质高度浓缩,即缩小了精子头的体积,有利于精子穿入卵细胞,又抑制了染色质的转录活性,使精子的核物质更趋于稳定。精核内精核蛋白量的多少也成为衡量精子成熟程度的一个指标。已经发现,精子核蛋白的缺乏与不育相关,而少精子症患者有精核蛋白含量的下降,亦已证明抗精核蛋白抗体可以抑制精子与卵的结合,证明了精核蛋白与精子受精能力的关系。此外,精核蛋白亦与胚胎发育有关,精核蛋白的转化障碍,可能引起胚胎发育异常。

核膜为类脂双层结构。精子的核膜较体细胞的核膜薄,厚约7~lO nm,大部分核膜无核孔,但在核后环处,精子变态过程中,核染色质浓缩,核体积缩小。

微生物制剂MP代谢产物的蛋白质组分析

101赵敏等 微生物制剂MP代谢产物的蛋白质组分析 生物技术 微生物制剂MP代谢产物的蛋白质组分析 赵敏1,汪长国1,李宁1,夏庆友2,3,戴亚1 1川渝中烟工业有限责任公司技术中心,成都市成龙大道1段56号 610066; 2 西南大学家蚕基因组生物学国家重点实验室,重庆市北碚区天生路2号 400715; 3 西南大学生物技术学院,重庆市北碚区天生路2号 400715 摘 要:为明确微生物制剂MP提高烟叶品质的原因,以该制剂的代谢产物作为研究材料,采用液相色谱串联质谱法(LC-MS/ MS)分析了微生物制剂MP代谢产物的蛋白质组成分。结果共鉴定出35个非重复蛋白质,蛋白等电点几乎均在4-7范围内,分子量均大于20 kD。KEGG代谢通路分析显示,所鉴定的蛋白几乎都与代谢有关,其中参与氨基酸代谢、糖酵解、三羧酸循环、丙酮酸盐代谢的蛋白最多。其中,氨基酰组氨酸二肽酶、嗜热菌状金属蛋白酶、尿刊酸水合酶和组氨酸氨裂解酶能有效降低烟叶中蛋白质。 关键词:微生物制剂MP;LC-MS/MS;KEGG;烟叶;蛋白降解 doi:10.3969/j.issn.1004-5708.2013.05.018 中图分类号:TS416;TQ937 文献标识码:A 文章编号:1004-5708(2013)05-0101-06 Proteome analysis of metabolic products by microbial agents MP ZHAO Min1, WANG Changguo1, LI Ning1, XIA Qingyou2,3 , DAI Ya1 1 Technical Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, 610066 China; 2 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715,China; 3 College of Biotechnology, Southwest University, Chongqing 400715,China Abstract: Proteome of MP metabolic productions was analyzed by LC-MS/MS to determine the mechanism of MP in increasing tobacco quality. 35 non-repeated proteins were identi?ed whose isoelectric point fall within the scope of 4 to 7 and molecular weight are more than 20 kD. KEGG analysis indicated that those proteins were involved in metabolic pathways especially in amino acid metabolism, glycolysis, tricarboxylic acid cycle and pyruvate metabolism. Enzymes such as aminoacyl-histidine dipeptidase, thermolysin-like metalloprotease, HutU urocanate hydratase and histidine ammonia-lyase, function in protein degradation were vital for increasing tobacco quality after MP spraying. Keywords: Microbial agent MP; LC-MS/MS; KEGG; tobacco leaf; protein degradation 烟草(Nicotiana tabacum)是重要经济作物,也是植物学研究中的重要模式植物。汪长国等人从烟田土壤中分离筛选出的芽孢杆菌并制备成一种微生物制剂MP,采收前烟叶喷施MP制剂可改善烟叶重要香味成分和蛋白质含量,提高烟叶品质[1]。赵敏等人研究发现,喷施微生物制剂MP后烟叶中可能具有抗菌功能的组织蛋白酶B基因表达量增加[2],与植物抗病性相关的几丁质酶和逆渗透蛋白表达量也有增加[3]。但该制剂分泌的代谢产物含有哪些蛋白以及这些蛋白对烟叶品质的作用机制还有待于进一步研究。 “鸟枪法”(Shotgun)蛋白质学研究策略是基于复杂蛋白质混合物的酶解,它可以大规模的筛选复杂样品中的多肽和蛋白,并快速鉴定细胞、组织和器官中的蛋白质表达谱[4-6],其基本原理是蛋白质溶液或经过SDS-PAGE分离的蛋白质条带经过酶解后形 作者简介:赵敏,博士研究生,工程师,主要从事微生物与烟叶品质等方面的研究,Email: lszhaomin@https://www.360docs.net/doc/9313538103.html, 通讯作者:戴亚,教授,主要从事烟草化学、降焦减害等方面的研究,Email:dycy@https://www.360docs.net/doc/9313538103.html, 收稿日期:2012-10-12

原核生物蛋白质的合成

核糖体在进行的蛋白质生物合成分为起始,延伸和终止3个阶段.除了核糖体组成、各种因子、起始tRNA不同外,其余环节在真核生物和原核生物基本类似. 1.首先进行氨酰-tRNA的活化,这能使每个AA和tRNA分子共价连接,以确保加入正确的AA (即接头)作用;并能使aa与延伸中的多肽链末端反应形成新的肽链. 活化步骤:1)aa+ATP=aa-AMP+PPi 2)aa-AMP+tRNA→aa-tRNA+AMP+PPi 2.合成的起始: 1)起始tRNA识别AUG(起始密码子)编码甲硫氨基酸,以确定翻译的正确阅读框架. 2)30S核糖体小亚基中的16SrRNA与富含嘌呤并位于AUG起始密码子的5’端的Shine-Dalgarno序列结合,然后,核糖体沿着mRNA向3‘端移动,直到遇到AUG起始密码子.因而Shine-Dalgarno序列将核糖体亚基传送至正确的AUG用于起始翻译. 3)然后起始因子开始催化蛋白质的合成.原核生物中用三种起始因子IF1、IF2、IF3是必需的. a.三元复合物(IF3-30S亚基-mRNA三元复合物形成. b.30S前起始复合物(IF2-30S亚基-mRNA-fMet-tRNAMef复合物)形成,此步亦需要fGTP和Mg2+参与. c.70S起始复合物(70S initiation complex)形成.50S亚基与上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-fMer-tRNA Met复合物.此时fMet-tRNA Met占据着50S亚基的肽酰位(peptidyl site,简称为P位或给位),而50S的氨基酰(aminoacyl site,简称为A位或受位)暂为空位. 3.肽链合成的延长 这一过程包括进位、肽键形成、脱落和移位等步骤.肽链合成的延长需两种延长因子(Elongationfactor,简写为EF),分别称为EF-T和EF-G.此外尚需GTP供能加速翻译过程. ①进位 结合在mRNA上的fMet-tRNAiMet(或肽酰-tRNA)占着P位,新的氨酰-tRNA和EF-Tu及GTP形成的AA-tRNA·EF-Tu·GTP利用GTP水解的能量进入A位,并与mRNA上相应的密码子结合. EF-Tu·GDP由EF-Ts协助再生成EF-Tu·GTP. ②肽键形成 50S亚基上肽酰转移酶催化P位的肽(氨)酰-tRNA把肽(或氨酰基)转给A位的AA-tRNA,并以肽键相连.P位的氨基酸(或肽的C端氨基酸)的α-COOH基,与A位氨基酸的α-NH2形成肽链.催化肽键形成的是23SrRNA的肽酰转移酶活性. ③脱落 在A位上的tRNA负载着二肽酰基(或肽酰基),P位上成为无负载的tRNA脱落. ④移位 在EF-G协助下,由EF-G·GTP提供能量,核糖体构象改变,沿mRNA的5’→3’相对移动一个密码子距离,使下一个密码子定位于A位,原来处于A位上的肽酰tRNA转移到P位上,空出A位点. 再依次进位、形成肽键、脱落和移位循环返复,直到mRNA上的终止密码子进入A位,翻译终止. 肽链的延伸是从N端开始.延长过程每重复一次,肽链延伸一个氨基酸残基,多次重复使肽链增长到必要的长度. 4.肽链合成的终止(termination) 肽链合成的终止,需释放因子(releasing factor,RF)参与.原核生物的RF1识别UAA、UAG;RF2识别UAA、UGA,使肽链释放,核糖体解聚.

(高三生物核心素养教案) 蛋白质和核酸

第3讲蛋白质和核酸 一、考纲要求: 蛋白质的结构和功能(Ⅱ)。 核酸的结构和功能(Ⅱ)。 实验:观察DNA、RNA在细胞中的分布。 二、教学目标: 1.说明氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 2.概述蛋白质的结构和功能。 3.掌握和蛋白质相关的计算方法。 4.简述核酸的种类、结构和功能。 5.学会观察DNA、RNA在细胞中的分布。 三、教学重、难点: 1.教学重点: 氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 蛋白质的结构和功能。 核酸的结构和功能。 糖类、脂质的种类和作用。 2.教学难点 氨基酸形成蛋白质的过程。 蛋白质的结构多样性的原因。 蛋白质的相关计算题。 核酸的结构和功能 观察DNA、RNA在细胞中的分布 四、课时安排:3课时 五、教学过程: 考点一蛋白质的结构、功能及相关计算(一)知识梳理: 1.组成蛋白质的氨基酸及其种类 巧记“8种”必需氨基酸

甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸)。 2.蛋白质的合成及其结构、功能多样性 (1)二肽的形成过程 ①过程a :脱水缩合,物质b :二肽,结构c :肽键。 ②H 2O 中H 来源于氨基和羧基;O 来源于羧基。 (2)蛋白质的结构层次 氨基酸――→脱水缩合多肽――→盘曲、折叠 蛋白质 小贴士 蛋白质的盐析、变性和水解 (1)盐析:是由溶解度的变化引起的,蛋白质的空间结构没有发生变化。 (2)变性:是由于高温、过酸、过碱、重金属盐等因素导致的蛋白质的空间结构发生了不可逆的变化,肽链变得松散,丧失了生物活性,但是肽键一般不断裂。 (3)水解:在蛋白酶作用下,肽键断裂,蛋白质分解为短肽和氨基酸。水解和脱水缩合的过程相反。 3.蛋白质分子多样性的原因 (1)氨基酸???? ? ①种类不同②数目成百上千③排列顺序千变万化 (2)肽链的盘曲、折叠方式及其形成的空间结构千差万别。 4.蛋白质的功能(连线) 拓展: 下图表示蛋白质的结构层次示意图,据图分析: (1)组成蛋白质的化学元素中通常含有S ,S 元素在b 中存在于哪部分?

蛋白质组学与分析技术课复习思1考

蛋白质组学与分析技术课复习思考 一、名词解释 1、蛋白质组学: 蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理: 根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩(减少体积) 和稳定样品(去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略 在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。5、离子交换色谱: 离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增 PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR 的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA拆开;2)在较低的温度下使

(完整版)蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

核心考点一:蛋白质

核心考点复习一: 蛋白质 一、感悟真题,把握考向 【例1】(2013·全国课标卷Ⅰ·第1题)关于蛋白质生物合成的叙述,正确的是()A.一种tRNA可以携带多种氨基酸 B.DNA聚合酶是在细胞核中合成的 C.反密码子是位于mRNA上相邻的三个碱基 D.线粒体中的DNA能控制某些蛋白质的合成 【例2】(2012·全国课标卷Ⅰ·第1题)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同,其原因是参与这两种蛋白质合成的() A.tRNA种类不同B.mRNA碱基序列不同 C.核糖体成分不同D.同一密码子所决定的氨基酸不同 【例3】(2013·江苏生物·第20题)下面关于蛋白质分子结构与功能的叙述,错误 ..的是A.不同蛋白质含有的氨基酸数量不尽相同 B.有些结构不同的蛋白质具有相似的功能 C.组成蛋白质的氨基酸可按不同的排列顺序脱水缩合 D.组成蛋白质的氨基酸之间可按不同的方式脱水缩合 【例4】(2013·浙江卷·第3题)某生物基因表达过程如图所示。下列叙述与该图相符的 是() A.在RNA聚合酶作用下DNA双螺旋解开 B.DNA-RNA杂交区域中A应与T配对 C.mRNA翻译只能得到一条肽链 D.该过程发生在真核细胞中 二、明确规律,有的放矢 全国新课标卷,2011年没有考查;2012年考查了基因指导分泌蛋白合成过程的相关知识,与2013年有相似性。关注蛋白质的元素组成、氨基酸脱水缩合过程、蛋白质结构和功能的多样性、分泌蛋白合成运输过程、转录等未考内容。 三、再现考点,回归课本 请您回想蛋白质的相关考点,完成下面概念图。若有记不全的请阅读《必修1》20面《蛋白质》、48面《分泌蛋白的合成和运输》、《必修2》62面《基因指导蛋白质的合成》

真核细胞内蛋白质的降解途径

真核细胞内蛋白质的降解途径 作者:valley 日期:2009-3-9 11:13:00 1 推荐 真核细胞内蛋白质的降解途径主要有三种,溶酶体途径、泛素化途径和胱天蛋白酶(caspase)途径。 1、溶酶体途径:蛋白质在同酶体的酸性环境中被相应的酶降解,然后通过溶酶体膜的载体蛋白运送至细胞液,补充胞液代谢库。胞内蛋白:胞液中有些蛋白质的N端含有KFERQ信号,可以被HSC70识别结合,HSC70帮助这些蛋白质进入溶酶体,被蛋白水解酶降解。胞外蛋白:通过胞吞作用或胞饮作用进入细胞,在溶酶体中降解。 2、泛素-蛋白水解酶途径:一种特异性降解蛋白的重要途径,参与机体多种代谢活动,主要降解细胞周期蛋白Cyclin、纺锤体相关蛋白、细胞表面受体如表皮生长因子受体、转录因子如NF-KB、肿瘤抑制因子如P5 3、癌基因产物等;应激条件下胞内变性蛋白及异常蛋白也是通过该途径降解。该通路依赖ATP,有两步构成,即靶蛋白的多聚泛素化?多聚泛素化的蛋白质被26S蛋白水解酶复合体水解。 (1)、物质基础: 泛素(ubiquitin):一种76个氨基酸组成的蛋白质,广泛存在于真核生物中,又称遍在蛋白。在一系列酶的作用下被转移到靶蛋白上,介导靶蛋白的降解。 蛋白水解酶(proteasome):识别、降解泛素化的蛋白质的复合物,由30多种蛋白质及酶组成,其沉降系数为26S,又称26S蛋白酶体,由20S的圆柱状催化颗粒和19S的盖状调节颗粒组成,是一个具有胰凝乳蛋白酶、胰蛋白酶、胱天蛋白酶等活性的多功能酶。所有蛋白酶体的活性中心都含有Thr残基。经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。 (2)、具体过程: ①靶蛋白的多聚泛素化:泛素激活酶E1利用ATP在泛素分子C端Gly残基与其自身的半胱氨酸的SH间形成高能硫脂键,活化的泛素再被转移到泛素结合酶E2上,在泛素连接酶E3的作用下,泛素分子从E2转移到靶蛋白,与靶蛋白的Lys的ε-NH2形成异肽键,接着下一个泛素分子的C-末端连接到前一个泛素的lys48上,完成多聚泛素化(一般多于4个) ②多聚泛素化的蛋白质被26S蛋白水解酶复合体水解:经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。 3、胱天蛋白酶(caspase)途径:细胞凋亡的蛋白质降解途径。 Caspase的含义指该类蛋白酶的活性部位为极为保守的半胱氨酸(cysteine)及特异性切割底物的天冬氨酸(aspase),简称caspase。根据其具体功能分为调控caspase(caspase1,2,4,5,8,9,10)和效应caspase(caspase3,6,7,11)。 Caspase以酶原形式存在于正常细胞中,细胞凋亡启动后被激活。一条途径是由死亡信号分子和受体结合后的

蛋白质组学检测及分析方案

iTRAQ检测及数据分析

目录 一、项目简介 (3) 二、实验方案 (3) 2.1样品准备 (3) 2.2实验流程 (3) 2.3实验结果 (4) 三、分析方案 (4) 3.1原始数据预处理及均一化 (4) 3.2差异蛋白筛选 (4) 3.3层次聚类分析 (5) 3.4差异蛋白G ENE O NTOLOGY分析 (6) 3.5差异基因P ATHWAY分析 (6) 3.6差异蛋白N ETWORK分析 (7) 四、费用概算 (7) 五、时间概算 (7)

iTRAQ检测及数据分析方案 一、项目简介 样品情况: 对比情况:针对实验产出的原始数据进行生物信息学处理。组间相互对比筛选差异蛋白,并对差异蛋白进行后续生物信息学数据分析。具体内容见如下方案: 二、实验方案 2.1 样品准备 如果送样为溶液,则溶液中一般不要有SDS、CHAPS、Triton X-100、NP40及吐温 20、40等系列的去污剂。盐浓度小于50mM。 样品可以直接寄送未处理的组织,组织样品需要>100Mg,如蛋白已经提取,则需要蛋白量>200ug。 2.2 实验流程 同位素标记相对和绝对定量(iTRAQ)技术是一种新的、功能强大的可同时对八种样品进行绝对和相对定量研究的方法。作为一种新的蛋白质绝对和相对定量技术,具有很好的精确性和重复性,并且弥补了DIGE及ICAT的不足。它可以结合非凝胶串联质谱技术,对复杂样本、细胞器、细胞裂解液等样本进行相对定量研究。

2.3 实验结果 我们的实验结果将由专业软件Protein Pilot 3.0 (ABI,USA) 进行展示: 鉴定到的该蛋白质的肽断相关信息 同一个group的蛋白质 上图选中绿色的肽断的质谱图信息 所选定蛋白质(上表绿色)的肽断信息 质谱图定量信息 三、分析方案 3.1 原始数据预处理及均一化 首先对原始检测数据进行预处理和均一化处理。使得数据达到后期统计学分析要求。 3.2 差异蛋白筛选 利用统计学方法筛选差异表达的蛋白。一般认为高丰度蛋白鉴定出多个肽段,低丰度蛋

最新基于质谱的蛋白质组学分析word版本

基于质谱分析的蛋白质组学 在21世纪,生命科学的研究进入了后基因组时代,蛋白质组学作为其中的一个重要分支于20世纪90年代中期应运而生。由于蛋白质的复杂性,传统的蛋白质鉴定方法如末端测序等已无法满足蛋白质组学研究中的一系列需要。因此,质谱技术作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备和数据分析的信息学工具被广泛地应用。质谱技术具有灵敏度、准确度、自动化程度高的优点,能准确测量肽和蛋白质的相对分子质量,氨基酸序列及翻译后修饰、蛋白质间相互作用的检测[1],因此质谱分析无可争议地成为蛋白质组学研究的必然选择。 1.蛋白质组学 蛋白质组学(proteomics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的科学。包括鉴定蛋白质的表达、修饰形式、结构、功能和相互作用等。根据研究目的,蛋白质组学可以分为表达蛋白质组学、结构蛋白质组学和功能蛋白质组学。表达蛋白质组学用于细胞内蛋白样品表达的定量研究。以绘制出蛋白复合物的结构或存在于一个特殊的细胞器中的蛋白为研究目的的蛋白质组学称为结构蛋白质组学,用于建立细胞内信号转导的网络图谱并解释某些特定蛋白的表达对细胞的作用[2]。功能蛋白质组学以细胞内蛋白质的功能及蛋白质之间的相互作用为研究目的,通过对选定的蛋白质组进行研究和分析,能够提供有关蛋白质的磷酸化、糖基化等重要信息。 蛋白质组学研究的核心就是能够系地的鉴定一个细胞或组织中表达的每一个蛋白质及蛋白质的性能。蛋白质组学的主要相关技术有双向凝胶电泳、双向荧光差异凝胶电泳、质谱分析等[2]。由于蛋白质的高度复杂性和大量低丰度蛋白质的存在,对分析技术提出了巨大挑战,生物质谱技术则是适应这一挑战的必然选择。 2.生物质谱技术 质谱是带电原子、分子或分子碎片按质量的大小顺序排列的图像。质谱仪是一类能使物质离子化并通过适当的电场、磁场将它们按空间位置、时间先后或轨道稳定与否实现质量比分离,并检测强度后进行物质分析的仪器。质谱仪主要由

细胞核质蛋白分离

介绍 核蛋白抽提试剂可以从哺乳动物培养的细胞或组织中逐步分离和制备细胞质和细胞核提取物。不变性的活性蛋白在不到两小时内纯化。在细胞颗粒中加入前两种试剂会导致细胞膜破裂和细胞质内容的释放。用离心法从细胞质提取液中提取完整细胞核后,用第三试剂从细胞核中提取蛋白质。用这种产品提取的核和细胞质组分提取物一般污染率不到10%,这对于大多数涉及核提取物的实验来说是足够的纯度 核抽提物比起全细胞裂解物通常更适合于进行基因调控研究。全细胞裂解液中的细胞成分对核蛋白的相互作用和稳定性有不利影响,核蛋白更集中于核提取物,而非全细胞裂解物。核提取物/试剂与多种下游应用兼容(包括Western blotting,BCA蛋白定量分析(产品编号23225),凝胶移位(产品编号20148),报告基因和酶活性的测定) 重要产品信息 ●此试剂盒适用于新鲜(未冷冻)的细胞或组织样品。使用蛋白酶抑制剂维持提取物的完 整性和功能。使用前,将蛋白酶抑制剂加入CRE I和NER浓缩物中以减少试剂稀释(浓缩蛋白酶抑制剂eg.100x)。不需要添加蛋白酶抑制剂到CER II。 ●如果在随后应用中需要大量的核提取物或出现问题,透析前用核提取物清除多余的盐。 试剂盒中的洗涤剂是不可透析的,但它主要是在细胞质中。使用Thermo Scientific?Slide-A-Lyzer?小型透析装置进行透析。另外,无回收蛋白或条块分割的不利影响下,NER 用于提取液的体积可以减小2倍可以得到更集中的核提取物。 ●在4°C条件下执行所有离心步骤,保持细胞样本和提取物在冰上。 额外所需材料 ●蛋白酶抑制剂 ●磷酸盐缓冲盐水(PBS) 细胞培养制备 ●贴壁细胞,用胰蛋白酶-EDTA消化,然后在500g离心5分钟。对于悬浮细胞,通过离 心在500G 5分钟收获。 ●用PBS重悬细胞颗粒冲洗细胞 ●1-10×106细胞转移至1.5ml离心管,并在500G 离心2-3分钟 ●使用吸管小心地去除和丢弃上清液,使细胞颗粒尽可能干燥。 ●在细胞中加入冷的CRE I(表1)。使用表1所示的试剂体积进行细胞质和核蛋白提取 不同细胞体积对应的试剂体积 红细胞压积(μL) CER I (μL) CER II (μL) NER (μL) 10 100 5.5 50 20 200 11 100 50 500 27.5 250 100 1000 55 500 *Hela细胞2×106细胞相当于20μL红细胞体积.

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

蛋白质质谱分析

蛋白质质谱分析研究进展作者:汪福源蛋白质质谱分析研究进展摘要:随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。关键词:蛋白质,质谱分析,应用前言:蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上,作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。1.质谱分析的特点质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。2.质谱分析的方法近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱; 5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。3.蛋白质的质谱分析蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三 维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。3.1蛋白质的质谱分析原理以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。3.2蛋白质和肽的序列分析现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser

蛋白质、核酸、糖类和脂质

蛋白质、核酸、糖类和脂质 1.脂质具有的生物学功能是(多选)() A.构成生物膜B.调节生理代谢C.储存能量D.携带遗传信息 2.下列有机化合物中,只含有C、H、O三种元素的是() A.氨基酸B.核苷酸C.脱氧核糖D.磷脂 3.核酸是细胞内携带遗传信息的物质,以下关于DNA与RNA特点的比较,叙述正确的是() A.在细胞内存在的主要部位相同B.构成的五碳糖不同 C.核苷酸之间的连接方式不同D.构成的碱基不同 4.T2噬菌体、人、HIV病毒的核酸中各具有碱基和核苷酸的种类依次分别是() A. 4、8、4和4、8、4 B. 4、5、4和4、5、4 C. 4、5、4和4、8、4 D. 4、8、4和4、5、4 5.下列关于核酸的叙述,正确的是()A.核酸由C、H、O、N元素组成B.除病毒外,一切生物都有核酸存在 C.核酸是一切生物的遗传物质D.组成核酸的基本单位是脱氧核糖核苷酸 6.右图是某生物组织示意图,其细胞质内含有的糖类和核酸主要是() A.淀粉和RNA B.淀粉和DNA C.糖原和RNA D.糖原和DNA 7.存在于RNA而不存在于DNA,存在于叶绿体而不存在于线粒体, 存在于动物细胞质而不存在于植物细胞质的糖类物质分别是() A.核糖、葡萄糖、糖原 B.脱氧核糖、核糖、纤维素 C.核糖、脱氧核糖、麦芽糖 D.脱氧核糖、葡萄糖、淀粉 8.脂类物质在细胞中具有独特的生物学功能,下面有关脂类物质的生物 功能中,属于磷脂的生物学功能的是() ①生物膜的成分②贮存能的分子③构成生物体表面的保护层④很好的绝缘体,具有保温作用 ⑤具有生物学活性,对生命活动起调节作用 A.①③ B.⑤ C.① D.②④ 9.科学研究发现:附着在内质网上的核糖体主要合成某些专供输送到细胞外面的分泌物质。下列哪种物质不是由核糖体合成的() A.血红蛋白 B.呼吸氧化酶 C.胃蛋白酶原 D.性激素 10.核酸是细胞内携带遗传信息的物质,以下关于DNA与RNA特点的比较,叙述正确的是()A.在细胞内存在的主要部位相同B.构成的五碳糖不同 C.核苷酸之间的连接方式不同D.构成的碱基相同 11.下列关于组成细胞化合物的叙述,不正确领的是() A 蛋白质肽链的盘曲和折叠被解开时,其特定功能并未发生改变 B RNA与DNA的分子结构相似,由四种核苷酸组成,可以储存遗传信息 C DNA分子碱基的特定排列顺序,构成了DNA分子的特异性 D 胆固醇是构成细胞膜的重要成分,在人体内参与血液中脂质的运输 12.右图是由3个圆所构成的类别关系图,其中Ⅰ为大圆, Ⅱ和Ⅲ分别为大圆之内的小圆。符合这种类别关系是() A.Ⅰ脱氧核糖核酸、Ⅱ核糖核酸、Ⅲ核酸 B.Ⅰ染色体、ⅡDNA、Ⅲ基因

相关文档
最新文档