地铁工程测量技术运用

地铁工程测量技术运用
地铁工程测量技术运用

龙源期刊网 https://www.360docs.net/doc/9313812802.html,

地铁工程测量技术运用

作者:王丑林

来源:《名城绘》2018年第04期

摘要:在信息技术迅猛发展的今天,地铁的出现较好的缓解了我国面临的严重的交通问题,不但便利了交通,更保证了人身安全,受到广泛的青睐。地铁日益成为人们日常生活中不可或缺的交通方式。地铁工程测量是地铁建设的最基础工作,是确保地铁工程科学、严谨的最重要保障。因此必须重视地铁工程测量技术的运用,保证测量的准确性,提高地铁工程建设水平。本文结合具体工程实例,对地铁工程测量技术运用进行探析,以便能为以后的实际工作起到一定的借鉴作用。

关键词:地铁工程;测量技术;运用

1、地铁工程测量工作概述

1.1测量工作的特点

城市的规模在不断扩大,为此交通出行成为了城市的标配之一,而地铁可谓是理想的交通选择,因此很多城市都在大量修建地铁。当前伴随着科学技术的发展,各式新工艺、设备、技术都运用于地铁修建中,但由于工程比较复杂,对测量精度要求极高。并且地铁的隧道加长后,对精密导向的测量技术也提出了更高需求。因此,其测量技术也展现出了全新的特征:首先,以线带面的分期建设方式是很多地铁工程所常用的施工方式,加上环境的复杂性以及长周期、投资大,对全局规划、施工精度一定要做好分析,把相应控制量重复点在规划线中的交集处预留,从而便于正确的衔接相关线路;其次,有较多的工作内容存在于地铁工程测量工作中,贯通测量、变形监测和施工放样内容较多。

1.2地铁施工测量的影响因素

地铁施工主要包括地铁车站和地铁区间两部分,常规的测量方法主要有地面控制测量、竖井联系测量和区间隧道施工控制测量三种,这三个控制点通过影响测量的误差,直接制约着地铁贯通的精度,是地铁施工中最为关键的三个因素。地铁车站和明挖区间的施工主要依靠地面控制测量,通过地面控制点实现对车站内各个关键点的放样,同时把控区间控制中线的放置,测量的精度问题由地面控制点的测量误差决定。地铁暗挖区间的施工中最为关键的一步是要统一地面和地下的坐标、方位角和高程,保证地铁工程地面和地下两部分实现良好的衔接和统一。针对此,通常利用竖井、盾构井以及新建好的地铁车站,将地面上有关坐标、方位、高程等的测量信息传递到地下,实现两者坐标系的统一。由此可见,对于暗挖区间施工而言,测量的精度问题由地面控制点、井上和井下联系测量点以及区间隧道施工控制点三方面的误差共同决定。

地铁工程施工测量技术方案

深圳市城市轨道交通7号线BT项目7305标 华强北车站施工测量技术方案(YDK22+141.378~YDK23+035.568) 批准: 审核: 复核 编制: 中国水利水电建设股份有限公司 深圳地铁7号线7305标项目经理部 2013年01月

目录 1、工程概况 (1) 2、编制依据 (2) 3、既有控制点情况 (2) 4、施工测量的目标和任务 (3) 4.1 施工测量的目标 (3) 4.2 施工测量的任务 (3) 5、组织机构设置与人员、仪器设备配置 (3) 5.1组织机构设置 (3) 5.2 测量队人员及岗位 (4) 5.3 测量仪器设备配置 (4) 6、控制网加密测量 (5) 6.1地面精密导线控制网加密 (5) 6.1.1地面精密导线控制点布设要求 (5) 6.1.2地面精密导线控制的布设 (5) 6.1.3 导线控制网观测技术要求 (7) 6.1.4观测成果处理及平差 (7) 6.2地面施工高程控制网加密 (8) 6.2.1 地面水准点的选点布设要求 (8) 6.2.2地面加密高程网布设 (8) 6.2.3水准测量技术要求 (10) 7、车站施工测量 (11) 7.1 平面施工控制点引测 (11)

7.2 高程施工控制点引测 (11) 7.3 基坑开挖施工测量 (12) 7.4监控量测及变形观测 (13) 7.5车站结构施工放样测量 (13) 7.6 车站主体结构放样 (13) 7.7车站竣工测量 (16) 8、安全保证措施 (16) 9、质量保证措施 (17) 10、环境保证措施 (17)

工程施工安全管理制度 1、工程概况 地铁7号线华强北片区位于深圳市福田区商业中心——华强北商圈的核心地段,在深南大道——红荔路之间、有“中国电子第一街”美誉的华强北路的地下,呈南北向布置。华强北片区包含华强北车站、华强北车站至华新车站区间、华新车站南端,起止桩号为:YDK22+141.378~YDK23+035.568,共计894.19m。 华强北车站为地下三层岛式站台车站,车站有效站台中心里程为YDK22+362.878,车站起点里程为YDK22+166.878,车站终点里程为YDK22+496.778,华强北车站全长为329.9m,华强北车站南端有负一层的地下空间结构,长度为25.5m,放在华强北车站的设计范围中,因此华强北车站加上南端负一层地下空间整段长度为355.4m。华强北车站主体基坑标准段宽度为28.1m,盾构扩大段宽度为29.8m,标准段基坑深度约为25.7~26.4m,盾构扩大段基坑深度约为27.0m。华强北车站南端负一层基坑宽度为28.1m,基坑深度约为11.4m。华强北车站负三层基坑围护结构采用1000mm 连续墙,南端负一层基坑采用800 厚连续墙,均采用盖挖逆作法施工。 华强北车站~华新车站区间是深圳地铁7 号线工程的一个区间,位于深圳市福田区华强北路与振华路交汇处,沿华强北路呈南北方向布置。区间轨行区采用盾构法施工,其上为地铁2号线的华强站~燕南站区间,该区间为直径6.0m 的盾构区间,地铁2 号线盾构区间其上南端17m 长为地下一层的地下空间结构兼做顶管的接收井, 2号线盾构区间其上中间为矩形顶管,矩形顶管长度为41 米,2 号线盾构区间其上北端41m 为地下一层的地下空间结构局部兼做顶管的始发井。华强北车站~华新车站区间起点里程为YDK22+496.778,终点里程为YDK22+595.778,全长为99.0m。南端负一层盖挖逆作结构长度为17.0 米,基坑宽度为29.8m,基坑深度约为9.2~10.1m;北端负一层盖挖逆作结构长度为41.0米,基坑宽度为28.6m,基坑深度约为9.5~11.0m.。南、北端负一层基坑围护结构均采用800 厚连续墙,均采用盖挖逆作法施工。 华新车站为带有故障车待避线的地下三层岛式站台车站,与地铁 3 号线华新站换乘(十字换乘节点土建部分已由 3 号线华新站土建单位施工完成),目前3号线华新站已开通运营。华新车站有效站台中心里程为YDK23+051.917,车站起点里程为YDK22+862.217,车站终点里程为YDK23+140.317,道岔起点里程

城市轨道交通轨道工程测量技术

1、城市轨道交通轨道工程测量概述 近年来,我国迅速发展的地铁、轻轨等城市轨道交通,对列车安全行驶、乘客旅途舒适性的要求越来越高。由于城市轨道交通的轨道结构采用混凝土整体道床,轨道工程一次定位,几乎不能再调整;而铺轨基标是高标准轨道混凝土整体道床的轨道铺设控制点,故高精度满足铺轨要求的测量工作,重点是用铺轨基标来保证轨道的设计位置和线路参数,同时也保证行车隧道的限界要求。这就对铺轨精度提出了更严格要求,因此精确测设铺轨基标是保证地铁轨道高精度施工的重要环节。 何谓铺轨基标?铺轨基标是高标准轨道整体道床的轨道铺设控制点,它是具有精确平面坐标和高程的标志;按精度等级可划分为控制基标和加密基标;铺轨基标埋设位置有两种,即位于线路中线或线路中线的一侧。图一为:利用直角道尺(精度0.5mm)通过沿线布设的铺轨基标精确确定一股钢轨的位置和标高。 (图一)(图二) 轨道工程测量的实质?轨道工程测量的主要工作是铺轨基标测量。其实质是按照设计线路和铺轨综合设计图的要求,以一定的间隔,在线路中线或其一侧测设具有精确平面坐标和高程的标志,作为铺轨的平面和高程依据。见图二。 在广州市城市轨道交通轨道工程建设中,我们总结如下《城市轨道交通轨道工程测量作业流程图》: 城市轨道交通轨道工程测量作业流程图

从《城市轨道交通轨道工程测量作业流程图》中,我们可以看出轨道工程测量主要包括:施工控制点复测(四等平面控制、二等高程控制)、控制基标测设(三维放样、归化改正满足规范要求精度)、加密基标测设(三维放样、复测满足规范要求精度)、竣工测量、其他测量工作等。 2铺轨基标测量作业程序 2.1施工控制点的交接和复测 轨道专业施工所需的中线方向、里程、高程等均是由地面精密控制点引入,为保证铺轨精度,要求铺轨前应全面的对其检测,通过贯通测量后,对施工控制点进行统一的调整和平差后再设置基标,以保证基标的精度。 铺轨基标的测设依据为业主测量队提供的施工控制点。施工单位进场后,在驻地监理工程师的主持下由施工单位测量队、业主专业测量队、业主代表四方进

轨道交通测量方案

广州市轨道交通二、八号线延长线工程 施工11标段 施 工 测 量 方 案 编制: 审核: 批准: 中隧集团广州市轨道交通 二、八号线延长线工程施工11标段项目经理部

目录 一、编制依据 (2) 二、工程概况 (2) 三、控制点复测与加密 (3) 四、施工测量及复核 (7) 五、车站与区间结构的竣工测量 (8) 六、测量技术保证措施 (7) 七、桩位保护措施 (10) 八、仪器设备及测量人员配置 (11) 九、仪器设备保障与操作规范 (12) 十、附件 1、测量设备鉴定证书 2、测量人员资格证书

一、编制依据 ⑴、《地下铁道、轻轨交通工程测量规范》(GB50308-1999) ⑵、《城市测量规范》(CJJ8-99) ⑶、穗铁建总前期(2005)92号关于印发《广州轨道交通施工测量管理细则(第二 版)》的通知 ⑷、《工程测量规范》GB50026-93 ⑸、广州市轨道交通二、八号线延长线工程施工11标段土建工程承包合同 二、工程概况 2.1 工程位置 广州市轨道交通二、八号线延长线工程施工11标段三元里~江夏段位于广州市白云区西部旧机场跑道及绿化草坪上,线路走向为南北走向。具体位置见图1-01。 2.1 工程位置 本标段位于广州市天河区珠江新城核心规划区,工程包含1井、2站、2区间共计5个子单位工程,即:【中央广场站北盾构始发井】、【中央广场站~市民广场区间】、【市民广场站】、【市民广场~天河南一路盾构区间】、【天河南一路站】。标段起迄里程为Y(Z)DK2+016.81~Y(Z)DK2+941.8,全长924.99m。 区间线路从中央广场站出发,沿规划珠江新城中轴线向北行,采用矿山法施工下穿金穗路,到达中央广场北盾构始发井后,采用盾构法施工下穿未开发荒地过市民广场站,由市民广场站二次始发后下穿黄埔大道,穿过天河南小区,基本沿六运二街北行,在天河南一路处下穿广州地铁一号线体育西站~体育中心站区间隧道,到达设在宏城停车场内的天河南一路站。具体位置如图1所示。

地铁施工测量样本

一、 工程概况 本标段为昆明市轨道交通首期工程十三标段, 包括2座车站和3个盾构区间, 分别是金星站、 白云路站、 北辰小区站~金星站区间、 金星站~白云路站区间、 白云路站~昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工, 围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层, 与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 二、 工程地质与水文地质概况 1) 地形地貌 昆明市区内地址构造复杂, 但大部分隐伏于盆地松散岩层下, 根据基底构 造图资料, 本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动, 受区域构造应力场中南北向力偶的作用, 同时发育了北东、 北西南构造。 2) 地层岩性描述 本次勘察揭露地层最大深度为50m, 按地层沉积年代、 成因类型将本工程 场地勘察范围内的土层划分为第四系全新人工填土层、 第四系全新统冲洪积层、 第四系上更新统冲湖层、 第四系上更新统坡残积层、 更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土: 褐灰、 黑灰, 稍密~稍湿, 表层为沥青混凝土, 下含碎石, 局部夹有碎砖块等, 为路基结构层。分布较连续, 厚度1.50~2.40m, 平均厚度 1.69m 。 第②1层粘土: 褐黄色, 湿, 中压缩性, 含云母、 氧化铁, 含少许风化碎 石。局部为粉质粘土。分布较连续, 层顶埋深1.50~1.80m, 厚度0.60~1.50m, 昆明北 北辰小区 金星站 白云路右线长

平均厚度0.95m。 层粘土: 褐灰~深灰色, 湿, 中压缩性, 含少量有机质, 局部为粉质第② 3 粘土。分布较连续, 层顶埋深 2.30~3.30m, 厚度0.50~3.00m, 平均厚度 1.45m。 层粉土: 褐灰~灰色, 稍密, 夹粉砂薄层。分布不连续, 层顶埋深第② 4 1.60~4.00m, 厚度0.80~ 2.30m, 平均厚度1.55m。 第② 层泥炭质粘土: 黑灰~黑, 软塑~可塑, 高压缩性, 有机质含量约5 12~40%, 局部有机质含量大于60%, 相变为泥炭。分布较连续, 层顶埋深 2.20~2.60m, 厚度0.50m。 第③ 层圆砾: 深灰~兰灰、褐黄, 中密。圆形及亚圆形, 级配较差, 砾石 1 成分为砂岩及灰岩, 中等风化。20~25m以上为粉土、粉砂为主要填充物, 以 下以粘性土为充填物。夹卵石、粘性土及粉土夹层, 局部夹有胶结块。连续分 布, 且厚度大, 均未揭穿, 层顶埋深3.30~5.50m。 2层粘土: 褐黄、兰灰、灰, 硬塑, 中压缩性。局部含5~15%砾石, 第③ 1 砾石成分为砂岩及灰岩, 中等风化。分布不连续, 厚度0.40~2.50m, 平均厚度 0.98m; 层顶埋深8.10~37.60m。 3层粉土: 褐灰、灰、深灰, 中密, 局部地段相变为粉砂层, 含砾, 砾第③ 1 石含量3~15%, 局部夹腐木。分布不连续, 厚度0.30~2.60m, 平均厚度 1.33m。 3) 地下水的腐蚀性评价 据在场地内取地下水样水质分析结果, 场地地下水及地表水对混凝土结构 无腐蚀性, 对钢结构具弱腐蚀性, 在Ⅱ类场地条件下对混凝土结构中钢筋无腐 蚀性。 4) 不良地质作用 ①液化土层 对已收集资料进行分析、整理、判别② 层粉土粉砂层为液化土层, 其余 4 各层粉土粉砂层属上更新统地层, 判定为不液化土层。

地铁施工测量限差(规范)摘要

城市轨道交通工程测量规范 一、地面平面控制测量 1.导线测量的主要技术要求 2.精密导线测量主要技术要求 3.水平角观测的主要技术要求 4.水平角观测 水平角观测所使用的全站仪、电子经纬仪和光学经纬仪,应符合下列相 关规定: 3.1照准部旋转轴正确性指标:管水准气泡或电子水准器长泡在各位置的读 数较差,1″级仪器不应超过2格,2″级仪器不应大于1格,6″级仪器 不应超过1.5格。 3.2光学经纬仪的测微器行差及隙动差指标:1″级仪器不应大于1″,2″

级仪器不应大于2″。 3.3水平轴不垂直于垂直轴之差指标:1″级仪器不应超过10″,2″级仪 器不应超过15″,6″级仪器不应超过20″。 3.4仪器的基座在照准部旋转时的位移指标:1″级仪器不应超过0.3″,2″ 级仪器不应超过1″,6″级仪器不超过1.5″。 3.5光学对中器的视轴与竖直的重合度不应大于1mm。 4. 水平角方向观测法的技术要求 二、地面高程控制测量 水准测量的主要技术要求 水准网测量的主要技术要求

水准测量测站的视线长度、视距差、视线高度的要求(m) 水准测量的测站观测限差(mm) 各等水准测量的主要技术指标(mm) 光电测距三角高程导线技术要求 三、联系测量 1.隧道贯通前的联系测量工作不少于3次,宜在隧道掘进到100m、300m 以及距贯通面100~200m时分别进行一次。当地下起始方位角较差小于 12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道 贯通。 2.隧道内定向边边长应大于60m,视线距隧道边墙的距离应大于0.5m。 3.隧道内控制点间平均边长宜为150m。曲线隧道控制点间距不应小于60m。 4.水准线路往返较差、附和或闭合差为±8√Lmm。

广州轨道交通施工测量管理细则(第三版)

广州轨道交通施工控制测量管理细则 §1 施工测量质量管理目标和基本质量指标 1.1 施工测量质量管理目标是确保全线建筑物、构筑物、设备、管线安装按设计准确就位,在线路上不产生因施工控制测量、放样测量超差而引起修改线路设计从而降低行车运营标准。 1.2 质量指标 1.2.1在任何贯通面上,地下测量控制网的贯通中误差,横向不超过±50mm,竖向不超过±25mm。 1.2.2 隧道衬砌不侵入建筑限界,设备不侵入设备限界。 1.2.3建(构)筑物,装修和设备、管线的竣工形(体)位(置)误差满足《城市轨道交通工程测量规范》GB50308—2008、《地下铁道工程施工及验收规范》GB50299—1999和广州轨道交通施工验收标准规定。 §2主要使用的测量规范 轨道交通施工测量主要参照以下规范执行: ●《城市轨道交通工程测量规范》GB50308—2008 ●《城市测量规范》CJJ8—99 ●《新建铁路工程测量规范》TB10101—99 ●《工程测量规范》GB50026—93 ●《建筑变形测量规程》JGJ/T 8—97 ●《全球定位系统(GPS)测量规范》GB/T 18314—2001 ●国家其他测量规范、强制性标准 §3轨道交通施工测量主要内容 轨道交通施工测量按服务性质分类可以分为施工控制测量、细部放样测量(高架工程的桩基础、墩<柱>位、明挖基坑角点测量及铺轨基标测量)、竣工测量和其它测量等作业。 3.1施工控制测量可分为三部分: 3.1.1地面控制测量:维护施工期间地面的平面、高程主控制网完整,维持其可靠、可用;为施工方便加密地面控制点(包括高架工程、地面工程、明挖工程的地面中桩)并维持其可靠、可用。

地铁施工测量

工程概况 本标段为昆明市轨道交通首期工程十三标段,包括2座车站和3个盾构区间,分别是金星站、白云路站、北辰小区站?金星站区间、金星站?白云路站区间、白云路站?昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工,围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层,与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 北辰小区站金星站白云路站昆明北站 二、工程地质与水文地质概况 1 )地形地貌 昆明市区内地址构造复杂,但大部分隐伏于盆地松散岩层下,根据基底构造图资料,本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动,受区域构造应力场中南北向力偶的作用,同时发育了北东、北西南构造。 2)地层岩性描述 本次勘察揭露地层最大深度为50m,按地层沉积年代、成因类型将本工程场地勘察范围内的土层划分为第四系全新人工填土层、第四系全新统冲洪积层、第四系上更新统冲湖层、第四系上更新统坡残积层、更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土:褐灰、黑灰,稍密?稍湿,表层为沥青混凝土,下含碎石, 局部夹有碎砖块等,为路基结构层。分布较连续,厚度 1.50?2.40m,平均厚

度 1.69m 。 第②1 层粘土:褐黄色,湿,中压缩性,含云母、氧化铁,含少许风化碎石。 局部为粉质粘土。分布较连续,层顶埋深1.50?1.80m ,厚度0.60?1.50m,平均厚度0.95m 。 第② 3层粘土:褐灰?深灰色,湿,中压缩性,含少量有机质,局部为粉质粘土。分布较连续,层顶埋深 2.30 ?3.30m ,厚度0.50?3.00m ,平均厚度1.45m 。 第② 4层粉土:褐灰?灰色,稍密,夹粉砂薄层。分布不连续,层顶埋深1.60? 4.00m ,厚度0.80?2.30m ,平均厚度1.55m 。 第② 5层泥炭质粘土:黑灰?黑,软塑?可塑,高压缩性,有机质含量约12?40%,局部有机质含量大于60%,相变为泥炭。分布较连续,层顶埋深 2.20?2.60m ,厚度 0.50m 。 第③1层圆砾:深灰?兰灰、褐黄,中密。圆形及亚圆形,级配较差,砾石成分为砂岩及灰岩,中等风化。20?25m 以上为粉土、粉砂为主要填充物,以下以粘性土为充填物。夹卵石、粘性土及粉土夹层,局部夹有胶结块。连续分布,且厚度大,均未揭穿,层顶埋深 3.30?5.50m 。 第③12层粘土:褐黄、兰灰、灰,硬塑,中压缩性。局部含5?15 %砾石,砾石成分为砂岩及灰岩,中等风化。分布不连续,厚度0.40?2.50m,平均厚度0.98m ;层顶埋深8.10?37.60m。 第③13层粉土:褐灰、灰、深灰,中密,局部地段相变为粉砂层,含砾,砾 石含量3?15 %,局部夹腐木。分布不连续,厚度0.30?2.60m,平均厚度1.33m。 3)地下水的腐蚀性评价 据在场地内取地下水样水质分析结果,场地地下水及地表水对混凝土结构无

(整理)城市轨道交通工程测量规范

地铁测量主要工作 1 总则 1.0.1为适应城市轨道交通建设发展的需要,统一城市轨道交通工程测量技术要求,遵循技术先进、经济合理、质量可靠和安全适用的原则,制定本规范。 1.0.2本规范适用于城市轨道交通新建和旧线改造及运营期间的工程测量。1.0.3在同一城市内的轨道交通工程控制测量应满足下列要求: 1平面和高程系统应与所在城市平面和高程系统一致; 2工程建设前应在城市一、二等平面和高程控制网的基础上,建立专用平面、高程施工控制网,其与现有城市控制网重合点的坐标及高程较差,应分别不大于50mm和20mm; 3 施工前应对已建成的平面、高程控制网进行复测,建设中应对其进行检测。 1.0.4城市间的轨道交通工程控制测量除应满足本规范1.0.3条中的2、3款外,还应采用统一的坐标、高程系统,当城市间坐标、高程系统不一致时应进行相应的换算。 1.0.5线路工程控制测量应采用附合导线(网)和附合高程路线的形式。特殊情况下采用支导线、支水准路线时,必须制定检核措施。 1.0.6 在隧道贯通前,联系测量、地下平面控制测量和地下高程控制测量,随工程进度应至少独立进行三次,满足限差后应以各次测量的平均值指导隧道贯通。 1.0.7暗、明挖隧道和高架结构横向贯通测量中误差应为±50mm,高程贯通测量中误差应为±25mm。 1.0.8施工期间内和运营期一定时间内,应对线路结构和临近主要建筑、管线等进行变形监测,并应制定应急变形监测方案。 1.0.9竣工测量应按工程竣工验收要求进行,其工作内容和测量技术要求,应符合现行国家测量规范、工程验收规范以及工程资料管理相关要求。 1.0.10应根据国家有关法规,定期对测量仪器和工具进行检定。作业时应避免作业环境对仪器的影响。 1.0.11城市轨道交通工程测量除执行本规范外,还应符合国家现行的有关标准的规定。

明挖地铁施工测量方案

新建梅州至潮汕铁路站前工程MSSG-4标段一分部第一架子队 施工测量方案 编写人: 审核人: 批准人: 日期: 中铁六局集团有限公司梅汕客专(MSSG—4)标工程指挥部 二零一七年五 1 / 1--

目录 一、工程概况 (2) 1.1.工程概况 (2) 1.2.施工测量内容 (3) 二、施工测量技术规范 (3) 三、施工测量精度技术指标 (4) 3.1.CPI、CPII、施工控制网的复测方法和精度 (4) 3.2.高程控制网的复测方法和精度 (6) 3.3.施工测量精度 (6) 四、测量组织机构 (8) 4.1.执行分级测量复核制度 (9) 4.2.测量仪器设备 (9) 五、施工测量 (10) 5.1.施工测量作业流程 (10) 5.2.施工测量放样准备 (10) 5.3.施工测量放样 (11) 5.4.施工测量复核和资料移交 (12) 5.5.施工测量作业方法 (12) 5.6.路基施工工程测量 (14) 5.7.桥涵施工工程测量 (17) 5.8.隧道施工工程测量 (23) 5.9隧道监控量测 (31) 六、安全保障措施 (31)

一、工程概况 1.1.工程概况 新建梅州至潮汕铁路工程MSSG-4标一分部第一架子队区段起讫里程为DK107+786.88~DK114+776.16,施工线路线全长6.99km。主要施工项目有DK107+786.88~DK107+876区间路基;DK107+876~DK108+551.46浮岗村特大桥;DK108+551.46~DK114+25明、暗挖(DK108+958~DK109+398和DK110+855~DK111+230为暗挖,其余均为明挖);DK114+250~DK114+776.16区间路基。 施工线路图 1.2.施工测量内容 1)对建设单位交桩控制点CPI点和CPII点平面坐标和高程进行复测; 2)在CPI点和CPII点基础上进行加密点测量; 3)施工拆迁征地边线测量放样、红线内路基地形测量及断面测量;

浅谈轨道交通工程测量施工

浅谈轨道交通工程测量施工 发表时间:2018-09-10T15:11:38.720Z 来源:《基层建设》2018年第22期作者:李小晋 [导读] 摘要:轨道交通工程测量技术密集、精度要求高,对测量工作提出了较高的要求。 身份证号码:41272419910601XXXX 河南太康 475400 摘要:轨道交通工程测量技术密集、精度要求高,对测量工作提出了较高的要求。本文首先分析了轨道交通测量工作的流程,介绍了其精度设计和要求,接下来详细介绍了地面施工控制网的测量和误差控制,然后分析了隧道施工控制测量及贯通测量的技术方法以及地下隧道工程联系测量。 关键词:轨道交通;工程测量;施工 随着我国经济社会的快速发展,轨道交通也获得了长足的发展。未来解决城市交通问题的根本出路是发展以轨道交通为骨干的城市公共交通系统已成为世界各国的共识。轨道交通的建设之前要做好工程测量工作,那么工程测量施工的展开就需要一定的技术与操作方法。 1 轨道交通测量的工作流程 一般情况下,测量作业的工作流程可以分为工程承接、现场踏勘、编制技术设计、控制测量、地形图测量、装箱调查测量、地下管线测量、产品质量检验、测量成果验收、测量成果交付等部分。 2 测量的精度设计和要求 轨道交通工程测量的精度设计是根据一系列的因素综合确定的,主要包括线路特征、施工精度、施工方法、贯通距离和设备安装精度等。不仅要保证隧道和线路的贯通,还要满足线路定线和放样、轨道铺设及设备安装的精度要求。 轨道交通工程测量的一个主要任务是保证隧道贯通,贯通误差的大小将直接对工程建设质量和工程造价带来影响。因此,合理规定隧道贯通误差及其允许值是轨道交通工程测量中的一项重要任务,必须认真加以研究。《城市轨道交通工程测量规范》(GB 50308-2008)中规定隧道横向贯通误差在±50 mm 之内,高程贯通误差在±25mm之内,该指标的应用范围主要是在采用盾构和喷锚构筑法进行的隧道施工中。 3 地面施工控制网的测量及误差 隧道贯通测量精度的要求是轨道交通各个环节测量工作中要求最高的,而且大多数都是两竖井间贯通,测量环节多,测量难度大。因此,在地面施工控制网测量指标的确定中,要以隧道贯通的精度要求为主,在此基础上兼顾其它工程的需要。测量精度指标的确定既要保证隧道贯通后满足线路的行车要求,又不能是期望过高而难以实现。目前,广州、北京等地的轨道交通隧道贯通测量线差,主要考虑施工误差、隧道变形误差、车辆运行动态限界裕量、测量误差等因素,参照我国干线铁路隧道贯通经验。 考虑客观环境因素,从贯距长短、测量的难易程度等方面来看,轨道交通隧道贯通测量由易至难依次是定向联系测量(一井或陀螺定向)、地下导线、地面控制网,且各个部分测量精度相差比较大。在实际工作中,根据工程之间的差异,可以采用加权(随机应变)的分配方案。一般情况下,1-1.5千米的隧道贯通测量误差比较合理的分配比例是3:2:2或者3:3:2,联系测量误差占贯通横向总误差的比例为2/7或3/8,也就是±24.2或±32.0mm,地下控制导线或控制导线网的测量误差占贯通横向总误差的比例为3/7或3/8,也就是±36. 3或 ±32.0mm,地面控制网测量误差一般占贯通横向总误差的比例为2/7或2/8,也就是±24.2或±21.3mm。由于±21. 3mm误差较小,因此,选择将其作为地面控制网设计的精度依据。 4 隧道施工控制测量及贯通测量的技术方法 轨道交通工程测量的主要任务就是确保地下隧道在预定的误差范围内正确的贯通,隧道施工控制测量是在隧道内建立起一套平面测量和高程测量控制网,其作用是确定放样隧道的中线位置,指示隧道掘进方向和确定放样施工中各设施的位置等。 4.1 平面施工控制测量的技术方法 首先,控制测量的起算依据是竖井定向测设的基线边的方位和坐标,采用Ⅰ级全站仪进行测量,测角测回(左、右角分别两测回,左、右角平均值之和与360°的较差应该小于 4″;测边往返观测分别两测回。相对于起点,施工控制网最远点的横向误差应该小于±25 mm。 其次,隧道内控制点的设置根据施工方法和隧道结构形状来确定。一种方法是埋设在线路中线一侧结构边墙上,安装放置仪器的强制对中支架;另一种方法是埋设在隧道地板线路的中线上,采用钢板在上面钻2mm小孔并镶上铜丝作为点的标志。 由于在隧道贯通之前,地下控制是一条导线,它起着指示隧道掘进方向的重要作用,因此必须是十分准确的。实践中经常采用布设双导线和交叉导线的方式来提高地下控制的测量精度,每当设置一个新的导线点,都用两条导线测其坐标,在检核无误的条件下取两次测量的平均值作为新点的测量数据。又因为地下施工场地通常是一个不稳定的载体,测量控制点埋设在上面其稳定性肯定会受到一定程度的影响,为了保证测量结果的可靠性,必须随着导线的延伸进行重复性的测量。 4.2 高程施工控制测量的技术方法 第一,洞内水准测量的起算依据是竖井高程传递下来的水准点,按照水准路线闭合差小于±8 mm的精度要求和二等精密水准测量方法进行测量施工。 第二,可以在边墙上设置水准点,也可以将地下水准点与导线设在一起,并焊一个突出的金属标志在设置导线点的钢板上作为水准点。 4.3 隧道贯通误差测量的技术方法 为了证实所有的测量工作都满足精度要求,在暗挖隧道贯通后要及时进行贯通误差测量,包括横向、纵向贯通误差测量和高程贯通误差测量。 第一,可以根据隧道两侧控制导线点,相向测定贯通面上同一点坐标的闭合差来确定横向、纵向误差,将实际测量的坐标闭合差分别投影到线路以及线路的法线方向上,以此计算横向、纵向贯通误差值。 第二,高程贯通误差应该根据两侧控制水准点测定贯通面附近同一个水准点的高程差来确定。 5 地下隧道工程联系测量 联系测量是将地面坐标、方位和高程传递到地下隧道,作为地下控制测量起算数据的一组测量工作,它是一项综合测量工作,是实现地下隧道工程贯通控制的核心与关键。联系测量的方法主要有三角形法、导线直接传递法、陀螺经纬仪与铅垂仪(钢丝)组合法、投点法

地铁工程施工测量表库整套

西安地铁工程施工测量表库使用讲明 1、本施工测量表库分为三个子类,第一类为治理表格(1~10),第二 类为基础测量用表(11~29),第三类为主体结构测量记录用表(30~50),子类之间编号不连续,待以后补充新表时追加; 2、CJ4—1—1《施工测量报审表》和CJ4—1—2《施工测量放线报验单》 可依照表格要求分不使用; 3、要求专业测量检测单位使用CJ4—1—3《施工测量复核意见表》报送 有关资料; 4、施工单位在测量放线、定位时使用CJ4—1—17《放线定位记录表》和 CJ4—1—14《桩位放线水准测量记录》; 5、土建时期车站和隧道净空检查使用CJ4—1—36《车站及隧道横断面净空 测量检查成果表》填报; 表格库汇总 CJ4—1—1施工测量报审表 CJ4—1—2施工测量放线报验单

CJ4—1—3施工测量复核意见表 CJ4—1—4测量操纵点交接单 CJ4—1—5工程测量交接桩记录表 *********************************************** CJ4—1—11规划部门的定位坐标、高程操纵摘录 CJ4—1—12施工放线操纵网记录 CJ4—1—13施工放线验收记录 CJ4—1—14桩位放线水准测量记录 CJ4—1—15工程定位测量记录 CJ4—1—16工程轴线测量结果记录 CJ4—1—17放线定位记录表 CJ4—1—18水准点复测记录 CJ4—1—19导线点成果表 CJ4—1—20水平角观测记录 CJ4—1—21高程观测记录表 CJ4—1—22导线布置示意图

CJ4—1—23导线网布设示意图 CJ4—1—24水准点复测成果表(监理独立抽检表格) CJ4—1—25导线点复测成果表1(监理独立抽检表格) CJ4—1—26导线点复测成果表2(监理独立抽检表格) CJ4—1—27平面位置(放样)检查表(监理独立抽检表格) CJ4—1—28水准测量检查记录表(监理独立抽检表格) ********************************************** CJ4—1—30暗挖区间隧道净空测量检查表(监理独立抽检表格)CJ4—1— 31 断面检测坐标测量记录表 CJ4—1—32隧道及车站线路中线检测表 CJ4—1—33盾构区间隧道中心线测量成果表 CJ4—1—34线路中线调整测量成果表 CJ4—1—35线路结构底板纵断面测量成果表 CJ4—1—36车站及隧道横断面净空测量检查成果表 CJ4—1—37车站断面测量记录表(左线) CJ4—1—38车站断面测量记录表(右线)

城市轨道交通工程测量规范

城市轨道交通工程测量规范 城市轨道交通工程测量规范是根据近年来我国城市轨道交通工程的发展状况,吸收了城市轨道交通工程测量的有关实践、科研和技术发展成果,借鉴了国(境)外有关成功经验和先进技术,并以多种方式,广泛征求了全国城市轨道交通工程测量方面有关专家和单位的意见,经反复讨论、修改,最后经审查定稿形成本规范。 修订后根据专家建议将本规范更名为《城市轨道交通工程测量规范》,本规范在原规范18章和12个附录的基础上修订为20章和11个附录。新增加的内容有第16章、第20章和第5.4、6.6、6.7、19.6节等内容,原有各章节条文的内容也进行较为全面的修订。本规范中以黑体字标识的条文为强制性条文,必须严格执行。 1总则 1.0.1为适应城市轨道交通建设发展的需要,统一城市轨道交通工程测量技术要求,遵循技术先进、经济合理、质量可靠和安全适用的原则,制定本规范。 1.0.2本规范适用于城市轨道交通新建和旧线改造及运营期间的工程测量。 1.0.3在同一城市内的轨道交通工程控制测量应满足下列要求: 1平面和高程系统应与所在城市平面和高程系统一致; 2工程建设前应在城市一、二等平面和高程控制网的基础上,建立专用平面、高程施工控制网,其与现有城市控制网重合点的坐标及高程较

差,应分别不大于50mm和20mm; 3施工前应对已建成的平面、高程控制网进行复测,建设中应对其进行检测。 1.0.4城市间的轨道交通工程控制测量除应满足本规范1.0.3条中的2、3款外,还应采用统一的坐标、高程系统,当城市间坐标、高程系统不一致时应进行相应的换算。 1.0.5线路工程控制测量应采用附合导线(网)和附合高程路线的形式。特殊情况下采用支导线、支水准路线时,必须制定检核措施。 1.0.6在隧道贯通前,联系测量、地下平面控制测量和地下高程控制测量,随工程进度应至少独立进行三次,满足限差后应以各次测量的平均值指导隧道贯通。 1.0.7暗、明挖隧道和高架结构横向贯通测量中误差为±50mm。高程贯通测量中误差为士25mm。 1.0.8施工期间内和运营期一定时间内,应对线路结构和临近主要建筑、管线等进行变形监测,并应制定应急变形监测方案。

城市轨道交通轨道工程测量技术总结

城市轨道交通轨道工程测量技术总结 公司自2000 年首次进入城市轨道交通轨道工程以来,先后承建了地铁二号线、地铁三号线、城市轨道交通四号线及其南延线等四个新建轨道工程项目。测量技术作为工程施工最重要的基础技术,伴随公司城市轨道交通工程市场的不断开拓而日益更新。 七年时间,公司实现低精度仪器、中等精度仪器到高精度全自动仪器的飞跃,大大提升了公 司测量硬件设备的竞争力;地铁项目部为公司培养大批技术过硬的测量人员,大大增强了公 司测量技术员的综合能力;测量队成功建立了适合类似于地铁轨道工程的精密线路工程测量理论,并实现业资料电算化模式,大大提高了测量工作效率。 七年时间,测量队曾经历过因测量技术不超前而影响轨道铺设的痛楚;曾体验过帮助兄弟单位解决技术难题后的喜悦;曾感触过誓保四号线按期通车的紧迫。 由此可看出:在高精度的轨道工程中,测量技术以其精确性、超前性在基础工程技术中表现尤为突出。在城市轨道交通三、四号线轨道工程中,地铁项目部首次成立了测量队,为公司培养了一支有理论、重实践,代表公司先进测绘技术的测量队伍。本着“知识性、实用性”的原则,现将城市轨道交通轨道工程测量技术总结如下,旨在为公司城市轨道交通轨道工程技术尽微薄之力。 2007 年3 月31 日 1、城市轨道交通轨道工程测量概述 近年来,我国迅速发展的地铁、轻轨等城市轨道交通,对列车安全行驶、乘客旅途舒适性的要求越来越高。由于城市轨道交通的轨道结构采用混凝土整体道床,轨道工程一次定位,几乎不能再调整;而铺轨基标是高标准轨道混凝土整体道床的轨道铺设控制点,故高精度满足铺轨要求的测量工作,重点是用铺轨基标来保证轨道的设计位置和线路参数,同时也保证行车隧道的限界要求。这就对铺轨精度提出了更严格要求,因此精确测设铺轨基标是保证地铁轨道高精度施工的重要环节。 何谓铺轨基标?铺轨基标是高标准轨道整体道床的轨道铺设控制点,它是具有精确平面坐标和高程的标志;按精度等级可划分为控制基标和加密基标;铺轨基标埋设位置有两种,即位于线路中线或线路中线的一侧。图一为:利用直角道尺(精度0.5mm )通过沿线布设的铺轨基标精确确定一股钢轨的位置和标高。

广州轨道交通施工测量管理细则(第三版)

广州轨道交通施工控制测量管理细则 § 1 施工测量质量管理目标和基本质量指标 1.1 施工测量质量管理目标是确保全线建筑物、构筑物、设备、管线安装按设计准确就位,在线路上不产生因施工控制测量、放样测量超差而引起修改线路设计从而降低行车运营标准。 1.2 质量指标 1.2.1 在任何贯通面上,地下测量控制网的贯通中误差,横向不超过± 50mm,竖向不超过± 25mm。 1.2.2 隧道衬砌不侵入建筑限界,设备不侵入设备限界。 1.2.3 建(构)筑物,装修和设备、管线的竣工形(体)位(置)误差满足《城市轨道交通工程测量规范》GB5030—2008、《地下铁道工程施工及验收规范》 G B 50299—1999 和广州轨道交通施工验收标准规定。 §2 主要使用的测量规范 轨道交通施工测量主要参照以下规范执行: 《城市轨道交通工程测量规范》GB50308—2008 《城市测量规范》CJJ8—99 《新建铁路工程测量规范》TB10101—99 《工程测量规范》GB50026—93 《建筑变形测量规程》JGJ/T 8—97 《全球定位系统(GPS测量规范》GB/T 18314—2001 国家其他测量规范、强制性标准 §3 轨道交通施工测量主要内容 轨道交通施工测量按服务性质分类可以分为施工控制测量、细部放样测量(高架工程的桩基础、墩<柱>位、明挖基坑角点测量及铺轨基标测量)、竣工测量和其它测量等作业。 3.1 施工控制测量可分为三部分: 3.1.1 地面控制测量:维护施工期间地面的平面、高程主控制网完整,维持其可靠、可用;为施工方便加密地面控制点(包括高架工程、地面工程、明挖工程的地面中桩)并维持其可靠、可用。 3.1.2 联系测量:明挖工程投点、定向,暗挖工程竖井投点、定向, 向地下传递高

(整理)地铁测量方案.

车站的施工测量 1、地面控制网的建立 本标段施工测量采用地面布置控制导线点。利用光学垂准仪及相关测量设备向地下投点控制主体结构施工。由于某站南段为明挖法施工,某站采用盖挖顺作法与明挖法施工相结合的施工方法,某站采用明挖及少量暗挖法施工的方法,因而地面平面控制网及高程控制网的精度对地下站内施工就显得尤其重要。 (1)地面平面控制测量 对业主提供的控制导线点进行复测,并与相邻标段及临近控制点进行贯通联测。利用全站仪进行地面施工导线布设,导线点埋设混凝土标石。 (2)地面高程控制测量 对业主提供的精密水准点进行复测并与临近水准点贯通联测。使用精密水准仪和标尺在提供的水准点之间加密水准网,布设成闭合环线,闭合差≤±8√L mm(L为环线长度,以km计),操作方法精度指标执行Ⅱ等水准点测量要求。1.1联系测量 1.1.1趋近测量 从地面控制点采用趋近导线向基坑附近引测坐标和方位,趋近导线折角个数不多于3个,往返总长不大于350m,相对点中误差≤±10mm,定出施工导线点的准确位置。 1.1.2地下定向 采用导线法,利用明挖部位向基坑内导入坐标点,坐标点传寄时,充分考虑由于竖角的变化对测量水平角时而造成的影响,为尽量减少此种影响,可适当增加导线传寄边长度,当竖角较大时,须进行必要的改正。 1.1.3高程传递 利用加密水准网点作趋近水准测量,按Ⅱ等水准测量方法和仪器施测,限差≤±8√L mm。 使用检定过的钢尺用悬吊的方法经风井或竖井传递高程,上、下两台水准仪同时观察读数,每次错动钢尺3~5cm,共测三次。高差较差控制在±5mm以内,取平均值使用。地下高程传递与坐标传递同步进行。 1.2车站洞内施工测量 车站日常施工测量由技术人员利用导线进行车站边线、风井、出入口等施工放样,以指导控制地下施工。

地铁施工测量技术方案

第15章施工测量 施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。 15.1 施工测量技术要求 1、施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。 2、对甲方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。 3、对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。 4、场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8L mm(L为线路长度,以km计)之内。 5、北京地铁工程隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。 北京地铁工程平面与高程贯通误差分配表15-1 15.2 施工测量特点 1、车站包括主体结构、出入口、换乘通道和风道。采用明、暗挖相结合的施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。 2、地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。 3、对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。 4、车站钢管柱的位置,其测设允许误差为±3mm。钢管柱安装过程应检测其垂直度,安装就位后应进行检核测量。

城市轨道交通工程监测管理

城市轨道交通工程监测管理指南 (征求意见稿) 1总则 1.1 为了加强城市轨道交通工程监测管理,保障城市轨道交通工程安全质量,制定本指南。 1.2 本指南所称工程监测,是指施工过程中,通过采用一定的测量测试仪器、设备,对施工影响范围内的岩土体、地下水和周边环境及工程围(支)护结构等的变化情况(如变形、应力等)进行经常性地量测和巡视观察,并及时反馈监测成果的活动。 城市轨道交通工程监测包括施工监测及第三方监测。 1.3 本指南适用于城市轨道交通工程施工监测及第三方监测的管理。 1.4 城市轨道交通工程监测管理除应遵循本指南外,还应符合国家、行业现行相关工程建设标准的规定。 2监测技术管理与预警要求 2.1 城市轨道交通工程监测项目主要包括工程围(支)护结构的变形、应力,工程周边环境的位移、倾斜、开裂,岩土体位移、土压力变化,地下水位的动态变化等。 2.2 城市轨道交通工程监测项目及其控制指标应当在施工图设计文件中说明。其中工程周边环境的监测项目及其控制指标应当经专家论证后确定。 2.3 城市轨道交通工程监测方案,应当根据勘察报告、设计文件、施工方案及工程实际情况编制。其主要内容应包括监测范围、监测对

象、监测项目、控制指标、监测频率、监测方法、测点布置平剖面图、监测组织机构及人员设备配备等。 2.4 工程监测的基准点应布置在工程施工影响范围之外的稳定区域,并保证其埋设稳固、可靠。 工程围(支)护结构监测点应在围(支)护结构施工过程中及时布设;工程周边环境监测点与岩土体、地下水监测点应在施工之前埋设。 基准点、监测点应当按标准规范要求进行埋设,并清晰标识类别、编号、保护要求等信息。 2.5 基准点、监测点应当采取保护措施,并定期巡视。发现基准点、监测点受到破坏,应及时恢复或补救,保证监测数据的连续性、有效性。 2.6 监测点埋设并稳定后,应至少连续独立进行二次观测,取其平均值作为初始值。 2.7 监测数据应当根据施工进度,严格按照监测方案中的监测频率要求及时采集,保证监测数据真实、连续、准确、完整。 2.8 监测报告可采用日报、周报、月报、快报等形式,主要内容包括施工进度、监测数据及变化情况、巡视观察信息、分析结论及处置措施建议等。 2.9监测过程中应当综合分析监测数据及巡视观察信息,发现工程安全状况异常时应当进行监测预警。 2.10 监测预警的级别按照险情或事故发生的紧急程度、发展势态和可能造成的危害程度由大到小分为一级、二级、三级和四级,分别用红色、橙色、黄色和蓝色表示,一级为最高级别。 2.11监测预警级别的划分标准应当由各地根据工程特点、建设规模、

相关文档
最新文档