新教材高中数学第五章一元函数的导数及其应用5.2.3简单复合函数的导数课后提升训练含解析人教A版必修二

新教材高中数学第五章一元函数的导数及其应用5.2.3简单复合函数的导数课后提升训练含解析人教A版必修二
新教材高中数学第五章一元函数的导数及其应用5.2.3简单复合函数的导数课后提升训练含解析人教A版必修二

第五章一元函数的导数及其应用

5.2 导数的运算 5.2.3 简单复合函数的导数

课后篇巩固提升

基础达标练

1.下列函数不是复合函数的是( ) A .y=-x 3-1x

+1 B .y=cos x+

π4

C .y=

1lnx

D .y=(2x+3)4

不是复合函数,B 、C 、D 均是复合函数,其中B 是由y=cos u ,u=x+π4

复合而成;C 是由y=1u

,u=ln x 复合而成;D 是由y=u 4,u=2x+3复合而成.

2.(2020安徽高二期末)函数f (x )=sin 2x 的导数是 ( )

A.2sin x

B.2sin 2x

C.2cos x

D.sin 2x

y=sin 2x 写成y=u 2,u=sin x 的形式.对外函数求导为y'=2u ,对内函数求导为u'=cos x ,故可以得到y=sin 2x 的导数为y'=2u cos x=2sin x cos x=sin2x ,故选D .

3.(2020福建高二期末)已知函数f (x )=sin2x

x

,则f'(x )=( )

A.xcos2x -sin2x

x 2

B.

xcos2x+sin2x

x 2 C.

2xcos2x -sin2x

x 2

D.

2xcos2x+sin2x

x 2

f (x )=sin2x

x ,故f'(x )=(sin2x )'x -sin2x ·x '

x 2

=

2xcos2x -sin2x

x 2

,故选C .

4.(2020山东高三期末)已知直线y=x+1与曲线y=ln(x+a )相切,则a 的值为( ) A.1

B .2

C .-1

D .-2

(x 0,x 0+1),依题意有{1

x 0+a

=1,

x 0+1=ln (x 0+a ),

由此得x 0+1=0,x 0=-1,a=2.

5.(多选)设函数f (x )=cos(√3x+φ)(0<φ<2π),若f (x )+f'(x )是奇函数,则φ的可能取值为( ) A.π

6

B.5π

6

C.7π

6

D.11π

6

解析f'(x )=-√3sin(√3x+φ),f (x )+f'(x )=cos(√3x+φ)-√3sin(√3x+φ)=2sin √3x+φ+5π

6

.

若f (x )+f'(x )为奇函数,则f (0)+f'(0)=0, 即0=2sin φ+

5π6

,

因此φ+5π6

=k π(k ∈Z ).

又因为φ∈(0,2π),所以φ=π

6或φ=7π

6.

6.(2020海南中学高二期末)设函数f (x )在(0,+∞)内可导,其导函数为f'(x ),且f (ln x )在x=e 处的导数为1e

2,则f'(1)= .

g (x )=f (ln x ),由复合函数的求导法则可得g'(x )=1x

f'(ln x ).

由题意可得g'(e)=1

e f'(1)=1

e 2,解得f'(1)=1

e .故答案为1e .

7.若曲线y=x ln x 上点P 处的切线平行于直线2x-y+1=0,则点P 的坐标是 ,切线方程为 .

P (x 0,y 0).∵y=x ln x ,∴y'=ln x+x ·1x

=1+ln x.∴k=1+ln x 0.又k=2,∴1+ln x 0=2,∴x 0=e .∴y 0=elne=e.∴点P 的坐标是(e,e).故切线方程为y-e =2(x-e),即2x-y-e =0.

2x-y-e =0

8.(2020江苏高三开学考试)已知函数f (x )=m ln x 图象与函数g (x )=2√x 图象在交点处切线方程相同,则m 的值为 .

f (x )和

g (x )的交点为(x 0,y 0),

则由f (x )=m ln x ,得f'(x )=m

,

∴f (x )在(x 0,y 0)处的切线方程的斜率k 1=m

,

同理,函数g (x )在(x 0,y 0)处的切线方程的斜率k 2=√x

0x 0

,

∵f (x )和g (x )在交点处切线方程相同, ∴k 1=k 2,即m x 0

=

√x 0

x 0

,①

又y 0=f (x 0)=m ln x 0,② y 0=g (x 0)=2√x 0,③

由①②③解得,m=e .

9.求下列函数的导数. (1)y=e 2x+1;(2)y=

1(2x -1)

3;(3)y=5log 2(1-x );

(4)y=sin 3x+sin 3x.

函数y=e 2x+1可看作函数y=e u 和u=2x+1的复合函数,∴y x '=y u '·u x '=(e u )'(2x+1)'=2e u =2e 2x+1.

(2)函数y=1

(2x -1)

3可看作函数

y=u -3和u=2x-1的复合函数,∴y x '=y u '·u x '=(u -3)'(2x-1)'=-6u -4=-6(2x-

1)-4=-6(2x -1)

4.

(3)函数y=5log 2(1-x )可看作函数y=5log 2u 和u=1-x 的复合函数,∴y x '=y u '·u x '=(5log 2u )'·(1-x )'=-5

uln2=5

(x -1)ln2.

(4)函数y=sin 3x 可看作函数y=u 3和u=sin x 的复合函数,函数y=sin3x 可看作函数y=sin v 和v=3x 的复合函数.

∴y x '=(u 3)'·(sin x )'+(sin v )'·(3x )'=3u 2·cos x+3cos v=3sin 2x cos x+3cos3x.

能力提升练

1.

曲线y=e -2x +1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( ) A .1

3

B .12

C .2

3 D .1

解析依题意得y'=e -2x ·(-2)=-2e -2x ,y'

x=0=-2e

-2×0

=-2. 曲线y=e -2x +1在点(0,2)处的切线方程是y-2=-2x ,即y=-2x+2.在坐标系中作出直线y=-2x+2、y=0与y=x 的图象,因为直线y=-2x+2与y=x 的交点坐标是23,2

3,直线y=-2x+2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于1

2×1×2

3=1

3.

2.已知点P 在曲线y=4

e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.0,π4

B.π4,π2

C.

π2,3π4

D.

3π4

,π 解析因为

y=4e x +1,所以y'=-4e x (e x +1)

2

=

-4e x e 2x +2e x +1

=

-4e x +1e

x +2

.因为e x >0,所以e x +1

e x ≥2,所以y'∈[-1,0),所

以tan α∈[-1,0).又因为α∈[0,π),所以α∈3π4

,π.

3.(多选)(2020江苏镇江中学高二期末改编)直线y=12

x+b 能作为下列( )函数的图象的切线. A.f (x )=1

x B.f (x )=x 4 C.f (x )=sin x 2

D.f (x )=e x

f (x )=1x ,得f'(x )=-1

x 2=1

2,无解,故A 排除;

由f (x )=x 4,得f'(x )=4x 3=12

,故x=12

,即曲线在点

12,116

的切线为y=12x-316

,B 正确;

由f (x )=sin x 2

,得f'(x )=12

cos x 2

=12,取x=2k π,k ∈Z ,当k=0时,x=0,故曲线在点(0,0)的切线为y=12

x ,C 正

确;由f (x )=e x ,得f'(x )=e x =12

,故x=-ln2,曲线在点-ln2,12

的切线为y=12

x+12

ln2+12

,D 正确,故选BCD .

4.曲线y=sin 2x 在点(0,0)处的切线方程为 .

y=f (x )=sin2x ,∴f'(x )=2cos2x.

当x=0时,f'(0)=2,得切线的斜率为2, 所以k=2.

所以曲线在点(0,0)处的切线方程为y-0=2(x-0),即y=2x.故答案为2x-y=0.

x-y=0

5.函数y=ln e x

1+e

x 在

x=0处的导数为 .

ln e x

1+e x =lne x -ln(1+e x )=x-ln(1+e x ),则y'=1-e x

1+e x .当x=0时,y'=1-1

1+1=1

2.

6.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则x>0时,f(x)的解析式为,曲线y=f(x)在点(1,-3)处的切线方程是.

x>0,则-x<0,f(-x)=ln x-3x,又f(x)为偶函数,所以f(x)=ln x-3x(x>0).当x>0时,f'(x)=1

x

-3,f'(1)=-2,切线方程为y=-2x-1.

(x)=ln x-3x y=-2x-1

7.(1)已知f(x)=eπx sin πx,求f'(x)及f'1

2

;

(2)在曲线y=1

1+x2

上求一点,使过该点的切线平行于x轴,并求切线方程.

∵f(x)=eπx sinπx,

∴f'(x)=πeπx sinπx+πeπx cosπx=πeπx(sinπx+cosπx).

∴f'1

2=πe

π

2sin

π

2

+cosπ

2

=πe

π

2.

(2)设切点的坐标为P(x0,y0),

由题意可知y'x=x

0=0.又y'=-2x

(1+x2)2

,

∴y'x=x

0=-2x0

(1+x02)2

=0.

解得x0=0,此时y0=1.即该点的坐标为(0,1),切线方程为y-1=0.

素养培优练

用导数的方法求和:1+2x+3x2+4x3+…+2 021x2 020(x≠0,且x≠1).

f(x)=1+2x+3x2+4x3+…+2021x2020,g(x)=x+x2+x3+x4+…+x2021,则有f(x)=g'(x).

而由等比数列求和公式可得g(x)=x(1-x 2021)

1-x =x-x2022

1-x

,于是f(x)=g'(x)=x-x

2022

1-x

'

=(1-2022x 2021)(1-x)+(x-x2022) (1-x)2

=1-2022x 2021+2021x2022 (1-x)2

,

即1+2x+3x2+4x3+…+2021x2020

=1-2022x 2021+2021x2022 (1-x)2

.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

简单复合函数求导

简单复合函数的导数 一、基础知识梳理: (一)常用的求导公式 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则 (二)复合函数的求导数公式 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± (三)复合函数求导法则 1、二重复合:若)(u f y =, )(x u φ= 且)(x u φ=在点x 处可导。 则)()('?'='x u f y φ 2、多次复合函数求导法则类推 二、典型例题分析: 例1、求下列函数的导数; 1)、3 (23)y x =- 2)、ln(51)y x =+

练习:求下列函数的导数 1)、2 (23)y x =+ 2)、3 (13)y x =- 例2、求下列函数的导数; 1)、1 31 y x = - 2)、cos(12)y x =- 练习:求导数; 1)、1ln y x = 2)、2x y e = 3)、求曲线sin 2y x =在点P (,0π)处的切线方程。 例题3 已知(5)5,'(5)3,(5)4,'(5)1f f g g ==== ,根据下列条件 求(5)h 及'(5)h 1)、()3()2()h x f x g x =+ 2)、 ()()()1h x f x g x =+ 3)、()2 ()() f x h x g x +=

高中数学 多项式函数的导数素材

多项式函数的导数 教学目的:会用导数的运算法则求简单多项式函数的导数 教学重点:导数运算法则的应用 教学难点:多项式函数的求导 一、复习引入 1、已知函数2)(x x f =,由定义求)4()(/ /f x f ,并求 2、根据导数的定义求下列函数的导数: (1)常数函数C y = (2)函数)(*N n x y n ∈= 二、新课讲授 1、两个常用函数的导数: 2、导数的运算法则: 如果函数)()(x g x f 、有导数,那么 也就是说,两个函数的和或差的导数,等于这两个函数的导数的和或差;常数与函数的积的导数,等于常数乘函数的导数. 例1:求下列函数的导数: (1)37x y = (2)43x y -= (3)3 534x x y += (4))2)(1(2-+=x x y (5)b a b ax x f 、()()(2+=为常数 )

例2:已知曲线331x y =上一点)3 82(,P ,求: (1)过点P 的切线的斜率; (2)过点P 的切线方程. 三、课堂小结:多项式函数求导法则的应用 四、课堂练习:1、求下列函数的导数: (1)28x y = (2)12-=x y (3)x x y +=2 2 (4)x x y 433-= (5))23)(12(+-=x x y (6))4(32-=x x y 2、已知曲线24x x y -=上有两点A (4,0),B (2,4),求: (1)割线AB 的斜率AB k ;(2)过点A 处的切线的斜率AT k ;(3)点A 处的切线的方程. 3、求曲线2432+-=x x y 在点M (2,6)处的切线方程. 五、课堂作业 1、求下列函数的导数: (1)1452+-=x x y (2)7352++-=x x y (3)101372-+=x x y (4)333x x y -+= (5)453223-+-=x x x y (6))3)(2()(x x x f -+= (7)1040233)(34-+-=x x x x f (8)x x x f +-=2)2()( (9))3)(12()(23x x x x f +-= (10)x x y 4)12(32-+= 2、求曲线32x x y -=在1-=x 处的切线的斜率。 3、求抛物线241x y = 在2=x 处及2-=x 处的切线的方程。 4、求曲线1323+-=x x y 在点P (2,-3)处的切线的方程。

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (陕西理工学院数计学院数学与应用数学专业2011级1班,陕西 汉中 723000) 指导老师:刘延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向内层逐层求导(或者也可以由内层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[] ()y f g x =

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高中数学题型归纳大全函数与导数题专题练习二

高中数学题型归纳大全函数与导数题专题练习二 9.已知函数f(x)=x(e2x﹣a). (1)若y=2x是曲线y=f(x)的切线,求a的值; (2)若f(x)≥1+x+lnx,求a的取值范围. 10.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2. (Ⅰ)求a,b,c,d的值; (Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围. 11.已知函数f(x)=alnx x+1 +b x,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3 =0. (Ⅰ)求a、b的值; (Ⅱ)证明:当x>0,且x≠1时,f(x)>lnx x?1.

12.已知函数f(x)=(a ?1 x )lnx (a ∈R ). (1)若曲线y =f (x )在点(1,f (1))处的切线方程为x +y ﹣1=0,求a 的值; (2)若f (x )的导函数f '(x )存在两个不相等的零点,求实数a 的取值范围; (3)当a =2时,是否存在整数λ,使得关于x 的不等式f (x )≥λ恒成立?若存在,求出λ的最大值;若不存在,说明理由. 13.已知函数f (x )=4lnx ﹣ax +a+3 x (a ≥0) (Ⅰ)讨论f (x )的单调性; (Ⅱ)当a ≥1时,设g (x )=2e x ﹣4x +2a ,若存在x 1,x 2∈[1 2,2],使f (x 1)>g (x 2), 求实数a 的取值范围.(e 为自然对数的底数,e =2.71828…) 14.已知函数f (x )=a x +x 2﹣xlna (a >0且a ≠1) (1)求函数f (x )在点(0,f (0))处的切线方程;

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

高中数学函数与导数练习题

1、讨论函数在内的单调性 2、作出函数22||3y x x =--的图像,指出单调区间和单调性 3、求函数[]()251x f x x = -在区间,的最大值和最小值 4 、使函数y = 的最小值是 2的实数a 共有_______个。 5、已知函数()f x 的定义域为R ,且对m 、n R ∈,恒有()()()1f m n f m f n +=+-,且1()02f -=,当12 x >-时,()0f x > (1)求证:()f x 是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证. 6、已知()f x 是定义在[1,1]-上的增函数,且(1)(23)f x f x -<-,求x 的取值范围。 四、强化训练 1、已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且(5)1f =,设1()()()F x f x f x =+,讨论()F x 的单调性,并证明你的结论。 2、设函数2 ()22f x x x =-+(其中[,1]x t t ∈+,t R ∈)的最小值为()g t ,求()g t 的表达式 3、定义域在(0,)+∞上的函数()f x 满足:(1)(2)1f =;(2)()()()f xy f x f y =+; (3)当x y >时,有()()f x f y >,若()(3)2f x f x +-≤,求x 的取值范围。 4、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈, 都满足()()()f ab af b bf a =+ (1)求(0)f ,(1)f 的值;(2)判断()f x 的奇偶性,并加以证明 223f(x)x ax =-+(2,2)-

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

复合函数求导法则及其应用

习 题 4.4 复合函数求导法则及其应用 ⒈ 求下列函数的导数: ⑴ y x x =-+()2122; ⑵ y x x =e sin 23; ⑶ y x = +1 13 ; ⑷ y x x = ln ; ⑸ y x =sin 3; ⑹ y x =cos ; ⑺ y x x x =+-++11ln(); ⑻ y x =-arcsin (e )2 ; ⑼ ?? ? ? ?- =221ln x x y ; ⑽ y x x =+1 222(sin ); ⑾ y x x x = +-1122 ln ; ⑿ y x x = +12 csc ; ⒀ y x x = -++2213 31 23 34; ⒁ y x =-e sin 2 ; ⒂ y x a x x a x =-+-2 2 22. 解 (1))14)(12(2)'12)(12(2'222-+-=+-+-=x x x x x x x y 。 (2))3sin 23cos 3(3sin )'()'3(sin '222x x e x e x e y x x x +=+=。 (3)23 32323 3)1(2 3 )'1()1(21'--+-=++-=x x x x y 。 (4)2 12 ' 2 1 ln 2ln 1ln ln 21'?? ? ??-=?? ? ????? ??=x x x x x x x x y 。 (5)3233cos 3)'(cos 'x x x x y ==。 (6)x x x x y 2sin )'(sin '- =-=。

(7 )1'2y = (8 )2 2 'x x y --= = = 1 22 2--x e x 。 (9)44 2 4(1)'1'[ln(1)ln(]'21x y x x x x -=--=--=4422 (1)x x x +-。 (10)2232(2sin )''(2sin )x x y x x -+=+=3 2) sin 2() cos 4(2x x x x ++-。 (11 )'y = = 2 322222)1() 21)(ln 1(ln )1(2x x x x x x - -+--。 (12 )2 ' '1csc x x y x =+ = 2222 322 1csc csc cot (1csc ) x x x x x ++= +。 (13 )'y =+ 452323 4112()(21)(4)3()(31)(9)34x x x x --=--+-+ 45 223 34827(21)(31)34 x x x x --=---+。 (14)2sin 2'e (sin )'x y x -=-2 sin sin 2x x e -=-?。

高中数学导数专题训练

精心整理 高二数学导数专题训练 一、选择题 1.一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是() A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为() A.1 B.2 C.-1 D.0 3()f x 与(f x A (f C (f 4.函数y A (5.若函数A.f(x)6.0'()f x A C 7.曲线f A (1,0)C (1,0)8.函数y A.C.9.对于R A (0)(2)2(1)f f f + 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为() A .' 0()f x B .' 02()f x C .' 02()f x -D .0 二、填空题 11.函数32 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是.

13.曲线x x y 43 -=在点(1,3)-处的切线倾斜角为__________. 14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ?? ??+?? 的前n 项和的公式是 . 三、解答题: 15.求垂直于直线2610x y -+=并且与曲线3 2 35y x x =+-相切的直线方程 16 17 (1)求y (2)求 y 18(I (II (III 19(I (II 20.已知x (1)求m (2)求f (3)当x AABCBACCDB 二、填空题 11.递增区间为:(-∞,13),(1,+∞)递减区间为(1 3 -,1) (注:递增区间不能写成:(-∞,1 3 )∪(1,+∞)) 12.(,0)-∞13.3 4 π 14.1 2 2n +-()()/ 112 22,:222(2)n n n x y n y n x --==-++=-+-切线方程为,

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

最新高中数学导数专题讲义(答案版)

导数专题讲座内容汇总 目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (52) 导数专题四、零点问题 (76) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (168) 导数专题七、特殊值法判定超越函数的零点问题 (187) 导数专题八、避免分类讨论的参变分离和变换主元 (198) 导数专题九、公切线解决导数中零点问题 (211) 导数专题十、极值点偏移问题 (216) 导数专题十一、构造函数解决导数问题 (224)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域); 第四步、(列表)根据第五步的草图列出()'f x ,()f x 随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为或恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较; ()0f x '≥()0f x '≤

高中数学函数导数专题

专题六函数导数专题 函数是高考考查能力的重要素材,以函数为基础编制的考查能力的试题在历年的高考试卷中占有较大的比重.这部分内容既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.一般说来,选择题、填空题主要考查函数的概念、单调性与奇偶性、函数图象、导数的几何意义等重要知识,关注函数知识的应用以及函数思想方法的渗透,着力体现概念性、思辨性和应用意识.解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合,对函数与方程思想、数形结合思想、分类与整合思想、有限与无限思想等进行较为深入的考查,体现了能力立意的命题原则.这些综合地统揽各种知识、应用各种方法和能力的试题充分显示了函数与导数的主干知识地位.在中学引入导数知识,为研究函数的性质提供了简单有效的方法.解决函数与导数结合的问题,一般有规范的方法,利用导数判断函数的单调性也有规定的步骤,具有较强的可操作性.高考中,函数与导数的结合,往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程思想、有限与无限思想等,所考查的问题具有一定的综合性.在一套高考试卷中一般有2-3个小题有针对性地考查函数与导数的重要知识和方法,有一道解答题综合考查函数与导数,特别是导数在研究函数问题中的应用,这道解答题是试卷的把关题之一. 【考点透析】函数和导数的主要考点包括函数的概念、图象与性质,函数与方程,函数模型及其应用,导数及其应用、微积分及微积分基本定理等. 【例题解析】 题型1 函数的概念及其表示 例1 (2008高考山东文5)设函数 2 2 11 () 21 x x f x x x x ?- ? =? +-> ?? ,, ,, ≤ 则 1 (2) f f ?? ? ?? 的值为()A. 15 16 B. 27 16 -C. 8 9 D.18 分析:由内向外逐步计算. 解析:()() 11 24, 24 f f ==,故 () 2 11115 1 24416 f f f ?????? ==-= ? ? ? ????? ?? .答案A. 点评:本题考查分段函数的概念和运算能力.解决的关键是由内到外“逐步有选择”的代入函数解析式,求出函数值. 例2如图,函数() f x的图象是曲线OAB,其中点,, O A B的坐标分别为() 0,0,(1,2),(3,1),则 () 1 3 f f ?? ? ? ??的值等于. 分析:从图象上理解自变量与函数值的对应关系. 解析:对于(3)1, f=(1)2 f=. 点评:图象是表示函数的一种方法,图象上反应了这个函数的一切性质. 题型2 函数的图象与性质 例3已知m为非零实数,若函数ln(1) 1 m y x =- - 的图象关于原点中心对称,则m=.

相关文档
最新文档