生物化学重点简答

生物化学重点简答
生物化学重点简答

1. 从复制的起始,延伸,终止比较原核与真核生物的不同点。

答:原核生物的DNA复制:起始:首先,专一识别复制起点序列的蛋白结合在复制起点上,然后DNA双链在解旋酶的作用下解螺旋,单链DNA结合蛋白马上结合分开的单链,保持其伸展状态(或在同一链上的互补碱基对间形成发夹结构)。最后,引物酶以解旋的单链为模板,根据碱基互补配对原则合成一种不超过12个核苷酸的RNA引物,提供3’端的自由羟基。延伸:RNA聚合酶111把新生链的第一个核苷酸加到RNA引物的3’羟基上,开始延伸合成。其中,一条链的合成(前导链)是连续的,另一条链(后随链)即冈崎片段的合成是不连续的。【因此,在前导链上,DNA引物酶只在起始点合成一次引物RNA,DNA 聚合酶111就能进行DNA的合成,在后随链,每个冈崎片段都需要先合成引物RNA才能进行其DNA的合成。】终止:原核生物一般都具有终止区域,DNA到达终止区域后,DNA聚合酶1将引物RNA切除,同时以对应DNA链为模板,合成DNA置换切除RNA引物区域链,最后由DNA连接酶连接起来,形成完整链。

真核生物DNA复制与上述对比:(1)真核生物DNA复制只在细胞周期的S期进行,而原核生物整个细胞生长过程都可进行复制或合成。(2)真核生物DNA聚合酶较原核种类多。真核五种,原核三种。(3)真核生物DNA复制是多起点的,且无终止位点或区域。因此,真核生物前导链的合成不像原核生物那样是连续的,而是半连续的。(4)真核生物DNA复制中合成的冈崎片段比原核生物短。(5)真核生物的核DNA与不同种类的蛋白质复合形成核小体。(6)原核生物染色体大多为环状,而真核为线状,存在端粒,以保持染色体的稳定性。端粒则是在端粒酶的作用下合成的。

2.比较原核生物和真核生物在转录过程中(起始、终止)的不同点。

原核:转录起始,首先RNA聚合酶的核心酶与σ亚基结合生成全酶之后,在DNA模板上特定的位点,RNA聚合酶在σ亚基引导下识别并结合到启动子-35和-10上,全酶与DNA形成闭合型复合物,然后又转变为开放型复合物。DNA双链被解开,形成转录泡,启动转录。终止时,DNA上的终止信号使其转录终止。一类是不依赖β因子的终止子,另一类则依赖。前者形成发夹结构并转录出一系列U,使RNA聚合酶减慢或暂停RNA的合成,最终从模板上脱离;后者形成发夹结构后,不转录出一系列U,需β因子的帮助,使RNA聚合酶随机脱落。

真核:转录过程比原核复杂。原核只有一种RNA聚合酶,真核有三种,并且每种酶都有自己的启动子。还需要顺式作用元件(如增强子、沉默子)和反式作用因子(如转录因子、上游因子、诱导因子)的参与。终止时,真核是以poly(A)位点的识别使转录终止。

3.原核生物和真核生物翻译起始的相同点和不同点。

真核生物和原核生物翻译的不同点:氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。翻译的起始:原核的起始tRNA是fMet-tRNA(fMet 上角标),30s小亚基首先与mRNA模板相结合,再与fMet-tRNA(fMet上角标)结合,最后与50s大亚基结合。真核中起始tRNA是Met-tRNA(Met上角标),40s小亚基首先与Met-tRNA(Met上角标)相结合,再与模板mRNA结合,最后与60s大亚基结合生成起始复合物。

相同点:原料都是氨基酸,tRNA,都需要消耗能量,都需要氨基酰—tRNA聚合酶,都是从5’到3’端翻译,氨基酸翻译完成后都需要进行加工。

4.在人体内乙酰COA去路有哪些?试述之。

答:(1)进入三羧酸循环氧化分解为二氧化碳和水。

(2)以其原料合成脂肪酸,进一步合成脂肪和磷脂。

(3)在酮体的合成中,乙酰COA作为最初反应物经过一系列的反应生成酮体,作为肝输出能源方式。

(4)以其为原料合成胆固醇。

(5)在神经组织中参与乙酰胆碱的合成。

1.从复制的起始,延伸,终止比较原核与真核生物的不同点。

答:原核生物的DNA复制:起始:DNA双链于复制起点在解旋酶的作用下解螺旋,引物酶以解旋的单链为模板,合成一种RNA引物,提供3’端的自由羟基。延伸:RNA聚合酶111把新生链的第一个核苷酸加到RNA引物的3’羟基上,开始延伸合成。其中,一条链的合成(前导链)是连续的,另一条链(后随链)即冈崎片段的合成是不连续的。而后者都需要先合成引物RNA才能进行其DNA的合成。终止:原核生物一般都具有终止区域,DNA到达终止区域后,DNA聚合酶1将引物RNA切除,同时以对应DNA链为模板,合成DNA置换切除RNA引物区域链,最后由DNA连接酶连接起来,形成完整链。

真核生物DNA复制与上述对比:(1)真核生物DNA复制只在细胞周期的S期进行,而原核生物整个细胞生长过程都可进行复制或合成。(2)真核生物DNA聚合酶较原核种类多。真核五种,原核三种。(3)真核生物DNA复制是多起点的,且无终止位点或区域。因此,真核生物前导链的合成不像原核生物那样是连续的,而是半连续的。(4)真核生物DNA复制中合成的冈崎片段比原核生物短。(5)真核生物的核DNA与不同种类的蛋白质复合形成核小体。(6)原核生物染色体大多为环状,而真核为线状,存在端粒,以保持染色体的稳定性。端粒则是在端粒酶的作用下合成的。

生物化学一名词解释及简答题

DNA的溶解温度(Tm值):引起DNA发生“溶解”的温度变化范围只不过几度,这个温度变化范围的中点称为氨的同化:由生物固氮与硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程 氨基酸的等电点:指氨基酸的正离子浓度与负离子浓度相等时的PH值,用符号PL表示 氨基酸同功受体:每一个氨基酸可以有多过一个tRNA作为运载工具,这些tRNA称为该氨基酸同功受体 半保留复制:双链DNA的复制方式,亲代链分离,每一子代DNA分子由一条亲代链与一条新合成的链组成 必需脂肪酸:为人体生长所必需单不能自身合成,必须从食物中摄取的脂肪酸 变构酶:或称别构酶,就是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节 不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录 超二级结构:蛋白质分子中相邻的二构耽误组合在一起所形成的有规则的在空间上能辨认的二构组合体 单体酶:只有一条多肽链的酶称为单体酶 蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象 蛋白质的沉淀作用:指在外界因素影响下,蛋白质分子失去水化膜或被中与其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象 蛋白质的二级结构:指蛋白质分子中的局部区域内,多肽链沿一定方向盘绕与折叠的方式 蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定球状分子结构的构象 蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,一级二硫键的位置 底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键,有此高能磷酸键提供能量使ADP磷酸化生成ATP的过程称为底物水平磷酸化 底物专一性:酶对底物及其催化反应的严格选择性 多酶体系:有几个酶彼此嵌合形成的复合体称为多酶体系 发夹结构:RNA就是单链线形分子,只有局部区域为双链结构,这些结构就是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构 反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码 反密码子:在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上 反义RNA:具有互补序列的RNA 非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态与结合状态存在于生物体内的各种组织与细胞 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程 辅基:酶的辅因子或结合的巴掌的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去 复制叉:复制DNA分子的Y形区域,在此区域发生链的分离及新链的合成 冈崎片段:一组短的DNA片段,就是在DNA复制的起始阶段产生的,随后又被连接形成较长的

生化名词解释、简答

试卷一 五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分) DNS-C1 DNFB DEAE —纤维素 BOC 基 1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。 2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。 3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。 4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。 六、解释下列名词(共12分) 1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。 2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。 3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。 4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。 5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。 6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。 七、问答与计算(共30分) 1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。此八肽与FDNB 反应并酸水解后。释放出FDNB-Ala 。将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。请写出这个八肽的氨基酸序列。(10分)Ala-Ser-Lys-phe-Gly-Lys-Tyr-Asp 2、试求谷胱甘肽在生理pH 时带的净电荷,并计算它的等电点。已知pK (COOH )=2.12 pK (COOH )=3.53 pK (N +H 3)=8.66 pK(SH)=9.62 净电荷为-1,83.2253.312.2=+=PI 3、若有一球状蛋白质,分子中有一段肽链为Ala-Gln-Pro-Trp-Phe-Glu-Tyr-Met… 在生理条件下,哪些氨基酸可能定位在分子内部?(5分) 球状蛋白质形成亲水面,疏水核,所以Ala,Pro,Trp,phe,Met 可能定位在分子内部。 4、根据你所学的知识推断人工合成胰岛素是先合成A 链、B 链再连接成胰岛素

生化简答题及论述题

简答题及论述题 1、请描述沃森和克里克在1953 年提出的DNA 双螺旋结构模型 1、两条反平行链,右手螺旋;碱基在链内侧,戊糖磷酸在外侧,碱基垂直于螺旋轴,碱基与糖垂直。10 个核苷酸形成一个螺旋,螺距 3.4nm。碱基互补配对,一个 A 对应一个T , 一个G 对应一个 C 。 2、某些金属和非金属离子以及一些有机小分子对酶的结构和功能有何影响? 2、(1)通过结合底物为反应定向。 (2)通过可逆地改变金属离子的氧化态调节氧化还原反应。 (3)通过静电效应稳定或屏蔽负电荷。 (4)作为辅酶或者辅基起到电子或原子的传递作用。 3、使酶活力降低或丧失的可能因素有哪些? 3、(1)温度升高(2)酸碱变化(3)有机溶剂或重金属离子 4、试比较酶的变性与失活有什么异同 4、酶是由蛋白质组成的,所以具有蛋白质的性质。即在高温、过强的酸、碱环境下会发生组成或是结构的改变,这就是变性。由于组成或者结构改变,酶的功能也会受到破坏。酶的变性往往是不可逆的。当温度或者酸碱度达到一个程度时,酶的活性持续下降,当把条件恢复到初始状态时,酶活并没有恢复,这说明酶已失活。但是酶的结构或组成没有发生改变。在经过特殊处理后,酶活能够得到恢复。 5、试列举五种测定蛋白质分子量的方法 5、渗透压法、化学组成法、沉降分析法、凝胶过滤法、SDS-聚丙烯酰胺凝胶电泳法。 6、什么是蛋白质的二级结构?它主要有哪几种形式? 6、蛋白质主链的折叠产生由氢键维系的有规则的构象,成为蛋白质的二级结构。二级结构包括α螺旋、β折叠、β转角和β突起以及无规则卷曲。 7、什么是抗体?简述其结构特点(可用简图表示) 7、机体是在抗原物质刺激下,由 B 细胞分化成的浆细 胞所产生的、可与相应抗原发生特异性结合反应的免疫 球蛋白。 抗体是具有 4 条多肽链的对称结构,其中 2 条较 长、相对分子量较大的相同的重链(H 链);2 条较 短、相对分子量较小的相同的轻链(L 链)。链间由 二硫键和非共价键联结形成一个由 4 条多肽链构成的单 体分子。 8、简述从蛋白质与氨基酸的混合物中分离和鉴定氨基 酸的方法 8、分配柱层析、纸层析、离子交换层析、薄层层析

生物化学简答

生物化学 1.蛋白质的基本组成单位是什么?其结构特征是什么? 答:1)氨基酸 2)α碳原子连有4个基团或原子,分别为氨基、羧基、侧链和氢。 氨基酸都是α-氨基酸 除甘氨酸外,均为L型氨基酸 2.氨基酸的分类:1)非极性疏水性(丙、甘、缬、脯、亮、异亮、苯丙氨酸) 2)亲水性中性 3)酸性 4)碱性 蛋白质的一级结构:蛋白质肽链中氨基酸的排列顺序 氨基酸的连接方式—肽键:一级结构的主键—肽键 二级结构:多肽链主链的局部空间结构 3.什么是蛋白质变性?变性与沉淀的关系如何? 答:1)见名词 2)变性蛋白质易于沉淀,但沉淀的蛋白质不一定变性 4.试述引起蛋白质变性的因素、变性的本质、变性后理化性质的改变以及临床实际应用答:1)物理因素:高温、高压、射线等 化学因素:强酸、强碱、重金属盐等 2)本质:空间构象破坏、非共价键和二硫键破坏 3)变性后理化性质改变和生物活性丢失 4)利用变性:杀菌、消毒;防止变性:生物制品的保存 5.为什么说酶是生物催化剂,它的催化作用有何特点? 答:1)酶具有特殊的催化机制,比普通的化学催化剂降低活化能的幅度要大得多2)特点:高度的催化效率 高度的专一性 高度的不稳定性 酶活力的可调节性 6.酶原是如何被激活的?酶原激活有何生理意义? 答:1)酶蛋白分子内的一处或几处发生断裂,使分子的构象发生一定的改变,从而形成酶的活性中心,使没有活性的酶原转化成有活性的酶分子 2)生理意义:避免细胞产生的蛋白酶进行自身笑话,机体有效地保护自身 使酶能快速地到达特定部位和环境发生作用,适应环境变化 7.竞争性、非竞争性和反竞争性抑制有何区别? 竞争性非竞争性反竞争性 抑制剂和酶的结合部位酶的活性中心酶的活性中心以外的必 须基团 仅能与ES复合物结合 增加【I】使E对S的亲和力下降,Km 上升。可使抑制作用增强不影响E对S的亲和力, Km不变。但对ESI增加, ES浓度增加,Vm减小 促使E与S结合,E对S的亲 和力上升。Km下降。ESI增加, ES浓度减少,Vm减小 增加【S】可使酶促反映速度达到最大, Vm不变,。可减弱抑制作用 不能使抑制作用减弱不能使抑制作用减弱表现Km 增大不变减小 表现Vm 不变减小减小

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

科二生化简答题及名词解释

第二章 1 DNA双螺旋结构模型的要点有哪些?此模型如何解释Chargaff定律? A天然DNA分子由两条反平行的多聚脱氧核苷酸链组成,一条链的走向为5’→3’,另一条链的走向为3’→5’。两条链沿一个假想的中心轴右旋相互盘旋,形成大沟和小沟。 b磷酸和脱氧核糖作为不变的骨架成分位于外侧,作为可变成分的碱基位于内侧,链间的碱基按A=T(两个氢键),G=C配对(三个氢键)配对形成碱基平面,碱基平面与螺旋纵轴近于垂直。 c螺旋的直径为2nm,相邻碱基平面的垂直距离为0.34nm。因此,螺旋结构每隔10bp重复一次,间距为3.4nm d DNA双螺旋结构是非常稳定的。稳定力量主要有两个,一是碱基堆积力,二是碱基配对的氢键。 2 原核生物与真核生物mRNA的结构有哪些区别? ①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。 ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。 ③原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时(RNA噬菌体中的RNA除外)。真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日。 ④原核与真核生物mRNA的结构特点也不同。 原核生物mRNA一般5′端有一段不翻译区,称前导顺序,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6A等。真核生物mRNA通常都有相应的前体。从DNA转录产生的原始转录产物可称作原始前体(或mRNA前体)。一般认为原始前体要经过hnRNA核不均-RNA 的阶段,最终才被加工为成熟的mRNA。 3从两种不同细菌提起DNA样品,其腺嘌呤核苷酸残基分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种脱氧核苷酸残基相对百分组成,两种细菌中有一种是从温泉(64°C)种分离出来的,该细菌DNA具有何种碱基组成?为什么? 腺嘌呤核苷酸残基分别占其碱基总数的32%:A 32% G 18% C 18% T 32% 腺嘌呤核苷酸残基分别占其碱基总数的17%:A 17% G 33% C 33% T 17% 由于含氢键越多,DNA越稳定,GC碱基对之间是三个氢键,AT碱基对之间是两个氢键,所以腺嘌呤核苷酸残基分别占其碱基总数的17%的这一种DNA比较稳定,是从温泉中分离出来的。 4正确写出下列寡核苷酸的互补的DNA和RNA序列 (1)GATCAA(2)TGGAAC (3)ACGCGT (4)TAGCAT DNA 5’UUGATC3’5’GTTCCA3’5’ACGCGT3’5’ATGCTA3’RNA 5’UUGAUC3’5’G UU CCA3’5’ACGCG U3’5’A UGCU A3’

生物化学考研,考博真题及知识点汇总

生物化学(王镜研版)知识点汇总 白质组学,基因组学,转录组学等组学研究进展 1.蛋白质研究1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。 2.翻译后修饰:很多mRNA表达产生的蛋白质要... 2.细胞亚细胞不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是... 3.二维电泳蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。... 转录组学(Transcriptome)是一门在整体水平上研究细胞中所有基因转录及转录调控规律的学科。高通量转录组学研究技术主要包括基于杂交技术的表达谱芯片技术和基于测序技术的转录组测序技术。表达谱芯片的选择可根据点样量、探针设计策略及研究目的等进行。传统的RNA测序技术以基于Sanger测序法的基因表达序列分析SAGE(serialanalysisofgene)为代表,因为要构建SAGE文库,相对费时费力。新近发展起来的新一代RNA—Seq技术具有高通量、低成本、快速、准确的特点,完全改变了转录组学的研究模式,迅速成为研究生物转录组的先进技术 RNAi机制 RNAi即RNA干涉,是近几年才发现的一种由双链RNA引起的基因沉默的现象.从无脊椎动物到脊椎动物,从低等真菌到高等植物都普遍存在RNAi.RNAi的机制也成为人们关注的焦点。 RNA干扰机理miRNA(microRNA, 微小RNA)与siRNA(small interference RNA, 小型干扰RNA)的区别RNA干扰是由长链型、完全型或不完全型双链RNA激活的,这些双链RNA被识别并被一种叫做“Dicer”的RNA酶III进行特异性剪切,得到21–26个核苷酸的小型双链。然后这些小型双链RNA以单链RNA的形式被识别、解链和重组为RISC (RNA诱导沉默蛋白复合体),降解同源mRNA。 第一,微小RNA 起源于明显不同于其他识别基因的基因位点,而小型干扰RNA通常起源于信使RNA、转座子、病毒或异染色质的DNA。 第二,微小RNA由能形成局部RNA 发夹结构的转录体加工而成,而小型干扰RNA 由长链双分子RNA双链体或拓展发夹结构加工而成。 再次,单个“微小RNA:微小RNA”双链体起源于每个微小RNA发夹结构的前体分子, 而小型干扰RNA 双链体集合体起源于每个小型干扰RNA前体分子,导致了许多不同的小型干扰RNA在这种拓展型的双链RNA的双链上聚合。 第四,相关生物中的微小RNA序列几乎总是保守的,而外源小型干扰RNA 序列很少是保守。 第五,关于微小RNA 和外源小型干扰RNA的生物靶标方面,外源小型干扰RNA是典型的“自动沉默”,也就是它们在其起源的同一位点(或非常相似的位点)沉默,而微小RNA 是“异位沉默”,也就是它们是由具备非常不同的沉默的基因产生的。 列举几种免疫组学技术在生化研究中的应用: 1.免疫组化技术的基本原理 应用免疫学及组织化学原理,对组织切片或细胞标本中的某些化学成分进行原位的定性、定位或定量研究,这种技术称为免疫组织化学技术或免疫细胞化学技术。 众所周知,抗体与抗原之间的结合具有高度的特异性。免疫组化正是利用这一特性,即先将组织或细胞中的某些化学物质提取出来,以其作为抗原或半抗原去免疫小鼠等实验动物,制备特异性抗体,再用这种抗体(第一抗体)作为抗原去免疫动物制备第二抗体,并用某种酶(常用辣根过氧化物酶)或生物素等处理后再与前述抗原成分结合,将抗原放大,由于抗体与抗原结合后形成的免疫复合物是无色的,因此,还必须借助于组织化学方法将抗原抗体反应部位显示出来(常用显色剂DAB显示为棕黄色颗粒)。 通过抗原抗体反应及呈色反应,显示细胞或组织中的化学成分,在显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞或组织原位确定某些化学成分的分布、含量。组织或细胞中凡是能作抗原或半抗原的物质,如蛋白质、多肽、氨基酸、多糖、磷脂、

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生化名词解释简答题

第一章:核酸 9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。这个DNA螺旋的重组过程称为“复性”。 10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。 11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。 12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。 14. DNA的熔解温度(T m值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。 15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。 3. 答:tRNA一级结构具有以下特点: 1)分子量较小,大约由73~95个核苷酸组成。 2)分子中含有较多的修饰成分 3)3′末端都具有CpCpA-OH的结构。5′端多为pG,也有pC 4)恒定核苷酸,有十几个位置上的核苷酸在几乎所有的tRNA中都不变。 5) tRNA约占细胞总RNA的15% tRNA的二级结构呈“三叶草形”。在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;TyC(环)臂;可变环。 tRNA的三级结构:倒挂的L字母 tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。 4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。该定则要点如下: (1)同一生物的所有器官和组织中的DNA的碱基组成是相同的,也就是说,在同一生物中,DNA的碱基组成没有器官和组织的特异性。 (2)不同生物的DNA的碱基组成是不相同的,具有种的特异性,这种差异可用“不对称比率”(A+T/G+C)表示。 (3)亲缘相近的生物中,其DNA碱基组成相似,即不对称比率相近似。 (4)在所有双链DNA中,腺嘌吟与胸腺嘧啶的含量(mol)相等,即A =T;鸟嘌吟与胞嘧啶的含量(mol)相等,即G=C,因此,嘌吟的总数与嘧啶总数也相等, A+ G=C +T。 7.答:核苷、核苷酸、核酸三词常易被初学者混淆。核苷是碱基与核糖通过糖苷键连接成的糖苷(苷或称甙)化合物。核苷酸是核苷的磷酸酯,是组成核酸(DNA,RNA)的基本单元。核酸是核苷酸通过磷酸二酯键连接形成的多聚化合物,故核酸也叫多聚核苷酸。核苷(nucleoside)、核苷酸(nucleotide)英文名称只有一个字母之差。 第二章:蛋白质 3.氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。 4.肽键:一个氨基酸的氨基与另一个氨基酸的羧基脱去一分子水缩合而形成的共价键. 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 6. 答:蛋白质的二级结构指多肽链主链骨架的盘旋和折叠,天然蛋白质的二级结构主要有四种类型: (1)α-螺旋:3.6个氨基酸残基上升一周,沿纵轴的间距为0.54 nm,靠链内氢键维持的稳定的右手螺旋。 (2)β-折叠:由几乎伸展的多肽链侧向聚集在一起,相邻两条肽链间的N-H和C=O间形成氢键连接而形成的锯齿状片层结构。 (3)β -转角:球状蛋白质中存在的一种二级结构,可使多肽走向发生改变,且多处在蛋白质分子的表面。 (4)无规则卷曲:球状蛋白质中存在的一种没有确定规则的盘旋,有利于多肽链形成灵活的,具有特异生物学活性的球状构象。 7.答:稳定蛋白质构象的作用力主要有以下几种: (1)氢键:氢键是一个极性很强的X-H基上的H原子,与另一个极性很强的原子相互作用形成的一种吸引力,本质上属于弱的静电吸引力。 (2)离子键:正负离子间的静电相互作用。 (3)疏水键:疏水性氨基酸侧链避开水相而相互聚集的作用,主要存在于蛋白质分子的内部。 (4)范德华力:非极性分子瞬时偶极间的相互作用,虽是很弱的力,但具有加和性。 氢键、离子键、疏水键和范德华力都属于非共价键,统称次级键。此外,二硫键(共价键)在维持蛋白质构象方面也起重要作用。 12.答:等电点 Ala:6.02 Lys:9.47 Glu 3.22 ; 在电场中Ala 和Glu向正极移动,Lys向负极移动。 第三章:蛋白质 1.米氏常数(K m值):用Km值表示,是酶反应速度达到最大反应速度一半时底物的浓度。 2.活性中心:酶分子中直接与底物结合,催化底物发生化学反应的部位,称为酶的活性部位或活性中心,包括结合部位和催化部位。 13.别构酶:酶分子中除了有与底物结合的活性中心外,还有与调节物结合的别构中心。别构酶与调节物结合后,自身的构象会发生变化,从而调节酶活性,所以称它为别构酶或变构酶。 3.同工酶:又称同功酶,是指催化的化学反应相同,但组成结构不完全相同的一组酶。 4.酶原:没有活性的酶的前提物。 五、问答题及计算题(解题要点) 1.答:酶的化学本质是蛋白质。作为生物催化剂,酶的特点是: ①酶具有很高的催化效率;②酶的催化作用具有高度专一性;③酶作用一般都要求温和的条件;④酶的催化活性在细胞内受到严格的调节控制;⑤酶的催化活件与辅因子有关。 2. 答:根据国际生化联合会酶委员会的建议,酶分为六大类:①氧化还原酶类;②转移酶类;③水解酶类;④裂合酶类;⑤异构酶类;⑥连接酶类(合成酶类)。答:酶是生物活细胞产生的具有催化活性的蛋白质。但目前

生化简答题(附答案)

1.简述脂类的消化与吸收。 2.何谓酮体?酮体是如何生成及氧化利用的? 3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么? 4.简述脂肪肝的成因。 5.写出胆固醇合成的基本原料及关键酶?胆固醇在体可的转变成哪些物质? 6.脂蛋白分为几类?各种脂蛋白的主要功用? 7.写出甘油的代途径? 8.简述饥饿或糖尿病患者,出现酮症的原因? 9.试比较生物氧化与体外物质氧化的异同。 10.试述影响氧化磷酸化的诸因素及其作用机制。 11.试述体的能量生成、贮存和利用 12.试从蛋白质营养价值角度分析小儿偏食的害处。 13.参与蛋白质消化的酶有哪些?各自作用? 14.从蛋白质、氨基酸代角度分析严重肝功能障碍时肝昏迷的成因。 15.食物蛋白质消化产物是如何吸收的? 16.简述体氨基酸代状况。 17.1分子天冬氨酸在肝脏彻底氧化分解生成水、二氧化碳和尿素可净生成多少分子ATP?简述代过程。 18.简述苯丙氨酸和酪氨酸在体的分解代过程及常见的代疾病。 19.简述甲硫氨酸的主要代过程及意义。 20.简述谷胱甘肽在体的生理功用。 21.简述维生素B6在氨基酸代中的作用。 22.讨论核苷酸在体的主要生理功能

23.简述物质代的特点? 24.试述丙氨酸转变为脂肪的主要途径? 25.核苷、核苷酸、核酸三者在分子结构上的关系是怎样的? 26.参与DNA复制的酶在原核生物和真核生物有何异同? 27.复制的起始过程如何解链?引发体是怎样生成的? 28.解释遗传相对保守性及其变异性的生物学意义和分子基础。 29.什么是点突变、框移突变,其后果如何? 30.简述遗传密码的基本特点。 31.蛋白质生物合成体系包括哪些物质,各起什么作用。 32.简述原核生物基因转录调节的特点。阻遏蛋白与阻遏机制的普遍性。33.简述真核生物基因组结构特点。 34.同一生物体不同的组织细胞的基因组成和表达是否相同?为什么?35.简述重组DNA技术中目的基因的获取来源和途径。 36.作为基因工程的载体必须具备哪些条件? 37.什么叫基因重组?简述沙门氏菌是怎样逃避宿主免疫监视的?38.简述类固醇激素的信息传递过程。 39.简述血浆蛋白质的功能。 40.凝血因子有几种?简述其部分特点? 41.简述红细胞糖代的生理意义。 42.试述维生素A缺乏时,为什么会患夜盲症。 43.简述佝偻病的发病机理。 44.维生素K促进凝血的机理是什么?

生物化学简答题35566

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤? 生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽 限速步骤: 1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸 2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。 3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、 NADH+H+和CO2。 4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用? 概念: 转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。 这一过程分为两步反应: -H2O +H2O +H2O -H 2O 转氨作用的生理意义: a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成 时对非必需氨基酸的需求。 b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此, 对糖和蛋白质代谢产物的相互转变有其重要性。 c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨 基酸脱氨的重要方式。 d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血 清的转氨酶含量大有助于肝炎病情的诊断。 转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。 5.简述磷酸戊糖途径概念及生理意义 概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。 1)产生大量的NADPH,为细胞的各种合成反应提供还原力 2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷 酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y 型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

生物化学简答题新整理

第一章蛋白质的结构与功能 1.为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 各种蛋白质的含氮量颇为接近,平均为16%,因此测定蛋白质的含氮量就可推算出蛋白质含量。常用的公式为:蛋白质含量(克%)=每克样品含氮克数 X 6.25 X 100。 2.何谓肽键和肽链及蛋白质的一级结构? 一个氨基酸的a-羧基和另一个氨基酸的a-氨基,进行脱水缩合反应,生成的酰胺键称为肽键。肽键具有双键性质。由许多氨基酸通过肽键相连而形成长链,称为肽链。肽链有二端,游离a-氨基的一端称为N-末端,游离a-羧基的一端称为C-末端。蛋白质一级结构是指多肽链中氨基酸排列顺序,它的主要化学键为肽键。 3.什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征? 蛋白质二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋、β-折叠、β-转角和无规卷曲四种。在α-螺旋结构中,多肽链主链围绕中心轴以右手螺旋方式旋转上升,每隔3.6个氨基酸残基上升一圈。氨基酸残基的侧链伸向螺旋外侧。每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羰基上的氧形成氢键,以维持α-螺旋稳定。在β-折叠结构中,多肽键的肽键平面折叠成锯齿状结构,侧链交错位于锯齿状结构的上下方。两条以上肽键或一条肽键内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,维持β-折叠构象稳定。在球状蛋白质分子中,肽链主链常出现1800回折,回折部分称为β-转角。β-转角通常有4个氨基酸残基组成,第二个残基常为脯氨酸。无规卷曲是指肽链中没有确定规律的结构。 4.举例说明蛋白质的四级结构。 蛋白质四级结构是指蛋白质分子中具有完整三级结构的各亚基在空间排布的相对位置。例如血红蛋白,它是由1个α亚基和1个β-亚基组成一个单体,二个单体呈对角排列,形成特定的空间位置关系。四个亚基间共有8个非共价键,维系其四级结构的稳定性。 5.举例说明蛋白质的变构效应。 当配体与蛋白质亚基结合,引起亚基构象变化,从而改变蛋白质的生物活性,此种现象称为变构效应。 变构效应也可发生于亚基之间,即当一个亚基构象的改变引起相邻的另一亚基的构象和功能的变化。 例如一个氧分子与Hb分子中一个亚基结合,导致其构象变化,进一步影响第二个亚基的构象变化,使之更易与氧分子结合,依次使四个亚基均发生构象改变而与氧分子结合,起到运输氧的作用。 6.常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么? 蛋白质分离纯化的方法主要有:盐析、透析、超离心、电泳、离子交换层析、分子筛层析等方法。盐析是应用中性盐加入蛋白质溶液,破坏蛋白质的水化膜,使蛋白质聚集而沉淀。透析方法是利用仅能通透小分子化合物的半透膜,使大分子蛋白质和小分子化合物分离,达到浓缩蛋白质或去除盐类小分子的目的。蛋白质为胶体颗粒,在离心力作用下,可沉降。由于蛋白质其密度与形态各不相同,可以应用超离心法将各种不同密度的蛋白质加以分离。蛋白质在一定的pH溶液中可带有电荷,成为带电颗粒,在电场中向相反的电极方向泳动。由于蛋白质的质量和电荷量不同,其在电场中的泳动速率也不同,从而将蛋白质分离成泳动速率快慢不等的条带。蛋白质是两性电解质,在一定的pH溶液中,可解离成带电荷的胶体颗粒,可与层析柱内离子交换树脂颗粒表面的相反电荷相吸引,然后用盐溶液洗脱,带电量小的蛋白质先被洗脱,随着盐浓度增加,带电量多的也被洗脱,分部收集洗脱蛋白质溶液,达到分离蛋白质的目的。分子筛是根据蛋白质颗粒大小而进行分离的一种方法。层析柱内填充着带有小孔的颗粒,小分子蛋白质进入颗粒,而大分子蛋白则不能,因此不同分子量蛋白质在层折柱内的滞留时间不同,流出层析柱的先后不同,可将蛋白质按分子量大小而分离。 种氨基酸具有共同或特异的理化性质 氨基酸具有两性解离的性质 含共轭双键的氨基酸具有紫外吸收性质最大吸收峰在 280 nm 附近 氨基酸与茚三酮反应生成蓝紫色化合物氨基酸与茚三酮反应生成蓝紫色化合物

生物化学简答题

什么是蛋白质的二级结构,他主要有哪几种? 蛋白质的二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋,β-折叠,β-转角和无规则卷曲四种。 简述α-螺旋结构特征:1、在α-螺旋结构中,多肽链主要围绕中心轴以右手螺旋方式螺旋上升,每隔 3.6个氨基酸残基上升一圈,螺距 为0.54nm2、氨基酸残基的侧链伸向螺旋外侧。3、每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羟基上的氧形成氢键,以维持α-螺旋稳定。 简述常用蛋白质分离、纯化方法:盐析、透析、超速离心、电泳、离子交换层析、分子筛层析。 简述谷胱甘肽的结构和功能:组成:谷胱甘肽由谷氨酸、半胱氨酸和甘氨酸构成的活性三肽,功能基团:半胱氨酸残基中的巯基。功能: 1、作为还原剂清除体内H2O2,使含巯基的酶或蛋白质免遭氧化,维持细胞膜的完整性。 2.具有嗜核特性,与亲电子的毒物或药物结合, 保护核酸和蛋白质免遭损害。 哪些原因影响蛋白质α-螺旋结构的形成或稳定?1、一条多肽链中,带有相同电荷的氨基酸彼此相邻,相互排斥,妨碍α-螺旋的形成。2、含有大侧链的氨基酸残基,彼此相邻,空间位阻较大也会影响α-螺旋的形成。3、脯氨酸为亚氨基酸,亚氨基酸形成肽键后,没有了 游离的氢,不能形成氢键,因此不能形成α-螺旋。 酶的化学修饰的特点是什么:①在化学修饰过程中,酶发生无活性和有活性两种形式的互变②该修饰时共价键的变化,最常见的是磷酸 化和去磷酸化修饰③常受激素的调控④是酶促反应⑤有放大效应 酶的变构调节特点是什么:细胞内一些中间代谢产物能与某些酶分子活性中心以外的某一部位以非共价键可逆结合,使酶构象发生改变 并影响其催化活性,进而调节代谢反应速率,这种现象为变构反应,其特点是①变构酶常由多个亚基构成②变构效应剂常结合在活性中 心以外的调节部位,引起酶空间构象的改变,从而改变酶的活性③变构效应剂与调节部位以非共价键结合④酶具有无活性和有活性两种 方式互变⑤不服从米曼氏方程,呈S型曲线 酶和一般催化剂比较有何异同:相同点:①反应前后无质和量的改变②不改变反应的平衡点③只催化热力学允许的反应④都是通过降低 反应活化能而增加反应速率的不同点①酶的催化效率高②酶对底物有高度特异性③酶活性的可调节性,酶的催化作用多受多种因素调节 ④酶是蛋白质,对反应条件要求严格,如温度、pH等 简述Km和Vmax的意义:Km的意义:①Km等于反应速率为最大速率一半时的底物浓度②一些酶的K2>>K3,Km可表示酶和底物 的亲和力③Km值是酶的特征性常数,它与酶结构,酶所催化的底物和反应环境如温度、pH、离子强度等有关,而与酶浓度无关Vmax 的意义:Vmax是酶被底物完全饱和时的反应速率 简述何谓酶原与酶原激活的意义:一些酶在细胞合成时,没有催化活性,需要经一定的加工剪切才有活性。这类无活性的酶的前体称为 酶原。在合适的条件下和特定的部位,无活性的酶原向有活性的酶转化的过程称为酶原的激活。酶原激活的意义:酶原形式的存在及酶 原的激活有重要的生理意义。消化道蛋白酶以酶原形式分泌,避免了胰腺细胞和细胞外间质的蛋白被蛋白酶水解而破坏,并保证酶在特 定环境及部位发挥其催化作用。正常情况下血管内凝血酶原不被激活,则无血液凝固发生,保证血流通畅运行。一旦血管破损,凝血酶 原激活成凝血酶,血液凝固发生催化纤维蛋白酶原变成纤维蛋白阻止大量失血,起保护机体作用 举例说明什么是同工酶,有何意义:同工酶使指催化相同的化学反应,但酶分子结构、理化性质及免疫学性质等不同的一组酶意义:①同工酶可存在于不同个体的不同组织中,也可存在于同一个体同一组织中和同一细胞中。它使不同的组织、器官和不同的亚细胞结构 具有不同的代谢特征。例如:LDH1和LDH5分别在心肌和肝脏高表达②还可以作为遗传标志,用于遗传分析研究。在个体发育的不同 阶段,同一组织也可因基因表达不同而有不同的同工酶谱,即在同一个体的不同发育阶段其同工酶亦有不同③同工酶的测定对于疾病的 诊断及预后判定有重要意义。如心肌梗死后3~6小时血中CK2活性升高,24小时酶活性到达顶峰,3天内恢复正常水平 金属离子作为辅助因子的作用有哪些:①作为酶活性中心的催化基因参加反应,传递电子②作为连接酶与底物的桥梁,便于酶和底物密 切接触③为稳定酶的空间构象④中和阴离子,降低反应的静电斥力 酶的必需基团有哪几种,各有什么作用:酶的必需基团包括活性中心内的必需基团和活性中心外的必需基团。活性中心内的必需基团有 结合基团和催化基团。结合基团结合底物和辅酶,使之与酶形成复合物。能识别底物分子特异结合,将其固定于酶的活性中心。催化基 团影响底物分子中某些化学键的稳定性,催化底物发生化学反应,并最终将其转化为产物。活性中心外的必需基团为维持酶活性的空间 构象所必需 何谓酶促反应动力学,影响酶促反应速率的因素有哪些:酶促反应动力学是研究酶促反应速率及影响酶促反应速率各因素的科学,影响 酶促反应速率的因素有酶浓度、底物浓度、pH、温度、抑制剂及激活剂等①在在其他因素不变的情况下,底物浓度的变化对反应速率影 响的作图时呈矩形双曲线的②底物足够时,酶浓度对反应速率的影响呈直线关系③温度对反应速率的影响具有双重性④pH通过改变酶和 底物分子解离状态影响反应速率⑤抑制剂可逆或不可逆的降低酶促反应速率⑥激活剂可加快酶促反应速率 举例说明竞争性抑制作用在临床上的应用:以磺胺类药物为例:①对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境中的叶酸, 而是在菌体内二氢叶酸合成酶的催化下,以对氨基苯甲酸为底物合成二氢叶酸。二氢叶酸是核苷酸合成过程中的辅酶之一四氢叶酸的前 体②磺胺类药物的化学结构与对氨基甲苯酸相似,是二氢叶酸合成酶的竞争性抑制剂,抑制二氢叶酸的合成。细菌则因核苷酸乃至核酸 的合成受阻而影响其生长繁殖。人类能直接利用食物中的叶酸,体内的核酸合成不受磺胺类药物的干扰。③根据竞争性抑制剂的特点, 服用磺胺类药物时必须保持血液中药物的高浓度,以发挥其有效竞争性抑菌作用许多属于抗代谢物的抗癌药物,如氨甲喋呤、5-氟尿嘧啶、6-巯基嘌呤等,几乎都是酶的竞争性抑制剂,它们分别抑制四氢叶酸、脱氧胸苷酸及嘌呤核苷酸的合成,以抑制肿瘤的生长 比较三种可逆性抑制作用的特点:①竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用大小与抑制剂和底 物的浓度以及酶对它们的亲和力有关。Km升高,Vmax不变②非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶活性中心外 的必需基团结合。不影响酶在结合抑制剂后与底物的结合。该抑制作用的强弱只与抑制剂的浓度有关。Km不变,Vmax下降③反竞争抑 制剂:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。Km和Vmax均下降 生物氧化的特点:1、在细胞内温和的环境中(提问,PH接近中性):在一系列酶的催化下逐步进行:能量逐步释放有利于ATP的形成;广泛的加氢脱水反应使物质能间接获得氧,并增加脱氢的机会;产生的水是由脱下的氢与氧结合产生的,CO2由有机酸脱羧产生。 氧化磷酸化的抑制剂有哪些,请举例说明:1、呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥、抗霉素A、二巯基丙醇、CO、CN-、N3及H2S。2、解偶联剂:二硝基苯酚。3、氧化磷酸化抑制剂:寡霉素。 NADH呼吸链的电子传递顺序;如果加入异戊巴比妥结果将如何?NAD H→FMN(Fe-S)→CoQ→Cyt b→Cyt c1→Cyt c→Cyt aa3→1/2O2,异戊巴比妥与FMN结合,从而阻断电子传递链,使电子传递终止,细胞呼吸停止。 体内生成ATP的两种方式的什么,以哪种为主?底物水平磷酸化和氧化磷酸化。前者指直接将代谢物分子中的能量转移给ADP(或者GDP)而生成ATP(或GTP)的过程。后者指代谢物脱下的2H在呼吸链电子传递过程中偶联ADP磷酸化而生成ATP的过程,这是产生ATP的主要方式。 简述胞液中的还原当量(H+)的两种穿梭途径:在胞液中生成的H+不能直接进入线粒体经呼吸链氧化,需借助穿梭作用才能进入线粒体 内。其中通过α-磷酸甘油穿梭,2H氧化时进入琥珀酸呼吸链,生成 1.5分子ATP;进过苹果酸-天冬氨酸的穿梭作用,则进入NADH呼吸链,生成 2.5分子ATP。 磷酸戊糖途径的生理意义:(1)为核酸的生物合成提供核糖(2)提供NADPH作为供氢体参与多种代谢反应:a.NADPH是体内许多合成代谢 的供氢体,如脂肪酸和胆固醇的合成.b. NADPH参与体内羟化反应,与生物合成和生物转化有关.c. 用于维持GSH的还原状态,保护-SH基蛋白和-SH酶免受氧化及的损坏:保护红细胞膜的完整性. TCA循环的要点: a乙酰CoA经TCA循环被氧化成2分子CO2;b 有4次脱氢反应,其中3次由NAD+接受,1次由FAD接受:c 有3个不可逆反应,分别由柠檬酸合酶、异柠檬酸脱氢酶、a-酮戊二酸脱氢酶催化;d 消耗2分子水(柠檬酸合酶及延胡索酸酶反应);e 发生1次底物水平磷酸化反应(由琥珀酰CoA合成酶催化) 糖异生的关键酶反应:丙酮酸羧化酶:丙酮酸+CO2+ATP→草酰乙酸+ADP+Pi 磷酸烯醇式丙酮酸羧激酶:草酰乙酸+GTP→磷酸烯醇式丙 酮酸+GDP 果糖双磷酸酶-1: 1,6-双磷酸果糖+H2O→6-磷酸果糖+Pi 葡萄糖-6-磷酸酶:6-磷酸葡萄糖+H2O→葡萄糖+Pi。 6-磷酸葡萄糖的代谢途径及其在糖代谢中的作用:1来源:a葡萄糖经糖酵解途径中的己糖激酶或葡萄糖激酶催化磷酸化反应生成;b.由糖原分解产生的1-磷酸葡萄糖异构生成;c非糖物质经糖异生途径由6-磷酸果糖异构生成. 2.去路:a经糖酵解生成乳酸;b.经有氧氧化彻底分解为 CO2和水;c.由变位酶催化生成1-磷酸葡萄糖,参与糖原合成;d.在6-磷酸葡萄糖脱氢酶的催化下进入磷酸戊糖途径;e异生为葡萄糖. 3.由此可见,6-磷酸葡萄糖是糖代谢多种途径的交叉点,是各代谢途径的共同中间产物.6-磷酸葡萄糖的代谢去向取决于各代谢途径中相关酶的活

相关文档
最新文档