有限元分析课程设计报告

有限元分析课程设计报告
有限元分析课程设计报告

姓名:班级:学号:指导教师:

一、基坑支护设计模拟

(一)桩锚支护设计模拟

1、工程概况

场地位于长春市东部经济技术开发区赛的广场东北角,场区地势较为平坦,标高在199.1—200.97,高差1.87米,开挖深度10米。

经本次勘察,据钻深资料,标准贯入,静力触探原位测试,结合室内土工试验成果综合判定。场区内地基土自上而下依次为:1、杂填土2、淤泥质粉质粘土3、粉质粘土4、粉质粘土5、粘土6、粉质粘土7、粘土8、粉质粘土9、全风化泥岩。

工程基坑深10米,采用桩锚支护,设置两层锚杆,地面超载按q=10.5Kpa 考虑,场地土层参数如图所示,采用逐层开挖支撑力不变法对支护结构进行设计计算。

2、土层及结构参数

模型材料参数表

属性名称单元

类型

弹模

(Mpa)

泊松

容重

(Kn/m3)

渗流系数

(m/day)

粘聚力

(Kn/m2)

内摩擦

(°)

杂填土1 平面

应变

8000 0.3 18.00 0.1 0.00 0.00

粉质粘土2 平面

应变

28000 0.3 19.40 0.1 16.00 13.00

粉质粘土3 平面

应变

28000 0.3 19.50 0.1 20.00 12.00

粉质粘土4 平面

应变

28000 0.3 19.70 0.1 25.00 14.00

粉质平面28000 0.3 19.40 0.1 20.00 14.00

粘土5 应变

粉质粘土6 平面应变

28000 0.3 19.80 0.1 43.00 18.00

粉质粘土7 平面应变

28000 0.3 19.70 0.1 38.00 20.00

粉质粘土8 平面应变 28000 0.3 19.80 0.1 48.00 18.00

粘土9

平面应变 28000 0.3 19.9 0.1 55.00 19.00

锚杆 植入

式桁架

200000000

0.3 78.5 0.1

桩 梁

24000000

0.3 25 0.1

3、模拟方法

桩采用梁单元模拟,锚杆固定端采用植入式桁架模拟,锚杆预应力采用一对集中力与分布力模拟,开挖后土体采用钝化单元模拟,本构模型为摩尔-库伦。 4、几何模型

基坑竖向40m ,横向共240m 。

截图

5、网格划分

采取自动划分网格循环网格法,网格单元尺寸为2,共36个网格组3090个节点。

截图

6、边界条件

左右及底部均限制水平及竖向变形

计算结果

边界土体地基反力最大为642.510KN最小为0.00000345KN

与最大为1579.93KN最小为0KN,

支护结构水平力最大为2086.17KN最小为38.313KN,

支护结构竖直方向力最大为832.583KN最小为2.0857KN,

支护结构水平方向弯矩最大为800.446KN.M最小为44.7542KN.M,

土体水平方向变形最大为0.0270085m最小为0m,

土体竖直方向变形

最大为0.155257m最小为0.00278188m

(二)复合土钉墙支护设计模拟

1、工程概况

场地位于长春市东部经济技术开发区赛的广场东北角,场区地势较为平坦,标高在199.1—200.97,高差1.87米,开挖深度10米。

经本次勘察,据钻深资料,标准贯入,静力触探原位测试,结合室内土工试验成果综合判定。场区内地基土自上而下依次为:1、杂填土2、淤泥质粉质粘土3、粉质粘土4、粉质粘土5、粘土6、粉质粘土7、粘土8、粉质粘土9、全风化泥岩。

工程基坑深10米,采用桩锚支护,设置两层锚杆,地面超载按q=10.4Kpa 考虑,场地土层参数如图所示,采用逐层开挖支撑力不变法对支护结构进行设计计算。

2、土层及结构参数

模型材料参数表

属性名称单元

类型

弹模

(Mpa)

泊松

容重

(Kn/m3)

渗流系数

(m/day)

粘聚力

(Kn/m2)

内摩擦

(°)

杂填土1 平面

应变

8000 0.3 18.00 0.1 0.00 0.00

粉质粘土2 平面

应变

28000 0.3 19.40 0.1 16.00 13.00

粉质粘土3 平面

应变

28000 0.3 19.50 0.1 20.00 12.00

粉质粘土4 平面

应变

28000 0.3 19.70 0.1 25.00 14.00

粉质粘土平面

应变

28000 0.3 19.40 0.1 20.00 14.00

5

粉质粘土6 平面

应变

28000 0.3 19.80 0.1 43.00

18.00

粉质

粘土

7

平面

应变

28000 0.3 19.70 0.1 38.00 20.00

粉质

粘土

8

平面

应变

28000 0.3 19.80 0.1 48.00 18.00

粘土

9

平面

应变

28000 0.3 19.9 0.1 55.00 19.00 锚杆

植入

式桁

200000000 0.3 78.5 0.1

土钉

植入

式桁

200000000 0.3 78.5 0.1

3、模拟方法

锚杆固定端采用植入式桁架模拟,锚杆预应力采用一对集中力与分布力模拟,土钉采用植入式桁架模拟,开挖后土体采用钝化单元模拟,本构模型为摩尔-库伦。

4、几何模型

基坑竖向20m,横向共100m,基坑内部宽40m

5、网格划分

采取自动划分网格循环网格法,网格单元尺寸为1,共53个网格组3722个节点。

6、边界条件

左右及底部均限制水平及竖向变形

7、计算结果

边界土体地基反力最大为5495.73KN最小30.1392KN

与最大为975.459KN最小为0,

土体水平方向变形Dx最大为74.6370m最小为2.33433m,

土体竖直方向变形Dy最大为306.267m最小为2.44050m。

二、基坑降水模拟

1、工程概况

场地位于长春市东部经济技术开发区赛的广场东北角,场区地势较为平坦,标高在199.1—200.97,高差1.87米,开挖深度10米。

经本次勘察,据钻深资料,标准贯入,静力触探原位测试,结合室内土工试验成果综合判定。场区内地基土自上而下依次为:1、杂填土2m ;2、淤泥质粉质粘土4m;3、粉质粘土3m; 4、粉质粘土1.5m; 5、粘土1m; 6、粉质粘土1.5m;

7、粘土1.3m; 8、粉质粘土1.5m; 9、全风化泥岩10m。

工程基坑深10米,采用桩锚支护,设置两层锚杆,第一层锚杆长15m,锚固段9m;第二层锚杆长53m,锚固段44m。地面超载按q=10.5Kpa考虑,场地土层参数如图所示,采用逐层开挖支撑力不变法对支护结构进行设计计算。

降水工程位置为上面的工程基坑开挖的位置,降水前地下水位位于地表面,降水后地下水位为基坑开挖底部0.5m处,即地下10.5m的位置,地下水类型为潜水,采取的降水方法采用轻型井点降水。

2、土层及结构参数

模型材料参数表

属性名称单元

类型

弹模

(Mpa)

泊松

容重

(Kn/m3)

渗流系数

(m/day)

粘聚力

(Kn/m2)

内摩擦

(°)

杂填土1 平面

应变

8000 0.3 18.00 0.1 0.00 0.00

粉质粘土2 平面

应变

28000 0.3 19.40 0.1 16.00 13.00

粉质粘土3 平面

应变

28000 0.3 19.50 0.1 20.00 12.00

粉质粘土4 平面

应变

28000 0.3 19.70 0.1 25.00 14.00

粉质平面28000 0.3 19.40 0.1 20.00 14.00

粘土5 应变

粉质粘土6 平面应变

28000 0.3 19.80 0.1 43.00 18.00

粉质粘土7 平面应变

28000 0.3 19.70 0.1 38.00 20.00

粉质粘土8 平面应变 28000 0.3 19.80 0.1 48.00 18.00

粘土9

平面应变 28000 0.3 19.9 0.1 55.00 19.00

锚杆 植入

式桁架

200000000

0.3 78.5 0.1

24000000

0.3 25 0.1

3、模拟方法

桩采用梁单元模拟,锚杆固定端采用植入式桁架模拟,开挖后土体采用钝化单元模拟,不同降水阶段的地下采用节点水头模拟,渗流类型为稳定流。 4、几何模型

基坑竖向40m ,横向共240m 。

5、网格划分

采取自动划分网格循环网格法,网格单元尺寸为2,共33个网格组3175个节点。

6、边界条件

左右及底部均限制水平及竖向变形,水头位置分别在开挖面下3.5m、6.5m、10.5m 处

7、计算结果

边界土体地基反力最大为977.719KN最小为0.0364374KN

与最大为1600.86KN最小为0KN,

支护结构水平力Fx,最大为1109.13KN最小为35.4041KN

支护结构竖直方向力Fz最大为722.303KN最小为1.42657KN,

支护结构水平方向弯矩Mx,最大为993.976KN.m最小为0.232516KN.m

土体水平方向变形Dx,最大为0.0417826m最小为0.0011859m

土体竖直方向变形Dy最大为0.107636m最小为0.00883384m

有限元分析报告 (1)

有限元仿真分析实验 一、实验目的 通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。 二、实验软件 HyperMesh、LS-DYNA 三、实验基本原理 本实验模拟刚性球撞击薄板的运动和受力情况。仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。 四、实验步骤 1、按照点-线-面的顺序创建球和板的几何模型 (1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。 (2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。 2、画网格 (1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs 选择前面建好的球面,element size设为,mesh type选择quads,选择elems to current comp,first order,interactive。 (2)画板的网格:做法和设置同上。 3、对球和板赋材料和截面属性 (1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为,E

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

-有限元分析报告

西安市新城区某公司科研办公楼结构设计 有限元分析报告 撰写人:王平 班级:工程力学1203 学号:121010321 指导教师:张卫喜 2016年6月15日

目录 1 工程概况 (2) 2 分析依据 (3) 3 荷载与计算工况 (4) 3.1荷载简化及荷载组合 (4) 3.2 边界条件 (4) 3.3 工况 (5) 4 有限元模型 (6) 4.1 基本假定 (6) 4.2 力学模型 (6) 4.3 主要物理参数取值 (6) 4.4单元选取 (7) 4.5分网与有限元模型 (8) 5 静力分析 (9) 5.1模态结果 (9) 5.2静力分析结果 (13) 5.3 强度校核 (16) 6基于ANSYS、PKPM、手算的误差分析 (18) 6.1计算原理的不同 (18) 6.2 研究对象的复杂性 (19)

1工程概况 工程名称:西安市新城区某公司科研办公楼; 建筑所在地:西安市; 建设规模:总建筑面积约4700m2,主体结构6层,无地下室。结构总高度22.5m,底层结构高度4.5m,其余层结构高度为3.6m,几何模型图如图1所示; 抗震设防烈度:抗震设防烈度为8度,设计基本地震加速度值0.2g,第一组。场地类别为Ⅱ类,特征周期为0.35s。周期折减系数为0.75。 建筑设计使用年限:50年。 结构重要性等级:二级。 图1框架几何模型图

2分析依据 框架结构是由梁、板、柱以刚接相连接而成,构成承重体系的结构,即由梁、板、柱组成框架共同抵抗使用过程中出现的水平荷载和竖直荷载。本设计报告采用ANSYS有限元软件分析。 根据框架结构体系特点,本结构分析主要依据以下国家规范: [1]国家标准:《建筑结构荷载规范》(GB50009-2012).北京:中国建筑工业出版社.2012; [2]国家标准:《建筑抗震设计规范》(GB50011-2010).北京:中国建筑工业出版社.2010; [3]国家标准:《混凝土结构设计规范》(GB50010-2010).北京:中国建筑工业出版社.2010; [4]建筑、勘察等技术文件。

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

各大CAE软件特点比较

有限元分析软件比较 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次

大作业报告参考2有限元学习心得

有限元学习心得 吴清鸽车辆工程 50110802411 短短八周的有限元课已经结束。关于有限元,我一直停留在一个很模糊的概念。我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。总体来说,这是一门非常重要又有点难度的课程。 有限元方法(finite element method) 或有限元分析(finite element analysis),是 求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要 基础性原理。将它用于在科学研究中,可成为探究物质客观规律的先进手段。将 它应用于工程技术中,可成为工程设计和分析的可靠工具。本课程教学基本内容 有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和 壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件 的使用. 通过有限元分析课程学习使我了解和掌握了一些有限元知识: 1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。 2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。掌握有限元分 析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程 的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。 3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。各种结构的实例研究。 4.了解并掌握建立高质量建模所涉及的各种关键技术。包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。掌握PATRAN软件的基本使用。利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。 课程的具体学习内容: 内容: 1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度 矩阵、载荷移置、方程求解; 2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;

(完整)各种有限元分析软件比较

(完整)各种有限元分析软件比较 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)各种有限元分析软件比较)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)各种有限元分析软件比较的全部内容。

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统. 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1。模流分析;2.结构强度分析;3。电磁场分析;4。谐响应分析(比如查找共振频率);5。铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下.ABAQUS 专注结构分析目前没有流体模块.MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。

有限元分析实验报告

学生学号1049721501301实验课成绩 武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析机电工程学院开课学院 指导老师姓名

学生姓名 学生专业班级机电研1502班 学年第学期2016—20152 实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直 向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 方形截面悬臂梁模型建立1.1 建模环境:DesignModeler15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正 视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。 (2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型 :定义单元类型1.2 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2

所示: 图1.2网格划分 1.21定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中 力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示:

有限元分析上机报告

有限元分析基础结课报告任课教师:聂志峰 学生姓名:XXX 学号:XXXXXXXXXXXX 班级:XXXXXXXXXXXX

4m 5 m 2m 水 深 4 m 习题1:选用Plane82单元分析如图1所描述的水坝受力情况,设坝体材料的平均密度为2g/cm3,考虑自重影响,材料弹性模量为E=700Mpa, 泊松比为0.3。按水坝设计规范,在坝体底部不能出现拉应力。分析坝底的受力情况,是否符合要求。 解:(1)思路:建模和分析过程参考上机指南中的Project2。 (2)建模和分析:从已知条件知,此计算类型为Structural力学类型;由于考虑自重的影响,故需设定密度和施加重力载荷;单元类型选择Solid Quad 4node 42;定义材料参数为EX:2.1e11, PRXY:0.3(根据已知条件);生成几何模型利用点生成面方式;网格划分参照Project2;模型施加约束,坝体的底部施加x和y的约束,其余部位不施加约束,载荷在坝体的右端施加水的压力载荷,施加方式9800*{4-{y}};最后分析计算,查看应力图和变形图结果,保存数据。 图1 水坝截面图 (3)ANSYS软件分析过程: 1.1进入ANSYS 程序→ANSYSED 10.0 →Interactive →change the working directory into yours →input Initial jobname: dam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK ANSYS Main Menu→Preprocessor →Material Props →Material Models→Structural →Density →

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

ANSYS实体建模有限元分析-课程设计报告

南京理工大学 课程设计说明书(论文) 作者:学号: 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入08dp,单击OK按钮关闭该对话框。 2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。 2)选择Utility Menu>P1otCtrls>View Settings>Viewing Direction命令,出现Viewing Direction对话框,在XV,YV,ZV Coords of view point文本框中分别输入1, 1, 1,其余选项采用默认设置,单击OK按钮关闭该对话框。 3)建立支座底块 选择Main Menu>Preprocessor> Modeling>Create>volumes>Block>By Demensios 命令,出现Create Block by Demensios对话框,在X1,X2 X-coor dinates文本框

有限元上机实验报告

有限元法基础及应用 上机报告 南京理工大学 2015年12月 上机实验一

1 实验题目 设计一个采用减缩积分线性四边形等参元的有限元模型,通过数值试验来研究网格密度、位移约束条件与总刚度矩阵奇异性、沙漏扩展、求解精度的关系,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。总结出你的研究结论,撰写实验报告。 2 实验目的 通过实验来研究减缩积分方案中网格密度和位移约束条件对总体刚度矩阵奇异性和求解精度的影响,以此加深对有限元减缩积分的理解,和对减缩积分中保证总体刚度矩阵非奇异性的认识。 3建模概述 先保持位移约束条件不变,研究网格密度对总体刚度矩阵奇异性和求解精度的影响,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。如下图1所示,建立一个简支和链杆的约束条件,然后不断增加网格密度,通过ABAQUS 来计算位移和应力的变化规律。 个独立关系式)节点(两个自由度)

4 计算结果分析讨论与结论 1)1*1单元四边形减缩积分实验 载荷布种/单元 应力云图 2)2*1单元四边形减缩积分实验 载荷单元

应力云图3)4*4单元四边形减缩积分实验 载荷布种单元 应力云图

结果分析 5 实验体会与小结 单元刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 K相同 (4)平面图形相似、弹性矩阵D、厚度t相同的单元,e K的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两 (5)e 列,其位置与结点位置对应。 整体刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 (4)稀疏性 (5)非零元素呈带状分布。 [K]的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除[K]的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 对于一个给定形式的单元,如果采用精确积分,则插值函数中所有项次在|J|=常数的条件下能被精确积分,并能保证刚度矩阵的非奇异性。如果采用减缩积分,因为插值函数中只有完全多项式的项次能被精确积分,因此需要进行刚度矩阵非奇异必要条件的检查。

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

相关文档
最新文档