简易函数信号发生器的设计

简易函数信号发生器的设计
简易函数信号发生器的设计

引言

尽管近30年来以大规模集成工艺为依托的各种数字电路的问世,逐渐代替了各种传统的模拟电路的应用领域,但是物理世界毕竟还是模拟的,与物理世界各种现象的接口,仍然需要靠模拟电路来承担。即便在某一功能块中,模拟电路所占份量可能很少,但是这一部分或许是整个系统就设计和实现来说最具挑战性的部分,而且往往在系统性能上起着关键作用。尤其是当速度和功率成为至关重要的因素时,模拟电路就更显突出。

运算放大器和各种模拟集成电路是应用最为广泛的一类模拟器件。随着及程度的提高、性能的改善,愈来愈受到人们的青睐;在工业控制、遥控遥测、仪表仪器等领域成为不可或缺的器件。传统上隶属于模拟电子学领域的很多功能,今天都用数字形式给予实现了。然而,物理世界本来就是模拟的,这表明,总是需要模拟电路去适应这些物理信号,像与传感器相连的电路,以及把模拟信息转换为数字信息,供进一步处理,和从数字信息转换回模拟信息供物理世界再利用等这样一些电路,都还需要用到模拟电路。因此,当今的许多应用,最好是由混合模式的集成电路(混合模式IC)和系统来提出。它依赖模拟电路与物理世界接口,而数字电路则用作处理和控制。即便这个模拟电路或许进展这个芯片面积的一小部分,但它往往却是设计中极具挑战性的部分,并且在整个系统的性能上起着关键作用。

随着电子技术和计算机技术的飞速发展,电子电路及其应用系统设计手段也越来也越先进。传统的电子电路与系统设计方法,周期长、耗材多、效率低,难以满足电子技术飞速发展的要求。“电子工作台”,即EWB(Electronic Workbench),是将先进的计算机技术应用电子设计与仿真过程的新技术,它已被广泛的应用于电子电路分析、设计、仿真、印制电路板的设计等各项工作之中。EWB 为使用者提供了一个集成一体化的设计与试验环境,创建电路、试验分析和结果输出在一个集成菜单系统中可以全部完成,使电子电路及系统的设计产生了划时代的变化,极大地提高了设计质量与效率。EWB与电路分析软件“PSpice”完全兼容,而且具有界面形象逼真、操作方便,采用图形方式创建电路等优点。EWB有庞大的原器件库和比较齐全的仪器仪表库。

在本设计中将采用数-模结合的集成电路来实现方波和三角波的输出。函数发生器是一种可以同时产生方波、三角波和正弦波的专用集成电路。当调节外部电路参数时,还可以获得占空比可调的矩形波和锯齿波。因此广泛用于仪器仪表中。函数信号发生器的功能是产生据由指定特征,例如频率、幅度、形状以及占空比的波形,有时会通过适当的控制信号,将这些特征设计成可在外部编程的。一般来说,信号发生器是利用某些反馈形式以及像电容那样其特征与事件有关的器件仪器来实现。

作者

2006-6-20

1 绪论

1.1 本课题相关背景知识

随着电子技术和计算机技术的飞速发展,电子电路及其应用系统设计手段也越来越先进。传统的电子电路与系统设计方法,周期长、耗材多、效率低,难以满足电子技术飞速发展的要求。“电子工作平台”,即EWB(Electronics Workbench),是将先进的计算机技术应用在电子设计与仿真过程中的新技术,它已被广泛应用于电子电路分析、设计、仿真、印制电路板的设计等各项工作之中。EWB为使用者提供了一个集成一体化的设计与试验环境,创建电路、试验分析和结果输出,在一个集成菜单系统中可以全部完成,使电子电路及系统的设计产生了划时代的变化,极大地提高了设计质量与效率。EWB与电路分析软件PSpice完全兼容,而且具有界面形象逼真、操作方便,采用图形方式创建电路等优点。EWB还有庞大的元器件库和比较齐全的仪器仪表库。

集成电路(IC: Integrated Circuit)是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容、电感等无源器件,按照一定的电路互连,“集成”在一块半导体晶片(如硅,或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。

1965年,Intel公司创始人之一的Gorden E.Moore博士在研究存储器芯片上晶体管增长数的时间关系时预测,芯片上晶体管数目每隔18个月翻一番或每三年翻两番,这一关系称为摩尔定律(Moore’s Law)。集成电路从19世纪60年代开始发展至今,其规模几乎仍然按照摩尔定律发展。从标志IC水平的两个指标——集成规模(Integration Scale)和特征尺寸(Feature Size)来看,目前单个芯片上已经可以制作含有几百万个晶体管的一个完整的数字系统或数模混合的电子系统,集成电路的特征尺寸也已发展到深亚微米水平,0.18m

工艺已经走向规模化生产。

随着应用领域的不断扩展,社会对集成电路芯片的需求量和种类越来越多,消费者对产品的整机性能要求越来越高。而集成电路设计技术与制造技术水平也在迅速发展,越来越多性价比好的电路不断推出。在这种需求牵引和技术进步的双重作用下,集成电路正在向集成系统(IS:Integrated System)发展,即在一个微电子芯片上将信息的采集、传输、存储、处理等功能集成在一起而构成系统芯片(SOC:System On Chip)。为实现SOC,提出了更多的基础研究、设计技术研究及工艺技术研究的方向。此外,这种微电子技术一旦与其他学科相结合,将会诞生出一些崭新的学科,MEMS 技术和DNA生物芯片就是突出的例子。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物技术结合的产物。

根据集成电路的器件结构类型、集成规模、使用的基片材料、电路功能以及应用领域,对集成

图1.1 集成电路分类

1.2 函数信号发生器的发展现状

目前,市场上的信号发生器多种多样,一般按频带分为以下几种: 超高频:频率范围1MHz 以上,可达几十兆赫兹; 高频: 几百干赫兹到几兆赫兹;

低频: 频率范围为几十赫兹到几百千赫; 超低频:频率范围为零点几赫兹到几百赫兹; 超高频信号发生器,产生波形一般用LC 振荡电路。

高频、低频和超低频信号发生器,大多使用文氏桥振荡电路,即RC 振荡电路,通过改变电容和电阻值,改变频率。用以上原理设计的信号发生器,其输出波形一般只有两种,即正弦波和脉冲波,其零点不可调。而且价格也比较贵,一般在几百元左右。在实际应用中,超低频波和高频波一般是不用的,一般用中频,即几十赫兹到几十千赫兹。用单片计算机Inte18031,加上一片DAC0832,就可以做成一个简单的信号发生器,其频率受计算机运行的程序的控制。我们可以把产生各种波形的程序,写在EPROM 中,装入本机,按用户的选择,运行不同的程序,产生不同的波形。再在DAC0832输出端加上一些电压变换电路,就完成了一个频率、幅值、零点均可调的多功能信号发生器的设计。 1.3 函数信号发生器的发展趋势

中国电子测量仪器,随着世界高科技发展的潮流,走进了高科发展的道路,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。我国电子测量仪器在若干重大领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。 1.4 课题完成的工作及研究内容

熟悉EWB 仿真软件的环境,掌握EWB 操作过程。利用EWB 仿真软件完成设计频率为z kH 1、失真度小的方波和三角波发生器的工作,研究其频率、幅度是否可调。

2 电路仿真

2.1 EWB仿真软件概述

EWB是Electronics Workbench的缩写,称为电子工作平台,是一种在电子技术界广为

用的优秀计算机仿真设计软件,被誉为"计算机里的电子实验室"。其特点是图形界面操作,易学、易用,快捷、方便,真实、准确,使用EWB可实现大部分硬件电路实验的功能。

电子工作平台的设计试验工作区好像一块"面包板",在上面可建立各种电路进行仿真实验。电子工作平台的器件库可为用户提供350多种常用模拟和数字器件,设计和试验时可任意调用。虚拟器件在仿真时可设定为理想模式和实模式,有的虚拟器件还可直观显示,如发光二极管可以发出红绿蓝光,逻辑探头像逻辑笔那样可直接显示电路节点的高低电平,继电器和开关的触点可以分合动作,熔断器可以烧断,灯泡可以烧毁,蜂鸣器可以发出不同音调的声音,电位器的触点可以按比例移动改变阻值。电子工作平台的虚拟仪器库存放着数字电流表、数字电压表、数字万用表、双通道1000MHz 数字存储示波器、999MIHz数字函数发生器、可直接显示电路频率响应的波特图仪、16路数字信号逻辑分析仪、16位数字信号发生器等,这些虚拟仪器随时可以拖放到工作区对电路进行测试,并直接显示有关数据或波形。电子工作平台还具有强大的分析功能,可进行直流工作点分析,暂态和稳态分析,高版本的EWB还可以进行傅立叶变换分析、噪声及失真度分析、零极点和蒙特卡罗等多项分析。

2.1.1 EWB的特点

与其他电子电路仿真软件相比,EWB的特点是:

1)界面直观、操作方便。EWB改变了一般电子电路仿真软件必须采用文本方式创建电路和选择元

器件及测试仪器与仪表的方法,采用图形方式创建电路,即直接从屏幕上的元器件库和仪器库中选取电路元器件和测试仪器与仪表。

2)电路元器件丰富。EWB提供了数千种电路元器件及其理想值,并与目前常用的电子电路分析软

件PSpice的元器件库完全兼容,同时还可以根据需要新建或扩充元器件库。

3)仿真手段符合实际。EWB提供的虚拟仪器与实际仪器极为相似,利用虚拟仪器对电路进行仿真

实验如同使用真实仪器进行电路实验,便于学习与使用。

虽然EWB在电子电路设计与仿真的许多地方都应用广泛,但他还是存在一些缺点:首先,EWB 不能实现通过编程来实现的电路设计与仿真;其次,EWB是一种理想的环境,在此环境下工作的电路以及仿真结果都是理想值,与实际电路的测试仿真结果有误差。

2.1.2 EWB的主要功能

1)电路分析功能

EWB提供了丰富而详细的电路分析方法,不仅提供了瞬态与稳态、时域与频域、线形与非线性,和噪声与失真等常规的电路分析方法。同时还提供了傅立叶、电路极-零点、灵敏度和电路容差等电路分析方法,帮助设计这分析电路特性。

2)故障设置功能

可以设置实际实验中不容易做到的开路、短路和漏电等故障,观察和分析电路状态,加深对理论知识的理解。

3)存储功能

在仿真的同时,可以存储所有测试点的数据、波形及测试仪器的工作状态,并能力储备仿真电路所有元器件清单。

4)与其他软件兼容于共享功能

EWB提供的元器件库与PSpice的元器件库完全兼容,同时,在EWB平台上设计的电路原理图可以直接输出到Protel和Orcad等软件平台上,自动排出印制电路板图,从而大大加快电子产品开发速度,提高设计工作效率。

5)模拟电路与数字电路混合的模拟功能

EWB以Spice3F5为模拟软件核心,可以在系统中任意集成模拟与数字元器件,并能自动实现信号转换。

6)波形即时显示功能

可以在电路仿真过程中实时显示需要观察的波形。

7)下拉式电路编辑菜单功能

可以使电路元器件的输入更为方便快捷。

2.1.3 EWB对电路进行设计和试验仿真的基本步骤

1.用虚拟器件在工作区建立电路;

2.选定元件的模式、参数值和标号;

3.连接信号源等虚拟仪器;

4.选择分析功能和参数;

5.激活电路进行仿真;

6.保存电路图和仿真结果。

2.2 EWB的工作界面

启动EWB5.0C,可以看到Electronics Workbench主窗口,它有菜单栏、常用工具栏、元器件选取栏和电路原理图编辑窗口组成,如图2.1所示。

图2.1 EWB 主窗口

由图可以看到,EWB 模拟了一个实际的电子工作台。主窗口的最上层是菜单栏,从中可以选择电路分析、实验与仿真等各种命令;第二层是常用工具栏,从中可以选择各种操作命令;第三层是元器件库栏,从中可以选取电路实验所需的各种元器件与测试仪器;下面最大的区域便是电路原理图编辑窗口,也可以成为电路工作区,在这里可以进行电路的连接,测试与仿真;最下层是电路描述框,用于电路说明。 2.3 EWB 的工具栏

EWB 的工具栏如图2.2所示,其中各按键名称及其功能如下:

图2.2 EWB 工具栏

1) 刷新:清除电路工作区,准备生成新电路。

2)打开:打开电路文件。

3)存盘:保存电路文件。

4)打印:打印电路文件。

5)剪切:将选中的电路剪切至剪贴板。

6)复制:将选中的电路复制至剪贴板。

7)粘贴:将剪贴板中的内容粘贴至电路工作区。

8)旋转:将选中的元器件逆时针旋转90度。

9)水平翻转:将选中的元器件水平翻转180度。

10)垂直翻转:将选中的元器件垂直翻转180度。

11)创子电路:生成子电路。

12)分析曲线:调出曲线分析框。

13)元器件特征:调出元器件特征对话框。

14)缩小:将电路按一定比例缩小。

15)放大:将电路按一定比例放大。

16)在线帮助:调出与选中对象有关的帮助内容。

2.4 EWB的元器件与仪器库栏

EWB元器件库栏由14个元器件库组成,如图2.3所示,单击元器件库中的某一个图标即可打开该元器件库。

1 2 3 4 5 6 7

图2.3 元器件库

1)自定义元器件库自定义元器件库中保存的元器件是:使用者根据需要,自己创建的在EWB元器件库中没有收入的元器件和在电路设计中创建的子电路,可以在电路设计中随时调用。

2)信号源库信号源库及各器件名称如图2.4所示。

图2.4 信号源库

3)基本元器件库基本元器件库及其各元器件名称如图2.5所示。

图2.5 基本元器件库

4)二极管库二极管库及其元器件名称如图2.6所示。

图2.6 二极管库

5)模拟集成器库模拟集成器库其元器件名称如图2.7所示。

图2.7 模拟集成器件库

2.5 元器件的操作使用

(1)根据电路需要,现在元器件库栏中打开该元器件库的下拉菜单,然后从元器件库中将选中的元器件拖拽到电路工作区。

(2)选择单个元器件的方法:单击要选中的元器件,被选中的所有元器件都以红色显示,便于识别。选择多个元器件的方法:Ctrl+单击需要的所有元器件,被选中的所有元器件都以红色显示。如果要同时选中一组相邻的元器件,可以在电路工作取得适当位置拖拽画出一个矩形区域,包围在该矩形区内的一组元器件即被同时选中。

取消选中元器件的方法:取消所有被选中元器件的选中状态,只需但既工作取得空白部分。要取消某一元器件的选中状态,只需使用Ctrl+单击该元器件。

(3)元器件的移动。移动元器件至特定的位置,只要拖动该元器件即可。如果移动的元器件为多个,则必须先用前面的方法选中这些元器件,然后用鼠标的左键拖拉其中的任意一个元器件,则所有选中的元器件就会一起移动到指定的位置。需注意的是与其连接得导线也会重新排列。如果只是想为移动某个(或某些)元器件的位置,也可以先选中它(们),然后再使用键盘上的箭头键作为小的移动。

(4)元器件的调整。为便于电路的合理布局和连线,经常需要对元器件进行调整,这些调整包括旋转、垂直翻转和水平翻转等。在元器件被选中状态下,可用下面三种方式实现:

1)菜单方式,菜单栏中命令如下:

Circuit/Rotate →电路/旋转

Circuit/Flip Vertical →电路/垂直翻转

Circuit/Flip Horizintal →电路/水平翻转

2)工具栏图标方式:

3)热键方式:Ctrl+R →旋转

(5)元器件的复制。要复制元器件有以下三种方式:

1)菜单方式:菜单栏中命令为:Edit/Copy →(编辑/复制)、Edit/Paste →(编辑/粘贴)

2)工具栏图标方式

3)热键方式:复制→ Ctrl+C 粘贴→ Ctrl+V

(6)元器件的删除。要删除被选中的元器件,按键盘Delete键,或菜单命令Edit/Delete(编辑/删除)和Edit/Cut(编辑/剪切)即可。此外,直接将元器件拖拉回其元器件库(打开状态)也可实现删除。

2.6 元器件的参数设置

在电路中,元器件的参数设置是非常重要的一个环节。通过参数调整,可以改变电路的性能指标及测试电路的工作状态等。

2.7 导线的编辑操作

2.7.1 导线的连接

如图2.8所示,连接12V电源和地。将鼠标指向12V电源的端点,出现一个节点,按鼠标左键并拖动出一根导线,拉住导线并指向地的端点,使其出现小圆点,释放鼠标左键,即完成了导线的连接。

图2.8 连接12V电源和地

2.7.2 导线颜色的改变

双击要改变颜色的导线,可弹出Wire Properties对话框如图2.9(a),选择Schematic Options 选项并按下Set Wire Color按钮,然后选择合适的颜色。如图2.9(b)。

图2.9 改变导线的颜色

2.7.3 导线的删除

对准要删除的导线,单击鼠标右键,可得图2.10所示菜单,选择Delete Wire即可删除导线。

对准要删除的导线的一端,按住左键拖动圆点,使导线离开元器件端点,放开左键,导线则自动删除。如图2.10(b)。

图2.10 导线的删除

2.7.4 弯曲导线的调整

如图2.11所示,元器件位置与导线不在同一条直线上,可以选中该元器件,然后用四个箭头键微调该元器件的位置,这种微调方法也可用于对一组选中的元器件的位置的调整。

图2.11 弯曲导线的调整

2.7.5 导线上插入和删除元件

如图 2.12(a)所示,在导线中插入元器件:只要将元器件直接拖动放置在导线上,然后释放即可插入电路中,如图2.12(b)。删除元器件,只需选中该稳压二极管,按Delete键即可。

图2.12 导线上插入元器件

2.7.6 节点的使用

节点是一个小圆点,存放在基本器件库中,一个节点有上、下、左、右四个连接点可以连接来自四个方向的导线,如图2.13所示。将一条导线伸展到另一条导线时会自动产生连接点,并可以赋予标识。

图2.13 节点

1)节点的调整。如果导线接入的节点的方向不适合,会造成导线不必要的弯曲,如图2.14(a)

所示。可以把导线的接点从左边改为右边,如图2.14(b)所示,整个电路就更整齐、美观。

图2.14 节点的调整

2)节点的标识、编号与颜色。在电路中,EWB自动为每个节点分配了一个编号,如图2.15所示。是否显示

节点编号可由菜单Circuit/Schematic Options命令的Show/Hide对话框设置。或双击节点,可得出设置

节点对话框,在对话框中对节点进行标识、编号与颜色的设置。如图2.16所示。

图2.15 节点的标号显示图2.16 单一节点的设置对话框

2.7.7 测试仪器的使用

测试仪器图标放置在一起库中,使用测试仪器的步骤为:

1)从一起库中拖动仪器图标到电路工作区。

2)把仪器图标连接到电路中的测试点。

3)双击仪器图标使之放大成展示面板,以便进行实验观察。

4)将放大的仪器拖放到适合的观察位置。

5)根据测试要求调整仪器上的控制“旋钮”。

6)开始仿真。

2.7.8 电路的激活

一旦创建好了电路并接上了测试仪器,就可以对电路进行特性测试方针。若要激活电路进行仿真,可通过三种方式实现:

1)图标按钮方式:单击窗口右上角的电源开关。

2)菜单方式:在Analysis菜单选择Activate。

3)热键方式:按Ctrl+G。

3 电路设计

3.1 电路设计框图

3.2 可行性及原理分析

获取方波波形的途径不外乎有两种:一种是利用各种形式的多谐振荡器电路直接产生所需要的方波,另一种则是通过各种整形电路把已有的周期性变化的波形变换为符合要求的方波。而要实现三角波波形,常用有集成运放构成的积分电路,输出波形的要求与方波一样,都是1Z kH 、失真度小。所以,可以先通过积分电路得到三角波,再通过对三角波进行整形而得到方波。为了避免积分其对滞留开环增益过大,而导致波形失真度大,在此,我将采用闭环振荡电路的设计方案。 3.2.1 555定时器的结构和功能

555定时器是一种多用途的数字—模拟混合集成电路,利用它能极方便的构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以,555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中得到了应用。

正因为如此,自从Signetics 公司于1972年推出这种产品以后,国际上各主要的电子器件公司也都相继地生产了各自的555定时器产品。尽管产品型号繁多,但所有双极型产品型号最后的3位数码都是555,所有COMS 产品型号最后的4位数码都是7555。而且,它们的功能和外部引脚的排列完全相同。为了提高集成度,随后又产生了双定时器产品556(双极型)和7556(COMS 型)。

图3.1时国产双极型定时器CB555的电路结构图。它有比较器21C 和C 、基本RS 触发器和集电极开路的放电三极管D T 三部分组成。

图3.1 CB555的电路结构图

I v 是比较器1C 的输入端(也称阈值端用TH 标注)

,2I v 是比较器2C 的输入端(也称触发端,用TR 标注)。1C 和2C 的参考电压(电压比较的基准),1R v 和2R v 由CC V 经三个5K 电阻分压给出。在控制电压输入端CO V 悬空时,1R v =CC V 3

2

,2R v =CC V 3

1

。如果CO V 外接固定电压,则1R v =CO V ,

2R v =

CC V 2

1。

D R 是置零输入端。只要在D R 端加上低电平,输出端o v 便立即被置成低电平,不受其他输入

端状态的影响。正常工作时必须使D R 处于高电平。图中1—8为器件引脚的编号。

由图可知,当1I v >1R v ,2I v >2R v 时,比较器1C 的输出1C v =0,比较器2C 的输出2C v =1,基本RS 触发器被置0,D T 导通,同时o v 为低电平。

当1I v <1R v ,2I v >2R v 时, 1C v =1,2C v =1,触发器的状态保持不变,因而D T 和输出的状态也维持

不变。

当1I v <1R v ,2I v <2R v 时, 1C v =1,2C v =0,故触发器被置1, o v 为高电平,同时D T 截止。

当1I v >1R v ,2I v <2R v 时, 1C v =0,2C v =0,触发器处于Q =Q =1的状态,o v 处于高电平,同时D T 截

止。

这样我们就得到了表3.1所示的CB555的功能表。

表3.1 CB555的功能表

输入

输出

D R

1I v 2I v o v

D T 状态

?

?

导通

1

>

CC V 32 >

CC V 31 低 导通

1

2 >CC V 31 不变 不变

1

2

1 >CC V 3

2

1

高 截止

为了提高电路的带负载能力,还在输出端设置了缓冲器4G 。如果将'

0v 端经过电阻接到电源上,

那么只要这个电阻的阻值足够大,o v 为高电平时'0v 也一定为高电平,o v 为低电平时'

0v 也一定为低电平。555定时器能在很宽的电源电压范围内工作,并可承受较大的负载电流。双极型555定时器的电源电压范围为5—16v ,最大的负载电流达200mA 。COMS 型7555定时器的电源电压范围为3—18v ,但最大负载电流在4mA 以下。

可以设想,如果使1C v 和2C v 的低电平信号发生在输入电压信号的不同电平,那么,输出与输入之间的关系将为施密特触发特性;如果在2I v 加入一个低电平,触发信号以后,经过一定的时间能在1C v 输入端自动产生一个低电平信号,就可以得到单稳态触发器;如果能使1C v 和2C v 的低电平信号交替的反复出现,就可以得到多谐振荡器。

施密特触发器(Schmitt Trigger )是脉冲波形变换中经常使用的一种电路。他在性能上有两个重要的特点:

第一,输入信号从低电平上升的过程中,电路状态装环视对应的输入电平与输入信号从高电平下降过程中对应的输入转换电平不同。

第二,在电路状态转换时,通过电路内部的正反馈过程是输出电压波形的边沿变得很陡。 将555定时器的1I v 和2I v 两个输入端连在一起作为信号输入端,如图3.2所示,即可得到施密特触发器。

图3.2 施密特触发器电路图和波形图

由于比较器1C 和2C 的参考电压不同,因而基本RS 触发器的置0信号(1C v =0)和置1信号(2C v =0)必然发生在输入信号I v 的不同电平。因此,输出电压o v 由高电平变为低电平和由低电平变为高电平所对应的I v 值也不相同,这样就形成了施密特触发特性。

为了提高比较器参考电压1R v 和2R v 的稳定性,通常在0C v 接有0.01F μ左右的滤波电容。 分析I v 从0逐渐升高的过程:

当I v 〈CC V 3

1

时,1C v =1,2C v =0,Q=1,故o v =OH V ;

当CC V 31〈I v 〈CC V 3

2

时,1C v =2C v =1,故o v =OH V 保持不变; 当I v 〉CC V 3

2以后,1C v =0,2C v =1,Q=0,故o v =OL V 。因此,+T V =CC V 3

2

其次再分析I v 从高于

CC V 3

2开始下降的过程:

当CC V 31〈I v 〈CC V 3

2

时,1C v =2C v =1,故o v =OL V 不变; 当I v 〈CC V 31以后,1C v =1,2C v =0,Q=1,故o v =OH V ,因此,-T V =CC V 3

1

由此得到电路的回差电压为T V ?=+T V --T V =CC V 3

1

如果参考电压由外接的电压0C v 提供,则不难看出这时+T V =0C v ,-T V =02

1C v ,T V ?=

02

1C v 。

通过改变0C v 值就可以调节回差电压的大小。

集成运放也可以构成滞回比较器,它具有滞回特性,即具有惯性,因而也就具有一定的抗干扰能力。虽然有两个阈值电压,但当输入电压向单方向变化时,输出电压仅跳变一次。而555定时器构成的施密特触发器具有滞回特性和输出电平转换过程中的正反馈作用。 3.2.2 555定时器的其他作用

若以555定时器ID 的2I v 端作为触发信号的输入端,并将由D T 和R 组成的反相器输出电压'

0v 接至1I v 端,同时在1I v 对地接入电容C,就构成了如图3.3所示的单稳态触发器电路图及其波形。

图3.3 单稳态电路的电路图和波形图

如果没有触发信号时,I v 处于高电平,那么稳态时这个电路一定处于1C v =2C v =1,Q=0,o v =0的状态。假定接通电源后触发器停在Q=0的状态,则D T 导通C v ≈0。故1C v =2C v =1,Q=0及o v =0的状态将稳定的维持不变。

如果接通电源后触发器停在Q=1的状态了,这时D T 一定截止,CC V 便经过R 向C 充电。当充到

C v =

CC V 3

2时,1C v 变为0,于是将触发器置0。同时,D T 导通,电容C 经过D T 迅速放电,使C v ≈0。

此后由于1C v =2C v =1,,触发器保持0状态不变,输出也相应的稳定在o v =0的状态。

因此,通电后电路便自动的停在o v =0的稳态。

当触发脉冲的下降沿到达,使2I v 跳变到CC V 3

1

以下时,使2C v =0(此时1C v =1),触发器被置1,

'

0v 跳变为高电平,电路进入暂稳态。与此同时D T 截止,CC V 经R 开始向电容C 充电。

当充至C v =CC V 3

2

时,1C v 变成0。如果此时输入端的触发脉冲已消失,I v 回到了高电平,则触

发器将被置0,于是输出返回o v =0的状态。同时D T 又变为导通状态,电容C 通过D T 迅速放电,直至C v ≈0,电路恢复到稳态。

输出脉冲的宽度w t 等于暂稳态的持续时间,而暂稳态的持续时间取决于外接电阻R 和电容C 的大小。由图2.3可知,w t 等于电容电压在充电过程中从0上升到CC V 32

所需要的时间,因此得到:

RC RC V V V RC t CC

CC CC w 1.13ln 320ln

==-

-=

通常R 的取值在几百欧姆到几兆欧姆之间,电容的取值范围为几百皮法到几百微法。tw 的范围为几微秒到几分钟。但必须注意,随着w t 得宽度增加,它的精度和稳定度也将下降。

由555定时器接成的多谐振荡器的电路图和波形图如图3.4所示。电源接通后,Vcc 通过电阻R 1、R 2向电容C 充电。当电容上电v C =2/3Vcc 时,阀值输入端6受到触发,比较器C 1翻转,输出电压Vo=0,同时放电管T 导通,电容C 通过R 2放电;当电容上电压Vc=1/3Vcc ,比较器C 2工作,输出电压Vo 变为高电平。C 放电终止、又重新开始充电,周而复始,形成振荡。其振荡周期与充放电的时间有关:

充电时间:C R R V

V V V

C R R

t )0.7(3132ln )

(+≈????

?

?

?

?

--?+=,

放电时间:C R V V V V C R t CC CC

CC CC PL

227.0313

2ln ≈????

?

?

??

--= 振荡周期: ()C R R t t T PL PH 2127.0+≈+= 振荡频率:=

=

T f 1C

R R t t PL

PH )2(44.1121+≈

+

占空系数: 2

1212R R R R T

t D PH ++=

=

当R 2>>R 1时,占空系数近似为50%。

图3.4 多谐振荡器的电路图和波形图

由仿真结果我们知道:电路的振荡周期T 、占空系数D ,仅与外接元件R 1、R 2和C 有关,不受电源电压变化的影响;改变R 1、R 2,即可改变占空系数,其值可在较大范围内调节;改变C 的值,可单独改变周期,而不影响占空系数。另外,复位端4也可输入1个控制信号。复位端4为低电平时,电路停振。 3.2.3 运算放大器

运算放大器(operational amplifier ),或简称为op-amp 。放大器是一种二端口器件,它接受一个成为输入的外加信号,产生一个成为输出的信号并使输出=增益×输入,这里增益是某一种合适的比例常数。满足于这一定义的器件称为线性放大器,以区别于具有非线性输入-输出关系的器件。

一个放大器接受来自上面某个源的输入,并将它的输出向下输送到某个负载。决定于输入和输出信号的属性,可有不同类型的放大器。最普遍的就是电压放大器,它的输入I v 和输出O v 都是电压。这个放大器的每一端口都能用戴维南等效给予建模,它有一个电压源和一个串联电阻组成。输入端口通常起一个纯无源的作用,所以只用一个电阻i R 来建模称之为该放大器的输入电阻。输出端口用一个表明与I v 有关的电压控制电压源(VCVS )O v 和一个称为输出电阻O R 的串联电阻来建模。值得注意的是,输入源也是用戴维南等效给于建模的,它由源电压S v 和串联电阻S R 构成;输出负载起无源的作用,用电阻L R 建模。在输出端口应用电压分压器公式得出I OC L

O L O v A R R R v +=

,注意

到,当不存在任何负载(∞=L R )时,就有I OC O v A v =。所以OC A 称为无载或开路电压增益。在

输入端口应用电压分压器公式得出S i

S i I v R R R v +=,消去I v 并经整理得到源电压-负载增益为

L

O L OC

i

S i S

O R R R A R R R v v ++=

,当信号从源向负载传播时,首先在输入端口受到某些衰减,然后在

放大器内部放大OC A ,最后在输出端口又有额外的衰减。这些衰减统称之为加载效应。 3.2.4 三角波发生电路

在直流稳压电源提供电压的条件下,电容的充电和放电过程,就产生了三角波。基于这个原理,最常见而且比较好实现的方法就是运用集成运放构成的积分电路。在自控系统中,常用积分电路作为调节环节;此外,还广泛应用于波形的产生和变换以及仪器仪表之中,以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这种运算电路。

在图2.5所示的积分电路中,由于集成运放的同相输入端通过2I v 接地,0==N P u u 为

“虚地”。 电路中,电容C 中电流等于电阻R 中电流:R

u

i i I R C ==,输出电压与电容上电压的关系为:

C O u u -= 而电容上电压等于其电流的积分,故??-

=-

=dt u

RC

dt i C

u I

C O 11

图2.5 积分电路

在求解1t 到2t 时间段的积分值时()12

1

1t u dt u RC

u O t t I O +-

=?

式中()1t u O 为积分其实时刻的输出电压,即积分运算的起始值,积分的终值是2t 时刻的输出电压。 当I u 为常数时,()()1121t u t t u RC

u O I O +--

=

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

函数信号发生器的使用方法规定

函数信号发生器的使用方法规定 1、目的:为操作人员作操作指导。 2、范围:适用于函数信号发生器操作人员。 3、操作步骤: 3.1注意事项 仪器在只使用“电压输出端”时应将“输出衰减”开关置于“0dB”~“80dB”内的位置,以免功率指示电压表指示过大而损坏。 3.2使用方法 3.2.1开机:在未开机前应首先检查仪器外接电源是否为交流220V±10%,50Hz±5%, 并检查电源插头上的地线脚应与在地接触良好,以防机壳带电。面板上的电源开关 应放在“关”位置,“电平调节”旋钮置中间,输出衰减旋钮置“0dB”,频段开关设 置在你所需要的频段。 3.2.2频率选择:首先将频段开关设置在你所期望的频率范围内,然后调节频率调谐旋钮 和频率微调旋钮,至数码管上指示你所需要的频率为止。 3.2.3波形选择:波形开关在“~”位置,可在电压输出端获得全频段的电压正弦信号,在 功率输出端可获得20Hz~100kHz的功率输出;波形开关在“”位置,在电压输 出端可获得全频段的电压方波信号。输出衰减在功率输出端8Ω档同样可以获得 20Hz~100kHz的方波功率输出。 3.2.4输出电压调整:电压输出端的输出电压可通过“电平调节”旋钮连续可调。 3.2.5功率输出调整:功率输出端的输出同由“电平调节”旋钮控制调节,并可通过“输 出衰减”进行80 dB的衰减。“输出衰减”控制开关上有8Ω和600Ω二档匹配档, 用以匹配低阻和较高负载以获取最大输出功率。 3.2.6功率的平衡输出:本仪器600Ω功率输出档可进行平衡输出,方法是可将面板上中间 红色接线柱和黑色接线柱之间的接地片取下,接在两个红色接线柱上即可,但本仪器连接的其它仪器也应不接在“地”电位。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

简易函数信号发生器的设计

单片机课程设计报告书 课题名称 简易函数信号发生器的设计 姓 名 ** 学 号 ** 院、系、部 ** 专 业 电子信息科学与技术 指导教师 ** 2011年12月12日 ※※※※※※※※※ ※ ※ ※※ ※ ※ ※※※※※※※※※ **级学生单片机 课程设计

目录 一、绪言 (1) 二、系统方案论证 (1) 2.1设计要求 (1) 2.2 简易函数信号发生器方案论证 (1) 2.3 单片机的控制方案论证 (1) 2.4 键盘选择方案论证 (2) 三、系统设计 (2) 3.1 硬件电路设计 (2) 3.2 程序流程图 (4) 3.3 C语言程序设计 (5) 四、简易函数信号发生器的仿真 (8) 4.1 系统仿真 (8) 4.2工作原理分析 (10) 结束语 (11) 参考文献 (11) 修改通篇页面设置里面的左右边距

一绪言 函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。因此设计使用的AT89S52单片机构成的发生器,可以产生正弦波和方波。 二系统方案论证 2.1设计要求 1、设计一个基于AT89S52单片机的信号发生器; 2、能够输出方波和正弦波(正弦波是双极性的),要求可用按键选择; 3、可选电压值为1V、2V、3V、4V、5V五个档位; 4、可选频率值为:10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1KHz七个档位; 5、能够通过显示模块显示输出波形的主要参数。 2.2 简易函数信号发生器方案论证 方案一:用分立元件组成函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试。 方案二:可以由晶体管,运放 IC等通用器件制作,更多的则是用专用的函数信号发生器IC产生。早期的函数信号发生器IC,如L8083、BA205等,他们的功能少,精度不高,频率上限只有300KHz,频率和占空比不能独立调节,二者相互影响。 方案三:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并且达到很高的频率。但成本很高。 方案四:采用 AT89S52单片机和DAC0832芯片,直接连接按键和显示。该种方案主要对AT89S52单片机的各个I/0口充分利用,不再多用其他的芯片,从而减小了系统的成本,也对按照系统便携式低频信号发生器的要求所完成,占用空间小,使用空间小,使用芯片少,低功耗。 综合考虑,方案四各项性能和指标都优于其他各种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片和器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。 2.3 单片机的控制方案论证 方案一:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

函数信号发生器的设计与实现 (1)资料

计算机与信息学院 电子信息工程系综合课程设计报告 专业班级 电子信息工程11-2班 学生姓名及学号 陈雪莹20112661 指导教师 方静 课题名称 函数信号发生器 2013~2014 学年第三学期

函数信号发生器的设计与实现 一.课题的基本描述 在科学研究和实际工业测量控制系统开发过程中,方波、三角波和正弦波等是常用的基本测试信号,函数信号发生器就是用来产生、模拟这些真实信号源的通用电子设备。本课题要求设计一种以单片机为控制器的简易函数信号发生器,包含:主控电路、D/A转换电路、按键和波形选择电路以及显示输出电路,可以输出正弦波、三角波和方波三种信号,输出信号的频率可用按键进行增、减调整,并在LCD(12864)实时显示输出波形。 二.设计的基本要求 1. 正弦波、三角波频率调节范围:0.1-50HZ 输出幅值:1.0-1.5V 方波频率调节范围:1Hz-1KHz 输出幅值:5V 2.通过按键选择输出信号类型,幅值、频率等相关指标; 3. 具有显示输出波形的频率和幅度的功能。 三.技术方案及关键问题 (1).总体方案: 数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置按键、数模转换及波形输出等部分,即可构成所需的函数信号发生器。因此本系统利用单片机AT89C51采用程序设计方法产生三角波、正弦波、矩形波三种波形,再通过D/A转换器PCF8591T将数字信号转换成模拟信号,最终由液晶屏12864显示出来。通过按键来控制三种波形的类型选择、频率和幅度的变化,并通过数码管显示其各自的类型,液晶屏显示幅度和频率的大小。系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分。

相关文档
最新文档