风力发电机组塔筒英文-汉语对照翻译

风力发电机组塔筒英文-汉语对照翻译
风力发电机组塔筒英文-汉语对照翻译

风力发电机组塔筒

高塔是水平轴风力机的必不可少的组成部分,事实上这既是一个优势也是一个劣势。成本将高达整体风力机成本的20%,这当然是不利的。同时塔高度的增加,对运输、装配和塔的安装及其原件的维修也变得日益困难和昂贵。另一方面,转子的能源产量也随着塔高的增加而提高。理论上,最佳的塔高是在建设成本和能源产量的交叉点。不幸的是,这个交叉点不能指定在任何形式上普遍适用。在大型的风力机中,随着塔高度的增加,建设成本比小型风力机增加要快。发挥更大作用的是选择地点。在内地的位置,即在表面粗糙度大的地区,与在岸基的位置相比,风速随高度增加风速增加缓慢。因此,更高的塔,会显示更好的回报比,例如,在海洋应用,会发现相反的效果。在内陆地区,大型风力发电塔的高度为80米,是一个经济使用风能潜力的决定性因素。

塔的第二个重要的设计参数是其刚度。建立第一自然弯曲频率的正确方法是一个重要的设计任务。这决定了所需要的材料和最终建设费用。塔的设计目标是在尽可能最低的建筑成本下实现理想的塔的高度和刚度要求。

运输和安装程序的发展成为最新一代的兆瓦级风机一个日益严重的问题。塔的高度超过100米和塔头重量几百吨需要一个在塔基五米以上的直径,其后果是公路运输将不再方便。这成为一个强大的激励寻求创新的解决塔设计的方案。

材料可用结构钢或混凝土。设计范围从拉索晶格结构或独立的钢管塔到大体积混凝土结构。整个系统可以通过转换满足技术要求,但几乎最佳经济只有通过适当的匹配选定塔设计的要求。这清楚表明,当只考虑塔本身时,虽然风机塔筒可以看作是一个传统结构,但它的设计还需要大量了解整个系统及其应用。

除了这些功能方面不应该忽视外,还要注重风机的外观。因此,预期的注意事项,应与美学一致,即使这意味着一些额外的费用。

1、塔式结构

古老的“风力”风车没有塔,但有磨房屋。这些低高度与转子直径有关,并且大量建设根据其功能作为一个工作空间,从而也提供了必要的机构刚度指标。但是,不久,高度增加的优势被认可,磨房变得更苗条,更像塔。但它是唯一的现代建筑,首先在美国小型风力机和随后在风力发电场的第一次发电,“桅杆”或“塔”的使用,唯一的功能是奠定了支承转子和机械部件的塔头。由于这种开发设计塔的材料

品种的增加。钢和混凝土代替了木结构的磨房.最初几年现代风能源技术的发展,大多不同的塔设计已尝试和测试,但在这过程中,范围已经缩小到独立的设计,主要是钢材和更为罕见的混凝土。

格构式

最简单的方法构建高刚性的塔结构是作一个三维桁架,所谓的格或桁架塔。因此,格塔,首选设计的第一个实验机和早期的风力机也为小商业所用。今天,在某些情况下,格塔再次成为内陆地区大型风力机中替代钢管塔的高塔。

混凝土类型

在30年代,钢筋混凝土塔进行所谓的“飞机发动机”在丹麦。这些塔也是特点较早的大型实验丹麦风力机,在丹麦,钢塔也成为占主导地位的商业风力机。混凝土塔最近获得高度超过80米的塔的青睐。

独立钢管塔

最常见的塔型目前使用的是独立的钢管塔。掌握振动状况,使它更容易使用,因此,非常低的设计刚度可以被实施。它已成为可能降低结构质量,降低成本,因此,大量使用“软”设计。

钢管塔结构

下风型转子有必要使用细钢管塔来保持尽可能小的塔影效应。这些塔被钢缆锚定或在某些情况下用刚性桁架确保所需的弯曲刚度。尽管较低的整体质量,桅杆还是很不划算。塔和附加锚固基础所需的总成本膨胀。此外,塔被认为是农业区的障碍。

2、独立的钢管塔

今天,独立的钢管塔是目前首选的建筑类型商业风力发电装置,主要原因在现场组装和建造时间短。小型塔高度高达20米可以在制造地组装成一件和在现场和地基连接在一起。更高的超过100米的塔是由几个部分固定在一起,而不必在现场焊接。对钢管塔的偏爱也受到过去20年钢材非常低的价格支撑。

(1)强度与刚度设计

塔的尺寸标注是由一系列的强度和刚度确定。要考虑的因素是断裂强度所需的极端风速,疲劳强度要求20或30年的运作和刚度方面的振动运行状况。

断裂强度

静载荷是由塔头重量,较低的自身重量,和气动转子推力组成。转子推力一般是在其最高水平时,转子运行在其额定速度,风机的叶片间距进行控制。最大弯矩分布在塔与转子叶片间距控制(无失速型风力机)或当最坏的转子叶片位置要求为特定的负载情况。在标准情况下,将降低断裂载荷作用在塔底时刻的问题。

疲劳载荷

动态负荷引起的转子推力在操作过程中对细长的塔疲劳寿命有一定的影响。额外负荷引起的振动也必须加以考虑。因此,一个纯粹的静态应力分析,常用的传统建筑的建筑主管部门的要求,并不适用于所有风力机的塔的设计。

弯曲强度

一个重要的标准,它发挥了作用,至少对低于1激发的薄壁钢管塔具有低自然弯曲频率,抵抗局部弯曲的管壁。作为一个现代钢管塔的增重优化的结果,弯曲强度,往往成为所需壁厚尺寸的决定因素。

塔刚度的特点是几个自然频率,但只有第一、二自然弯曲频率和第一扭转固有频率才具有实际意义。在大多数塔中,第一扭转固有频率远远高于第一自然弯曲频率. 如果其直径/壁厚比在正常范围,独立钢管塔的扭转频率高出约三倍。因此,它是充分利用第一自然弯曲频率获得一个粗略的概述。对于给定的塔的高度和重量,塔的设计必须以这样一种方式,达到所需的第一个自然弯曲频率。

刚性塔的设计始终是一个更简单和更安全的解决振动状况方面的方案,但大规模的塔来实现这一要求很难。因此,在风力机塔高度超过80米,刚性塔设计不可能再在实践中实现。经济方面的原因,其刚度应保持在低技术可行的基础上尽可能低。

(2)制造技术与施工

几乎没有例外,如今,大型风力机的塔有一个圆锥形,从地基到塔顶直径减少。与圆柱几何相比,对于一个给定的刚度要求,这样可以节省重量。

该塔由一个预制节长度可达约30米的部分,是由厚度10 - 50毫米的钢板制成。这些板材宽约2米,卷成圆形形状。从这些部分,塔部分被焊接在一起。在大多数情况下,自动焊接机被用于此。鉴于塔的承载情况,焊接需要被特别关注。

通常质量的检查的方法,如X射线和超声波检查表面裂纹。塔板材由商用st52等级结构钢板,很少用st48。高强度材料大多数用于法兰和基础部分的连接。

在两端各塔节,内部法兰被焊接。它们是由高强度钢和锻钢组成。成形和焊接法兰需要一些经验,因为组件很容易扭曲.后果是,法兰在装配时不匹配。由此产生的差距是一个质量缺陷,经常可以发现在钢管塔上。

作为一项规则,该塔是通过一个所谓的基础部分固定在一起。这是单独制造,并在浇筑时纳入基础混凝土。

该塔是机舱通过方位法兰连接。它可容纳的方位轴承使用滚子轴承。方位角法兰往往是铸造的一部分。

表面处理是关于钢管塔质量的一个重要部分。即便是在一个过度的环境(“海洋空气”)中,几十年内也必须阻止腐蚀。一些破坏后,塔节都覆盖着镀锌涂层。外涂层由至少两个,最多三个不同的油漆涂层。有些国家或地区法规规定塔的颜色。

制造一个直径达4米左右,高度超过90米,塔底直径大于4.5米和所需厚度超过40毫米的钢管塔是一种传统的技术,不会对任何设备厂家有所需求。塑造钢筒,即滚弯,然后需要特殊机器,它并不总是正常钢结构工程。也就是说,由于大直径,下塔节不再通过公路运输。

(3)攀登助手和内部安装

塔必须提供一个安全上升到到机舱的装置,也包含一定的电气安装,特别是在电力传输电缆引下到塔底。这需要一定的内部安装。根据不同的高度,通常安装一些中间平台,通常是一个塔节一个平台。用于攀登高度约60-70米简单的垂直梯攀登保护。如果工作需要,塔高超过80米,可安装简单的所谓“登山电梯”。

对于某些应用和内部的设备,即变压和控制系统,塔的内部气候必须被控制。特别是海上应用,空调可以除湿,过滤进气是必要的,以避免对电气和电子设备腐蚀问题。

小型风力发电机组塔施工简单得多。高度约为15米的塔,塔是从外面爬。在一些国家,特殊劳动保护和保险业的要求,必须遵守关于外部提升的相关规定,以至于即使相对小的发电机,也提供一个安全的内部提升。

3、基础

塔基的大小是由风力机和局部场地条件决定的。在这方面,必须考虑最高的荷载作用下的风力机停滞条件。这里决定因素是最高的假定风速,所谓的生存风速。然而,风机的技术概念也起到了一定的作用。轮机失速控制不仅提供羽状叶片,而

且用这样的设计可发生较高的停滞荷载作用,这对标注的基础和成本上具有重要意义。

负荷的情况下,在最高负荷状况必须检查.在运行中,最大倾斜的时刻为基础由转动推力决定.可控转子叶片推力的风力机在额定功率达到其高峰期,而在失速型风力机,尽管滞后的功率已达到,它会继续增加。

被官方要求的设计审批和安全认证在大多数情况下是基于这些静载荷。考虑到动态载荷疲劳寿命的计算通常不要求。这些计算是制造商的责任。

根据不同的地质条件,要求是板式基础或桩基础.决定性因素是埋在将吸收施加载荷的土壤层的深度。

板式基础

板式基础,通常被称为标准的基础,为圆形或矩形多边形基脚。钢管塔扎根的一个基础部分加入到钢筋混凝土中。要求的质量和直径的板是由倾覆的结构决定的。这是依靠风力机,塔,基础本身抵抗的。离心铸造预制混凝土塔是“投”到基础的。

桩基础

薄弱土壤的桩基础有放在一堆的木板,可将负荷转移到承重地面层上。为此使用预制“羊桩”。桩基础是必要的。例如,在德国北海附近沿海沼泽地区,在这些地区,固沙层的大陆架在一些情况下位于深达20到25米。一个桩高达20米中型风力机,需要有相应的长度,保证承载能力,增加了基础成本的30%到50%。

作为一项规则,根据德国的分类,其所在公司的风力机基础由B类水泥构成。这是常见的做法,一个模架建立在基坑内,并且在混凝土浇入坑之前进行钢筋编织。

整合与底部法兰连接基础的部分,而需要一些经验。法兰的基础部分必须放置在水平并且水平位置只有一个很小的公差来防止斜塔倾斜。在建立基础部分法兰直径大约3.6米的一个500千瓦风力机,最大允许偏差的水平范围在2毫米。

很明显,在地面上,土壤的一致性或更准确地说,塔的“夹紧刚度”对自然弯曲频率有一定影响。然而对于非常松散的土壤,这并不适用于每一种情况。

The tower

The high tower is an essential component of the horizontal-axis turbine, a fact which can be both an advantage and a disadvantage. The costs, which can amount to up to 20 % of the overall turbine costs, are, of course, disadvantageous. As the height of the tower increases, transportation, assembly and erection of the tower and servicing of the components also become increasingly more difficult and costly On the other hand, the specific energy yield of the rotor also increases with tower height. Theoretically, the optimum tower height lies at the point where the two growth functions of construction cost and energy yield intersect. Unfortunately, this point of intersection cannot be specified in any generally applicable form. In larger turbines, construction costs rise more rapidly with increasing tower height than in small turbines. An even greater role is played by the choice of site. At inland sites, in regions with a high degree of surface roughness, the wind speed increases more slowly with height than at shore-based sites. Higher towers will, therefore, show better returns here than, for example, in offshore applications where the reverse effect is found. In inland regions, large wind turbines with tower heights of 80 m and more are a decisive factor for the economic use of the wind potential.

Next to its height, the second most important design parameter of a tower is its stiffness. Establishing the first natural bending frequency in the right way is an important task in the design. This determines the material required and, ultimately, the construction costs. The goal of the tower design is to achieve the desired tower height with the required stiffness at the lowest possible construction cost.

The transportation and the erection procedure is developing; into an increasing problem for the latest generation of multi-megawatt wind turbines. Tower heights of more than 100m and tower head weights of several hundred tons require a diameter at the tower base on more than five meters, with the consequence that road transportation will

no longer be leasable. This becomes a strong incentive to find innovative solutions in the tower design.

The materials available for the construction are steel or concrete. Designs range from lattice construction to guyed or free-standing steel tubular towers up to massive concrete structure. The technical requirements posed by the overall system can be met by almost my variant but the economic optimum is only achieved by appropriately matching the selected tower design to the requirements set. This shows clearly that, although the tower of a wind turbine can be seen as a conventional structure when considered by itself, its design also requires a considerable amount of understanding of the overall system and its application.

Apart from these functional aspects, it should not be overlooked that the tower, even more so than the nacelle, determines the outward appearance of a wind turbine. Due attention should, therefore, be accorded aesthetics, even if this implies some additional costs.

1.Tower configurations

The oldest types of "wind turbines", the windmills, had no towers but millhouses. These were low in height in relation to the rotor diameter and of voluminous construction in accordance with their function as a work space, thus also providing for the necessary stiffness. Soon, however, the advantage of increased height was recognized and the millhouses became more slender and more tower-like. But it is only in modern-day constructions, first in the small American wind turbines and then later in the first power-generating wind power stations, that "masts" or "towers" were used, the sole function of which lay in supporting the rotor and the mechanical components of the tower head. As a consequence of this development, designs and materials for towers increased in variety. Steel and concrete took the place of the wood construction of the millhouses. In the early years of the development of modern wind energy technology, the most varied tower designs were tried out and tested but in the course of time, the range

has been narrowed down to free-standing designs, mainly of steel and more rarely of concrete.

Lattice Type

The simplest method of building high and stiff tower constructions is as a three-dimensional truss, so-called lattice or truss towers. Lattice towers were, therefore, the preferred design of the first experimental turbines and in the early years also for smaller commercial turbines. Today, the lattice tower has again become an alternative to the steel tubular tower in the case of the very high towers required for large turbines sited in inland regions.

Concrete Type

In the thirties, steel-reinforced concrete towers were used for the so-called "Aeromotor" in Denmark. These towers were also characteristic of the earlier large experimental Danish turbines Later, steel towers became dominant also in the commercial turbines in Denmark. Concrete towers have recently gained favor again for tower height of more than 80m.

Free-standing steel tubular towers

the most common tower type currently in use is the free-standing steel tube tower. Mastery of the vibrational behavior has made it easier to use this type so that steel tubular towers with very low design stiffness can be implemented. It has thus become possible to lower the structural mass, and thus the costs of the towers, considerably by using "soft" designs.

Guyed steel tubular towers

Down-wind rotors made it necessary to use slender steel tubular towers in order to keep the tower shadow effect as small as possible. These were anchored with steel cables or in some cases with stiff trusses to ensure the required bending stiffness. Despite their comparatively low overall mass, guyed towers are not very cost-efficient. The guys and the additional anchoring foundations required inflate the total cost. Moreover, the guys

are considered a hindrance in agricultural areas.

2.Free-Standing Steel Tubular Towers

Today, free-standing steel tubular towers are by far the preferred type of construction for commercial wind turbine installations, the main reason being the short on-site assembly and erection time. Small towers with a height of up to 20m can be fabricaled of one piece at the manufacturer's and bolted to the Foundation at the site. Higher towers of up to 100m height are made of several sections which are bolted together so that no on-site welding is required. The preference for steel tubular towers is also buoyed by the very low steel prices in the last twenty years.

(1)Strength and Stiffness Design

The dimensioning of a tower is determined by a number of strength and stiffness requirements. Factors to be considered are the breaking strength required for surviving extreme wind speeds, the fatigue strength required for 20 or 30 years of operation and the stiffness with respect to the vibrational behavior.

Breaking Strength

The static load is determined by the tower-head weight, the lower's own weight, and the aerodynamic rotor thrust. In turbines with blade pitch control, rotor thrust is generally at its highest level when the rotor is running at its rated speeds. The maximum bending moment distribution at the tower is obtained with rotors without blade pitch control(stall-controlled turbines) or when the worst rotor blade position is demanded for a particular load case. In the standard case, the question of breaking load will be reduced to that of the bending moment acting on the tower base.

Fatigue loading

The dynamic loading caused by the rotor thrust during operation has a definite impact on the fatigue life of slender tower. Additional loads caused by the vibrational behavior in cases of resonance must also be taken into consideration. Hence a purely static stress

analysis, commonly required by the building authorities for conventional buildings, is not appropriate for all tower designs of a wind turbine.

Buckling strength

One important criterion which plays a role at least for thin-walled steel tubular towers with a low natural bending frequency below the 1 P excitation is the resistance to local buckling of the tube wall. As a result of the increasing weight optimization in modern steel tubular tower, the buckling strength frequently becomes the determining dimensioning factor for the required wall thicknesses.

Tower stiffness is characterized by several natural frequencies, but only the first and the second natural bending frequency and the first natural torsion frequency are of any practical significance. In most towers, the first natural torsion frequency is much higher than the first natural bending frequency. the torsion frequency of free-standing steel tubular towers is approximately three times higher if their diameter/wall thickness ratio lies within normal limits. It is, therefore, sufficient to use the first natural bending frequency for obtaining a rough overview. With a given tower height and head weight, the tower must be designed in such a way that the required first natural bending frequency is reached.

A stiff tower design is always a simpler and safer solution with regard to vibration behavior, but the mass of the tower required to achieve this becomes very high. In wind turbines with tower heights of more than 80m,a stiff tower design can, therefore, no longer be realized in practice. For economic reasons, the stiffness should be kept as low as technically feasible.

(2)Manufacturing Techniques and Construction

Almost without exception, the tower of the large turbines of today have a conical shape, with a diameter that diminishes from the base up to the tower head. Compared with a cylindrical geometry, this saves weight for a given required stiffness.

The towers consist of a number of prefabricated sections with a length of up to about 30m. The sections are produced from sheets of steel plate with a thickness of 10-50 mm. The sheets, which have a width of about 2 m, are rolled into a circular shape on a rolling stand. From these segments, the tower section is welded together. In most cases, automatic welders are used for this. The welding requires special attention in view of the loading situation of the tower. The quality is checked by means of the usual methods such as ultrasonic, X-rays and examination for surface cracks. the tower sheets consist of commercially available St52 grade structural steel plate and, more rarely St48. Higher-strength material is used for most of the forged joining flanges and the foundation section.

At the ends of each tower section, the internal flanges are welded on. They consist of high-strength steel and occasionally of forged steel. Shaping and welding of flanges requires some experience since the components can easily become distorted. the consequence being that the flanges will not match during the assembly. The resultant gaps between the tower sections are a quality defect frequently found in steel tubular tower.

As a rule, the tower is joined to the foundation by means of a so-called foundation section. This is manufactured separately and incorporated in the foundation when the concrete is poured.

The tower is joined to the nacelle via the azimuth flange. It accommodates the azimuth bearing if a roller bearing is used. The azimuth flange is often a cast part.

Surface treatment is an important feature regarding the quality of steel towers. Corrosion must be prevented over decades even in an aggressive environment ("sea air"). After some blasting, the tower section are covered with thermally applied zinc coating. The outer coating consists of at least two and at most three different paint coats. Some countries or regions have regulations regarding the color of the tower.

Manufacturing steel tubular towers with a diameter of up to about 4m is a

conventional technology that does not make any great demands on the equipment of the manufacturers. At heights of more than 90m, the tower base diameter becomes greater than 4.5m and the required thickness of the steel exceeds 40 mm. Shaping the Steel ,i.e. roll-bending them, will then require special machines which are not always available in normal structural steel works. To this is added that, due to the large diameter, the lower tower sections can no longer be transported by road.

(3)Climbing Aids and Internal Installation

The tower must provide for a safe ascent to the nacelle and also contain certain electrical installation, particularly the lead-down of the power transmission cables to the tower base. This requires certain internal installation. Depending on the height, a number of intermediate platforms are normally installed, typically one platform for each tower section .Up to a height of about 60-70m simple vertical ladders with climbing protection are used for the ascent. If required by the operator, simple so-called "climbing lifts" are installed for tower heights above 80m.

For some applications and depending on the internal equipment, i. e. transformers and control systems, the internal climate of the tower has to be controlled. Particularly for offshore applications, air conditioning including dehumidifying and filtering the intake air is necessary in order to avoid corrosion problem on the electrical and electronic equipment.

The towers of small wind turbines are of much simpler construction. In some case, existing tubular elements from other applications can be used for the manufacture. Up to tower heights of about 15m,the tower is climbed from the outside. In some countries, special work protection rules and insurance requirements must be observed with respect to an external ascent so that there is a trend to provide a safe internal ascent even in relatively small turbines.

3.The Foundation

The foundation of the tower is determined by the size of the wind turbine and by local ground conditions. In this respect, it is primarily, the highest loads acting on the wind turbine under stand-still conditions which must be considered. The determining factor is here the highest assumed wind speed, the so-called survival wind speed. However, the technical concept of the wind turbine also plays a certain role. Turbines with stall control do not provide the option of feathering the rotor blades so that comparatively high stand-still loads can occur with this design, a fact which is of significance in the dimensioning of the foundation and thus in the costing.

A second load case, which must at least be checked, is that involving the highest loads during operation. In operation, the maximum tilting moment for the foundation is deter-med by rotor thrust. In turbines with blade pitch control rotor thrust reaches its peak at the rated power, whereas in stall-controlled turbines it continues to increase even after the late power has been reached.

The design approval and safety certification required by the authorities is in most cases based on these static loads. Fatigue life calculations taking into consideration the dynamic load spectrum are normally not requested. Those calculations are carried out under responsibility of the manufacturer.

Depending on the geological conditions, either slab foundation or pile foundations are required. the decisive factor is the depth at which soil layers are found which will absorb the loads imposed.

Slab Foundations

The slab foundation, often called the standard foundation, are circular or rectangular of polygonal footings. The steel tubular towers are anchored by a foundation section joined to the steel reinforcement of the concrete. The required mass and the dimension of the slab are determined by the overturning moment of the structure. This is resisted by the weight of the turbine, the tower and the foundation itself. Centrifugally cast prefabricated

concrete tower are "cast" into the foundation.

pile foundations

Pile foundations for weak soils have a bed plate sitting on pile which transfer the loads into load-bearing ground layers. For this purpose prefabricate" ram piles" are used. pile foundations are necessary, for example ,in the German coastal marshland areas near the North Sea. In these areas ,the solid sand layers of the continental shelf are in some case located at a depth of 20 to 25m.The pile, up to 20 of which are required for a medium sized turbine ,are of corresponding length to ensure the load-carrying capability of the foundation, This increases the cost of the foundation by 30% to 50%.

As a rule, the foundations of wind turbines are constructed of Category B 25 concrete according to the German classification. As is common practice, a formwork is set up in the foundation pit and the steel reinforcement is plaited before the concrete is poured into the pit.

Integrating the foundation section, to which the bottom flange of the tower is joined requires some experience. The flange of the foundation section must be placed in a horizontal and level position with only a small tolerance to prevent the tower from slanting. In the foundation of a wind turbine of the 500KW class with an foundation section flange diameter of approximately 3.6m, the maximum allowable deviation from the horizontal in the range of 2mm.

It is obvious that the soil consistency or, more precisely, the "clamped stiffness" of the tower in the ground, has an influence on the natural bending frequency. In very loose soil, however, this does not apply in every case.

英语翻译

p.93 Translation unit 6 To make the campus safer, the university authorities recently released a new regulation that forbids any vendors from entering the campus, and the president called on the students to cooperate with the university on this matter. However, the students’opposition was strong, and hundreds of them expressed their anger on the university BBS. They said that to keep vendors off campus is like deserting the students on an island, as the university was far away from the downtown and the shops on the campus did not provide enough commodities. Some claimed that it was precisely for matters of this kind that university should listen to students’ opinions and needs. Some students thought the university had got it wrong in believing that this regulation will ensure safety on campus. Shocked by the students’ reaction, the president tried to make amends for his mistake by announcing that the university will look into this new regulation again. He told students that they were entitled to live a convenient and comfortable life, but safety is just as much an important concern as that. He proposed to build a big supermarket within the campus and some convenient stores near dormitory buildings, which would certainly make students’ life much easier. U NIT 1 If you ask me, taking a second major isn’t good for every undergraduate. In my freshman year as an English major, I took economics as my minor. By all odds, I was the most hardworking student in my class. But try as I might to meet the requirements of the two different subjects, I still couldn’t do well enough to pass all the exams. Given that the study of economics required a good command of mathematics, I had to spend so much time on math that I neglected my English major. Failing English Literature and Macroeconomics in the second semester sounded the alarm for me. This was the first time I did not pass a course in my life, which had greatly sapped my confidence. Although I was not a man who would easily bow to fate, as the summer break came to a close, I decided to give up economics for fear that I would fail in both subjects. Now that I had only one subject to attend to, everything seemed to be on the right track again. UNIT 2 It was not until after he had graduated from university and started to work that Zhang Lei became aware of the pleasure of reading. Reflecting on his undergraduate studies, he lamented that he, unlike his classmates who had immersed themselves in various interesting books they were able to lay hands on from the library or bookshop, had only read textbooks, none of which was really worthwhile, or could be read in one sitting. He was deprived of the privilege of gaining access to the writers’ fantastic worlds through the

英汉语翻译5-Old Age

Old Age As regards health, I have nothing useful to say since I have little experience of illness. I eat and drink whatever I like, and sleep when I cannot keep awake. I never do anything whatever on the ground that it is good for health, though in actual fact the things I like doing are mostly wholesome. Psychologically where are two dangers to be guarded against in old age. One of these is undue absorption in the past. It does not do to live in memories, in regards for the good old days, or in sadness about friends who are dead. One’s thoughts must be directed to the future, and to things about which there is something to be done. This is not always easy; one’s own past is a gradually increasing weight. It is easy to think to oneself that one’s emotions used to be more vivid than they are, and one’s mind more keen, if this is true it should be forgotten, and if it is forgotten it will probably to be true. The other thing to be avoided is clinging to youth in the hope of sucking vigor from its vitality. When your children are grown up they want to live their own lives, and if you continue to be as interested in them as you were when they were young, you are likely to become a burden to them, unless they are unusually callous. I do not mean that one should be without interest in them, but one’s interest should be contemplative and if possible, philanthropic, but not unduly emotional. Animals become indifferent to their young as soon as their young can look after themselves, but human beings, owing to the length of infancy, find this difficult. 老年 由于我很少生病,对于健康也说不出什么有用的话来。我的饮食都是按照自己的喜好,然后困了就睡觉。我从来不会因为什么有益于健康,就去做什么,虽然事实上我喜欢做的事情通常是有益健康的。 人在老年要谨防两种危险的心理,其中一种是过分地沉溺于过去。活在记忆里,怀念过去的美好时光,或是沉浸在已故朋友的感伤中,这些都无济于事。一个人的思想要向着未来,要向着还未完成的事情。但这并不容易做到,因为随着年龄的增长,一个人的过去所占的分量会越来越重。人们经常自己想,过去的情感更加炽热,过去的思维更加敏捷, 另外要避免的一件事是,抓着儿女不放,希望能从他们身上吸取一些元气。孩子们长大了,就会想要过自己的生活,如果你还和他们小时候那样,经常和他们在一起,除非他们对你漠不关心(这种情况很少),否则你很有可能会成为他们的负担。我并不是说要对儿女毫不关心,只是你们应该把兴趣放在沉思上,如果有可能的话,放在慈善事业上,而不是过分的情绪化。在动物的世界里,一旦孩子能够自理,父母便对他们放任自由了,而人类因为婴儿期比较长,父母很难做到这样。

1.5兆瓦风力发电机组塔筒及基础设计解析

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

学历学位中英文翻译对照

美国学校提供的学位有很多种,依所学领域的不同,而有不同的学位。以下列出的是美国高等教育中较常见的学位: Ph.D.(Doctor of Philosophy): 博士学位。而有些领域的博士课程会有不同的学位名称,如D.A.(Doctor of Arts)、Ed.D.(Doctor of Education) M.B.A.(Master of Business Administration): 商学管理硕士。 M.A.(Master of Arts)硕士;B.A.(Bachelor of Arts)学士: 两者皆属于人文、艺术或社会科学的领域,如文学、教育、艺术、音乐。 M.S.(Master of Science)硕士;B.S.(Bachelor of Science)学士: 两者皆属于理工、科学的领域,如数学、物理、信息等。 Associate Degree(副学士学位): 读完两年制小区大学或职业技术学校所得到的学位。 Dual Degree(双学位): 是由两个不同学院分别授与,因此得到的是两个学位。 Joint Degree:为两个不同学院联合给予一个学位,如法律经济硕士。 major 主修 minor 辅修 大家要搜索自己的专业, 请按 ctrl + F 打开搜索窗口, 然后输入关键字查询 学士 Bachelor of Arts B.A. 文学士 Bachelor of Arts in Education B.A.Ed., B.A.E. 教育学文学士 Bachelor of Arts in Computer Science B.A.CS 计算机文学士 Bachelor of Arts in Music B.A.Mus,B.Mus 音乐艺术学士 Bachelor of Arts in Social Work B.A.S.W 社会工作学文学士 Bachelor of Engineering B.Eng., B.E 工学士 Bachelor of Engineering in Social Science B.Eng.Soc 社会工程学士 Bachelor of Engineering in Management B.Eng.Mgt 管理工程学士 Bachelor of Environmental Science/Studies B.E.Sc., B.E.S 环境科学学士 Bachelor of Science B.S 理学士 Bachelor of Science in Business B.S.B., B.S.Bus 商学理学士 Bachelor of Science in Business Administration B.S.B.A 工商管理学理学士 Bachelor of Science in Education B.S.Ed., B.S.E 教育学理学士 Bachelor of Science in Engineering B.S.Eng., B.S.E 工程学理学士 Bachelor of Science in Forestry B.S.cF 森林理学士 Bachelor of Science in Medicine B.S.Med 医学理学士 Bachelor of Science in Medical Technology B.S.M.T., B.S.Med.Tech 医技学理学士 Bachelor of Science in Nursing B.S.N., B.S.Nurs 护理学理学士 Bachelor of Science in Nutrition B.SN 营养学理学士 Bachelor of Science in Social Work B.S.S.W 社会工作学理学士 Bachelor of Science in Technology B.S.T 科技学理学士 Bachelor of Computer Science B.CS 计算机理学士 Bachelor of Computer Special Science B.CSS 计算机特殊理学士 Bachelor of Architecture B. Arch. 建筑学士 Bachelor of Administration B.Admin. 管理学士

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

英汉语篇翻译

Poor Birds 可怜的小鸟 There was a flock of birds in the jungle near a village. They lived together in a big tree and had a lot of fun every day. This flock of birds usually flew to different places in groups, making a beautiful picture in the sky. Sometimes they have a heated discussion in the tree. 在一个小村庄附近的丛林里有一群小鸟,它们共同栖息在一棵大树上,每天过着快乐的生活。这群小鸟常常成群结队地飞往不同的地方,它们的身姿形成天空一道漂亮的风景。有时,它们会在大树上展开激烈的争论 One day, a farmer went to the jungle to trap some animals for dinner. He saw a lot of birds in the tree, so he threw some corn on the ground and waited until the birds came down to eat. Then he threw a big net over the birds to trap them. 一天,一个农夫到丛林里捕捉猎物用作晚餐。他看到大树上有很多小鸟,于是就在地上撒了些谷物,等着小鸟来吃。然后他支起一张大网捕捉来觅食的小鸟。 When the birds were in the net, they were all afraid and wanted to get out of the net. Some birds in this net said, “Let’s help one other to fly together and push this net up into the tree so we can get out of here.”Everyone listened and count ed, “One, two, three—everyone flies!” They all flew and pushed the net up into the tree and flew out of the net. 被网罩住后,小鸟们都很害怕,想从中逃出去。有些鸟说:“我们

英汉短语翻译

be cut and dry 事先准备好的,索然无味的French leave 不辞而别 Italian football 炸弹 castle in Spain 空中楼阁,白日梦Greek gift 害人的礼物 Turkish towel 粗面毛巾 a bad sailor 会晕船的人 under the weather 身体不适 be green-eyed 红眼病 get off to a good start 开门红 skin and bones 皮包骨头 in deep water 水深火热 at one''s fingertips 了如指掌 talk black into white 颠倒黑白 go through fire and flood 赴汤蹈火 search one’s heart 扪心自问 on the down grade每况愈下 roses and thorns 有甜有苦 fusion and fission 聚变和裂变 mistakes of succumbing to individualism 犯个人主义的错误 to bore a hole 镗孔 to improve the surface finishes 提高表面光洁度 dry cow 不产奶的母牛 dry fire 空弹射击 dry facts 不加渲染的事实 dry book 枯燥无味的书 dry shampoo 干洗的洗发剂 dry party 无酒的聚会 dry wine 无甜味的葡萄酒 dry farming 旱作农业 dry law 禁酒令 dry nurse 保姆electromagnetic waves 电磁波 oil baron 石油大王 slow-witted 头脑迟钝 tongue-tied 张口结舌,哑口无言。to wait for gains without pains 守株待兔 wall of bronze 铜墙铁壁 catch at shadows 捕风捉影 Whoever plays with fire perishes 玩火自焚 running dog 走狗 downy lips make,thoughtless slips 嘴上没毛,说话不牢castle in the air 空中楼阁

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

各种咖啡的中英文对照翻译大全

各种咖啡的中英文对照翻译大全 来源:[本站]浏览: [] 1.哥伦比亚咖啡Colombian Coffee 2.牙买加咖啡Jamaican Coffee 3.蓝山咖啡Blue Mountain Coffee 4.巴西山度士咖啡B razil Santos Coffee 5.曼特林咖啡Brazilian Coffee 6.意大利咖啡Italian Coffee 7.意大利浓咖啡Espresso 8.意大利泡沫咖啡Cappuccino 9.拿铁咖啡Caf e Latt ^Coffee Latte) 10.美式咖啡Caf e America no 11.法式滴滤咖啡French Coffee 12.冰法式滴滤Iced French Coffee

13.低因咖啡Decaffe in ated Coffee

曼巴咖啡 Special Coffee (Man deli ng and Brazilia n Coffee) 速溶咖啡 Instant Coffee 现磨咖啡 Fresh Ground Coffee 冰咖啡 Iced Coffee 浓缩冰咖啡 Iced Espresso 冰薄荷咖啡Iced Mint Coffee 冰卡布奇诺 Iced Cappuccino 冰焦糖卡布奇诺 Iced Caramel Cappuccino 冰香草卡布奇诺 Iced Van ilia Cappucci no 冰榛子卡布奇诺 Iced HazeInut Cappuccino 果味冰卡布奇诺 Iced Fruit Cappuccino 果味卡布奇诺 Fruit Cappuccino 薰衣草卡布奇诺 Lavender Cappuccino 香草卡布奇诺 Van ilia Cappucci no 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

英汉习语翻译

A wolf in sheep’s clothing 披着羊皮的狼. to be on the ice 如履薄冰. to sit on pins and needles 如坐针毡. An ass is known by his ears 见耳识驴it is a sad house where the hen crows louder than the cock()鸡司晨,家之不祥. it’s ill to waken sleeping dogs/ Let sleeping dogs lie 勿惹睡狗. A barking dog is better than a sleeping lion 吠犬不可怕,睡狮难提防. The great fish eat up the small 大鱼吃小鱼. He who rides a tiger is afraid to dismount 骑虎难下. A good horse cannot be of a bad colour 好马无劣色. to be as mild as a lamb 驯如羔羊. 合抱之木,生于毫末Great oaks from little acorns grow. 人靠衣服马靠鞍It’s the saddle that makes the horse and the tailor , the man. 旧瓶装新酒new wine in old bottles. 玩火者必自焚He who plays with fire gets burned. 羽毛丰满to become full-fledged. 风驰电掣to pass swiftly like the wind or lighting. The ap ple of one’s eye 掌上明珠. as timid as a hare 胆小如鼠. as strong as a horse 大力如牛. as poor as a church mouse 一贫如洗. Man proposes, God disposes 谋事在人,成事在天. Everyone for himself, God for us all 人人为自己, 老天为大家. A small bird wants but a small nest 燕雀无鸿鹄之志. Take not

风力发电机组总体设计

1.总体设计 一、气动布局方案 包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。 二、整机总体布置方案 包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。 三、整机总体结构方案 包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。 四、各部件和系统的方案 应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。五、整机重量计算、重量分配和重心定位 包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。 六、配套附件 整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。 2.总体参数 在风轮气动设计前必须先确定下列总体参数。 一、风轮叶片数B 一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

风力发电机设计

摘要 自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。 风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。 本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。 关键词:风能;风力发电机;叶片;轮毂;齿轮箱

Abstract Natural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration. Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times. Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution. Key words: wind power;wind power generators;blade;wheel;Gearbox

中英文菜名对照翻译

一、以主料开头的翻译方法 1、介绍菜肴的主料和辅料: 公式:主料(形状)+(with)辅料 例:杏仁鸡丁chicken cubes with almond 牛肉豆腐beef with bean curd 西红柿炒蛋Scrambled egg with tomato 2、介绍菜肴的主料和味汁: 公式:主料(形状)+(with,in)味汁 例:芥末鸭掌duck webs with mustard sauce 葱油鸡chicken in Scallion oil 米酒鱼卷fish rolls with rice wine 二、以烹制方法开头的翻译方法 1、介绍菜肴的烹法和主料: 公式:烹法+主料(形状) 例:软炸里脊soft-fried pork fillet 烤乳猪roast suckling pig 炒鳝片Stir-fried eel slices 2、介绍菜肴的烹法和主料、辅料 公式:烹法+主料(形状)+(with)辅料 仔姜烧鸡条braised chicken fillet with tender ginger 3、介绍菜肴的烹法、主料和味汁: 公式:烹法+主料(形状)+(with,in)味汁

例:红烧牛肉braised beef with brown sauce 鱼香肉丝fried shredded pork with Sweet and sour sauce 清炖猪蹄stewed pig hoof in clean soup

三、以形状或口感开头的翻译方法 1、介绍菜肴的形状(口感)和主料、辅料 公式:形状(口感)+主料+(with)辅料 例:芝麻酥鸡crisp chicken with sesame 陈皮兔丁diced rabbit with orange peel 时蔬鸡片sliced chicken with seasonal vegetables 2、介绍菜肴的口感、烹法和主料 公式:口感+烹法+主料 例:香酥排骨crisp fried spareribs 水煮嫩鱼tender stewed fish 香煎鸡块fragrant fried chicken 3、介绍菜肴的形状(口感)、主料和味汁 公式:形状(口感)+主料+(with)味汁 例:茄汁鱼片sliced fish with tomato sauce 椒麻鸡块cutlets chicken with hot pepper 黄酒脆皮虾仁crisp shrimps with rice wine sauce 四、以人名或地名开头的翻译方法 1、介绍菜肴的创始人(发源地)和主料 公式:人名(地名)+主料 例:麻婆豆腐Ma Po beancurd 四川水饺Sichuan boiled dumpling

相关文档
最新文档