热电冷却 - 基本知识(半导体制冷片)

热电冷却 - 基本知识(半导体制冷片)
热电冷却 - 基本知识(半导体制冷片)

Thermoelectric Cooling - The Basics

1 Introduction

Although thermoelectric (TE) phenomena were discovered more than 150 years ago, thermoelectric devices (TE coolers) have only been applied commercially during recent decades. For some time, commercial TECs have been developing in parallel with two mainstream directions of technical progress –electronics and photonics, particularly optoelectronics and laser techniques. Lately, a dramatic increase in the application of TE solutions in optoelectronic devices has been observed, such as diode lasers, superluminescent diodes (SLD), various photodetectors, diode pumped solid state lasers (DPSS), charge-coupled devices (CCDs), focal plane arrays (FPA) and others.

The progress in applications is provided by advantages of TE coolers – they are solid state, have no moving parts and are miniature, highly reliable and flexible in design to meet particular requirements.

2 What is Thermoelectric Cooling?

Thermoelectric cooling uses the Peltier effect to create a heat flux between the junctions of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other side against the temperature gradient (from cold to hot), with consumption of electrical energy. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC). The Peltier device is a heat pump: when direct current runs through it, heat is moved from one side to the other. Therefore it can be used either for heating or for cooling (refrigeration), although in practice the main application is cooling. It can also be used as a temperature controller that either heats or cools.

This technology is far less commonly applied to refrigeration than vapor-compression refrigeration is. The main advantages of a Peltier cooler (compared to a

vapor-compression refrigerator) are its lack of moving parts or circulating liquid, and its small size and flexible shape (form factor). Its main disadvantage is that it cannot simultaneously have low cost and high power efficiency. Many researchers and companies are trying to develop Peltier coolers that are both cheap and efficient.

A Peltier cooler is the opposite of a thermoelectric generator. In a Peltier cooler, electric power is used to generate a temperature difference between the two sides of

the device, while in a thermoelectric generator, a temperature difference between the two sides is used to generate electric power. The operation of both is closely related (both are manifestations of the thermoelectric effect), and therefore the devices are generally constructed from similar materials using similar designs.

3 What is Thermoelectric Cooler?

Thermoelectric cooler (TEC), or Peltier Cooler is a solid-state heat pump that uses the Peltier effect to move heat. The modern commercial TEC consists of a number of p- and n- type semiconductor couples connected electrically in series and thermally in parallel. These couples are sandwiched between two thermally conductive and electrically insulated substrates. The heat pumping direction can be altered by altering the polarity of the charging DC current. TEC schematic is illustrated in Figure 1. The typical materials used for constructing TEC are:

1. Substrate: aluminum oxide (Al2O3), aluminum nitride (AlN), or barium oxide (BaO)

2. Conductor: Copper

3. Thermoelectric semiconductor

i. n-type: bismuth-telluride-selenium (BiTeSe) compound

ii. p-type: bismuth-telluride-antimony (BiTeSb) compound

4. Assembled and joined by solder.

Figure 1. Thermoelectric Cooler Schematic

The TEC can be made in different shapes and sizes, but most common shape is a square or a rectangular substrate device. The practical size of a single stage TEC ranges from 3 mm x 3 mm up to 60 mm x 60 mm. The size limitation of 60 mm x 60 mm is due to the thermal stress. This stress comes from thermal expansion deformations between the cold and the hot junctions of the TEC. To obtain a larger

temperature difference, a multistage TEC can be build. The multistage TEC is usually in cascade shape and 6 stages are the maximum practical limit. Figure 2 depicts various sizes of TEC.

Figure 2. Various Sizes of TEC

4 When to consider TEC?

TEC can be used in different application where cooling or temperature control of an object is required. In general, TEC is most often used when an object:

1. Needs to be cooled below the ambient temperature, or

2. Requires to be maintained at a consist temperature under a fluctuating ambient temperature.

TEC is perfect for cooling a small, low heat load object. Due to the low COP (Coefficient of Performance) compared with compressor cooling, TEC looses its advantage if the cooling load is higher than 200 watts. But, because TECs have no moving parts, they are lightweight and reliable; they create no electrical noise, and can be operated at any orientation or environment, in some instances TECs are used to cool kilowatts of heat.

TEC is exceptionally suitable for a precision temperature control of an object such as a laser diode, CCD or other small objects. Paired with a DC power supply and an electronics proportional/integral (PI) controller packaged in a single chip device, TEC is able to control an object to +/- 0.1oC accuracy. Today, no other cooling method yet can provide such precise, simple and convenient temperature control.

5 Application of TEC

TEC is mainly used for cooling of electronic components, especially of optical

devices, so as to improve the performance of electronic components, such as computer chips, infrared detectors, lasers and so on. These devices typically require less cooling power. U.S. Marlow Company has set up a laser cooling segment, and about one third of the personnel are engaged in this study area. TEC’s applications on the biology and medical. PCR instrument is known as temperature control device or gene amplification process instrument, which can be used for the diagnosis of genetic diseases, infectious disease detection, and forensics test that its essence is a temperature circulator. The world's most advanced PCR instrument is manufactured by using semiconductor refrigeration technology, for example, the British LEP company produced PREM Ⅲ, the Swedish PHARMACIA company produced Gene ATAQ and the United States MJ company produced PTC-150 type PCR instrument. The ventilator pump is made use of semiconductor refrigeration technology, which has a simple structure, has no noise, high speed of condense and high condensing efficiency and which is the most advanced respiratory pump, such as the production of 900-C ventilator by Siemens; Nd-YAG laser surgery devices were made by the semiconductor refrigeration technology, which has many characteristics such as small size, light weight, easy to use, sustainable to work, sophisticated temperature alarm device. For example, our country made H-100-IV-type Nd- YAG laser surgery devices by using semiconductor cooling technology, and application of semiconductor cooling technology also made the stage microscope, slice freezer, hot and cold acupuncture device, cold hats, and freezing therapy devices.

TEC can be applied in the appliance industry. This industry is characterized by the application of portable and small volume cabinet for special occasions. For instance, the Chicago Thermopol Company produced M-50B-type military refrigerating devices, and Michigan Hylan Company produced 46 liters thermoelectric refrigerator. Now the larger manufacturers are: Koolatron Corporation in Canada, Europe Elecriolux in Belgium, Supercool Corporation in Sweden, Far East Yam's company in Hong Kong and Commander Highclass Electrical Corporation in Taiwan.

TEC is applied in desiccant technology. Using this technology to produce the condensing mirror dew point meter is 2-standard equipment which measured condensing humidity. The semiconductor refrigeration technology is widely used in small space and small load applications.

TEC also can be used in the measurement, control and other applications. Grass slot with constant temperature used semiconductor lithography, instead of ice bottle as a

thermocouple temperature measurement system; the zero instrument used as 0℃reference devices; imaging tank thermostat can be used in the condition of 10-45℃temperature range; water circulation thermostat and the low temperature thermostat bath whose lowest temperature can be up to -40℃; the thermostat whose temperature range is -10-60℃ for biochemical experiments.

In short, the semiconductor refrigeration technology has been widely used in low temperature biology, superconducting technology, low temperature surgery,

low-temperature electronics, communication technology, infrared technology, laser technology and space technology and many other fields.

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

半导体物理重点

半导体重点 第一章 1.能带论:用单电子近似的方法研究晶体中电子状态的理论成为能带论。 2.单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其它电子的平均势场中运动的。 3.金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导体。半导体中,如图所示,下面是被价电子占满的满带,亦称价带,中间为禁带,上面是空带,当温度升高,或者有光照的时候,满带中有少量电子可能被激发到上面的空带中去,此时半导体就能导电了。在半导体中导带的电子和价带的空穴均参与导电,金属中只有电子导电。 4.电子公有化运动:当原子相互接近形成晶体是,不同原子的相似壳层之间就有了一定程度的交叠,电子不再完全局限在一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动就称为电子的共有化运动。 第二章 1.施主杂质:在Si,Ge中电离是能够施放电子而产生导电电子,并形成正电中心的杂质。常见V族杂质有:P,As,Sb

2.受主杂质:在Si,Ge中电离是能够接收电子而产生导电空穴并形成负电中心的杂质。 常见的III族杂质:B,Al,Ga,In 3.深能级:非III,V族杂质在Si,Ge的禁带中产生的施主能级距导带底较远,产生的受主能级距价带顶也较远,通常称这种能级为深能级,相应的杂质为深能级杂质。 作用:这些深能级杂质能够产生多次电离,每一次电离相应的有一个能级。因此这些杂质在Si,Ge的禁带中往往引入若干个能级,而且有的杂质既能产生施主能级,又能产生受主能级。对于载流子的复合作用比前能级杂质强,Au是一种很典型的复合中心,在制造高速开关器件是,常有意掺入Au以提高器件的速度。 4.补偿作用:在半导体中,施主和受主杂质之间的相互抵消的作用称为杂质的补偿。 (1)当N >>N :为n型半导体,(2)当N >>N :为P型半导体,(3)N >>N 时,施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。 利用杂质的补偿作用,可以根据需要用扩散或者离子注入方法来改变半导体中某一区域的导电类型,以制成各种器件。

半导体器件参数(精)

《党政领导干部选拔任用工作条例》知识测试题(二) 姓名:单位: 职务:得分: 一、填空题(每题1分,共20分): 1、《党政领导干部选拔任用工作条例》于年月发布。 2、《党政领导干部选拔任用工作条例》是我们党规范选拔任用干部工作的一个重要法规,内容极为丰富,共有章条。 3、干部的四化是指革命化、知识化、年轻化、专业化。 4、,按照干部管理权限履行选拔任用党政领导干部的职责,负责《条例》的组织实施。 5、党政领导班子成员一般应当从后备干部中选拔。 6、民主推荐部门领导,本部门人数较少的,可以由全体人员参加。 7、党政机关部分专业性较强的领导职务实行聘任制△I称微分电阻 RBB---8、政协领导成员候选人的推荐和协商提名,按照RE---政协章程和有关规定办理。 Rs(rs----串联电阻 Rth----热阻 结到环境的热阻

动态电阻 本机关单位或本系统 r δ---衰减电阻 r(th--- Ta---环境温度 Tc---壳温 td---延迟时间 、对决定任用的干部,由党委(党组)指定专人同本人 tg---电路换向关断时间 12 Tj---和不同领导职务的职责要求,全面考察其德能勤绩廉toff---。 tr---上升时间13、民主推荐包括反向恢复时间 ts---存储时间和温度补偿二极管的贮成温度 p---发光峰值波长

△λ η--- 15、考察中了解到的考察对象的表现情况,一般由考察组向VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) 、正向压降(正向直流电压) △政府、断态重复峰值电压 VGT---门极触发电压 VGD---17、人民代表大会的临时党组织、人大常委会党组和人大常委会组成人员及人大代表中的党员,应当认真贯彻党委推荐意见 VGRM---门极反向峰值电压,带头(AV

天然气冷热电三联供系统操作规程

第一章总则 第一条为了规范燃气冷热电三联供项目的日常运行维护标准,依据内燃机、直燃机操作规程,制定本制度。 第二条本制度适用于燃气冷热电三联供系统项目的日常运行及维护。 第三条运营安全部为本制度的主管部门。 第二章燃气冷热电三联供系统的定义 第四条燃气冷热电三联供,即CCHP(Combined Cooling, Heating and Power),是指以天然气为主要燃料带动燃气轮机、微燃机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,系统发电后排出的余热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户供热、供冷。通过这种方式大大提高整个系统的一次能源利用率,实现了能源的梯级利用。 第五条冷热电三联供是分布式能源的一种,具有节约能源、改善环境,增加电力供应等综合效益,是城市治理大气污染和提高能源综合利用率的必要手段之一。 第三章发电操作 第六条开机程序 (一)检查机油、和冷却水的液位有没有在规定的液位,如没有达到应补充至规定液位。

(二)检查柴油机冷却风扇与充电机皮带的松紧,如松便收紧;检查所有软管,看看是否会有接合 处松脱破损、磨损,如有则收紧或换掉。 (三)打开燃料阀门,合上电源总开关。检查油门开关是否打开,保持低速启动电机。 (四)若机组低速运行正常,可将转速逐渐增加到中速,进行预热运转,一定时间后,将转速增至 额定转速。 (五)检查机组散热、振动、三相电压、电流、频率和转速是否正常。若运行正常,则可以逐渐增 加负荷,向系统供电。 第七条关机程序 (一)逐渐卸去负荷,断开空气开关。 (二)在空载状况下,逐渐将转速降至中速,待机组水、油温降至70℃下时再行停机; (三)停机15分钟后,关闭发动机机房通风机。第八条注意事项 (一)开机时不能用高速启动,否则会烧坏启动电机。 (二)用启动电机启动时,启动时间不能超过5秒,连续启动三次无法启动起来要等机组冷却后再行

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体器件工艺基础知识

半导体基础知识和半导体器件工艺 第一章半导体基础知识  通常物质根据其导电性能不同可分成三类。第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质: (1) 温度的变化能显著的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。 将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要为三族元素:铝、镓、铟、硼等。 电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞

半导体物理答案知识讲解

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为1.1×1015cm -3的磷,则电子 浓度约为(1015cm -3 ),空穴浓度为(2.25×105cm -3 ),费米能级为(高于E i );将该半导 体由室温度升至570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米 能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征 激发后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式*/q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大 的正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载 流子堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲 率小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带 隙)半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的 弱束缚电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够 高、n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向 (Ev )移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子 陷阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子 浓度成反比)。

半导体物理学第七章知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静 止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数 图7-3 半导体功函数和电子亲合能

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

半导体物理学第八章知识点

第8章 半导体表面与MIS 结构 许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。 §8.1 半导体表面与表面态 在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。 一、理想一维晶体表面模型及其解 达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。在此半无限周期场中,电子波函数满足的薛定谔方程为 )0(20202≤=+-x E V dx d m φφφη (8-1) )0()(2202≥=+-x E x V dx d m φφφη (8-2) 式中V (x)为周期场势能函数,满足V (x +a )=V(x )。 对能量E <V 0的电子,求解方程(8-1)得出这些 电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η -=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为 kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4) 当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。 但是,当k 取复数k =k '+ik ''时(k '和k ''皆为实数),式(8-4)变成 x k x k i k x k x k i k e e x u A e e x u A x '''--''-'+=ππππφ2222212)()()( (8-5) 此解在x→∞或-∞时总有一项趋于无穷大,不符合波函数有限的原则,说明无限周期势场不能有复数解。但是,当A 1和A 2任有一个为零,即考虑半无限时,k 即可取复数。例如令A 2=0,则 x k x k i k e e x u A x ''-'=ππφ2212)()( (8-6) 图8-l 一维半无限晶体的势能函数

冷热电三联供计算分析

冷热电三联供计算分析 国家发改委、财政部、住房城乡建设部、能源局在2011年10月发了“关于发展天然气分布式能源的指导意见”。其中有段:“天然气分布式能源是指利用天然气为燃料,通过冷热电三联供等方式实现能源的梯级利用,综合能源利用效率在70%以上,并在负荷中心就近实现能源供应的现代能源供应方式,是天然气高效利用的重要方式。” 根据这个精神做冷热电联产实际运行的计算分析。(实例) 以热定电,使能源利用率,经济效益最大化。 例一、赣州锦秀新天地 功用实施范围:一座三层综合商场,七幢连体别墅(14套)。 先确定热耗量 根据当地空调期常年平均气候,按舒适性空调条件计算。 综合商场空调制冷需总冷量2925kw/h。 空调制热需总热量1380kw/h。 七幢连体别墅空调制冷需总冷量1130kw/h。 空调制热需总热量790kw/h。 每小时出65℃热水3m3需热量195 kw/h。 这里以吸收式制冷机形式生产空调冷原;以板式热交换器形式转换生产空调热源;以水—水容积式热交换器形式生产65℃生活热水。 ●综合商场和七幢别墅制冷空调同时运行时,需总制冷量4055 kw/h。采用 单效热水型溴化锂吸收式制冷机组生产此冷量,需耗热能(循环热水)5068 kw/h。(能效比0.8) ●综合商场和七幢别墅制热空调同时运行时,需总制热量2170 kw/h。采用 板式换热器转换生产此热量,需耗热能(循环热水)2214 kw/h(能效比 0.98) ●采用容积式换热器转换生产生活热水,需耗热能(循环热水)200 kw/h(能 效比0.98) 当制冷空调运行和生产生活热水时,热负荷为5068kw/h+200kw/h=5268kw/h,为 此系统的最大热负荷。 再确定选择发电机组 根据曼海姆燃气发电机组TCG2020 V20样本所列技术数据。 电功率为2000KW;热输出为1990KW。总效率87%。 其中热输出中,缸套水热量1006KW;排气热量972KW可以搜集再利用。 缸套水经热交换转换可利用率98%,释出热量986KW; 排气热量转换产循环热水可利用率76%,释出热量738KW。 上二项相加总可利用热量1724KW。(热量利用率87%) 按前面所算最大热负荷,需要配置三台TCG2020 V20发电机组。 总出电功率6000KW;热输出5970KW。 以上计算在实际运行能兑现,综合能源利用效率可达81%。 其中最关键是热量搜集转换再利用的研考设计。

半导体物理考研总结

1.布喇格定律(相长干涉):点阵周期性导致布喇格定律。 2.晶体性质的周期性:电子数密度n(r)是r的周期性函数,存在 3.2πp/a被称为晶体的倒易点阵中或傅立叶空间中的一个点,倒易点中垂线做直线可得布里渊区。 3.倒易点阵: 4.衍射条件:当散射波矢等于一个倒易点阵矢量G时,散射振幅达到最大 波矢为k的电子波的布喇格衍射条件是: 一维情况(布里渊区边界满足布拉格)简化为: 当电子波矢为±π/a时,描述电子的波函数不再是行波,而是驻波(反复布喇格反射的结果) 5.布里渊区:

6.布里渊区的体积应等于倒易点阵初基晶胞的体积。 7.简单立方点阵的倒易点阵,仍是一个简立方点阵,点阵常数为2π/a,第一布里渊区是个以原点为体心,边长为2π/a的立方体。 体心立方点阵的倒易点阵是个面心立方点阵,第一布里渊区是正菱形十二面体。面心立方点阵的倒易点阵是个体心立方点阵,第一布里渊区是截角八面体。 8.能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。(边界处布拉格反射形成驻波,造成能量差) 9.第一布里渊区允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值;

-直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 绝缘体:至一个全满,其余全满或空(初基晶胞的价电子数目为偶数,能带不交 叠)2N. 金属:半空半满 半导体或半金属:一个或两个能带是几乎空着或几乎充满以外,其余全满 (半金属能带交叠) 10.自由电 子: 11.半导体的E-k关系:

半导体物理基本知识

半导体物理基本知识 一、导体、半导体和绝缘体 物质就其导电性来说,可以分为绝缘体、半导体、和导体。电阻率大于109欧姆·厘米的物体称为绝缘体,小于10-4欧姆·厘米的物体为导体,电阻率介于10-4~109欧姆·厘米的物体为半导体。 二、半导体材料的种类 半导体材料种类繁多,从单质到化合物,从无机物到有机物,从单晶体到非晶体,都可以作为半导体材料。半导体材料大致可以分为以下几类: 1、元素半导体 元素半导体又称为单质半导体。在元素周期表中介于金属与非金属之间的Si、Ge、Se、Te、B、C、P等元素都有半导体的性质。 在单质元素半导体中具有实用价值的只有硅、锗、硒。而硅和锗是最重要的两种半导体材料。尤其半导体硅材料已被广泛地用来制造各种器件、数字和线性集成电路以及大规模集成电路等。硒作为半导体材料主要用做整流器,但由于硅、锗制造的整流器比硒整流器性能良好,所以硒逐渐被硅、锗取代。 2、化合物半导体 化合物半导体是AⅢBⅤ型化合物,由元素中期表中ⅢA族的Al、Ga、和ⅤA族的P、As、Sb等合成的化合物成为AⅢBⅤ型化合物。如AlP、GaAs、GaSb、InAs、InSb。在这一类化合物半导体中用最广泛的是GaAs,它可以用来制作GaAs晶体管、场效应管、雪崩管、超高速电路及微波器件等。 3、氧化物半导体 许多金属的氧化物具有半导体性质,如Cu2O、CuO、ZnO、MgO、Al2O3等等。 4、固溶体半导体 元素半导体和无机化合物半导体相互溶解而成的半导体材料成为固溶体半导体。如:Ge-Si、GaAs-GaP,而GaAs-GaP是发光二极管的材料。 5、玻璃半导体 玻璃半导体是指具有半导体性质的一类玻璃。如氧化物玻璃半导体和元素玻璃半导

半导体物理知识点

半导体物理知识点 1.前两章: 1、半导体、导体、绝缘体的能带的定性区别 2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。注意随着原子序数的增大, 还原性增大,得到的电子稳固,便能提供更多的空穴。所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点 常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋) 3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导) 4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点, mt是沿垂直轴方向的质量,ml是沿轴方向的质量。 锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。 砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。此能谷可以造成负微分电阻效应。 2.第三章载流子统计规律: 1、普适公式 ni^2 = n*p ni^2 = (NcNv)^0.5*exp(-Eg/(k0T)) n = Nc*exp((Ef-Ec)/(k0T)) p = Nv*exp((Ev-Ef)/(k0T)) Nv Nc与 T^1.5成正比 2、掺杂时。注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意 Ef前的符号! nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度 nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度 na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度 na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度 3、掺杂时,电离情况。 电中性条件: n + na- = p + nd+ N型的电中性条件: n + = p + nd+ (1)低温弱电离区:记住是忽略本征激发。由n = nd+推导,先得费米能级,再代 入得电子浓度。Ef从Ec和Ed中间处,随T增的阶段。 (2)中间电离区:(亦满足上面的条件,即n = nd+),当T高于某一值时,Ef递减 的阶段。当Ef = Ed时,1/3的施主电离。(注意考虑简并因子!) (3)强电离区:杂质全部电离,且远大于本征激发,n = Nd,再利用2.1推导 (4)过渡区:杂质全部电离,本征激发加剧,n = Nd + p和n*p=ni^2联立 4、非简并条件 电子浓度exp((Ef-Ec)/(k0T))<<1 空穴浓度exp((Ev-Ef)/(k0T))<<1 这意味着有效态密度Nc和Nv中只有少数态被占据,近似波尔兹曼分布。不满足这 个条件时,即Ef在Ec之上或Ev之下则是简并情况。弱简并是指还在Eg之内,但 距边界小于2K0T。

半导体物理知识点总结汇总

一、半导体物理知识大纲 核心知识单元A:半导体电子状态与能级(课程基础 -------- 掌 握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章) 核心知识单元B:半导体载流子统计分布与输运(课程重点 ——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法) 半导体中载流子的统计分布(第 3 章)半导体的导电性 (第 4 章)非平衡载流子(第 5 章) 核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章) 半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)

二、半导体物理知识点和考点总结 第一章半导体中的电子状态 本章各节内容提要: 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在 1.1 节,半导体的几种常见晶体结构及结合性质。(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在 1.3 节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握) 在 1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握) 在 1.5 节,介绍回旋共振测试有效质量的原理和方法。(理解即可) 在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍山-V族化合物的能带结构,主要了解GaAs 的能带结构。(掌握能带结构特征) 本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五 族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不 同:孤立原子中的电子是在该原子的核和其它电子的势场中 运动,自由电子是在恒定为零的势场中运动,而晶体中的电 子是在严格周期性重复排列的原子间运动(共有化运动) ,单 电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原

半导体物理重点

半导体物理复习重点 第一章 1. 某一维晶体的电子能带为 [] )sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a =5х10-11 m 。求: (1) 能带宽度;(2)能带底和能带顶的有效质量。 (1) 解答要点:由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-= eV E E E E a k d dE a k E a k d dE a k a k a k ka tg dk dE o o o o 1384.1min max , 010 28.2)4349.198sin 34349.198(cos 1.0,4349.198, 010 28.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183 1,040 0222 240 022 2 121=-=??=+====∴= =--则能带宽度 对应能带极大值。当对应能带极小值;当)(得令 (2) ()() ()() () ()???????? ??-=??????????-=?????????? ??=?=??????????=?????????? ??=----------kg k d dE h m kg k d dE h m k n k n 271234 401 222*27 123440 1 222*10925.110625.61028.2110925.110625.61028.2121带顶带底则 答:能带宽度约为1.1384eV ,能带顶部电子的有效质量约为1.925x10-27 kg ,能带底部电子 的有效质量约为-1.925x10-27kg 。 2. 试用能带理论解释导体、半导体、绝缘体的导电性。 解答要点:固体按其导电性分为导体、半导体、绝缘体,其机理可以根据电子填充能带的情况来说明。 固体能够导电,是固体中的电子在外场的作用下定向运动的结果。由于电场力对电子的加速作用,使电子的运动速度和能量都发生了变化。换言之,即电子与外电场间发生能量交换。从能带论来看,电子的能量变化,就是电子从一个能级跃迁到另一个能级上去。对于满带,其中的能级已被电子所占满,在外电场作用下,满带中的电子并不形成电流,对导电没有贡献,通常原子中的内层电子都是占据满带中的能级,因而内层电子对导电没有贡献。对于被电子部分占满的能带,在外电场作用下,电子可从外电场中吸收能量跃迁到未被电子占据的的能级去,起导电作用,常称这种能带为导带。金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。 半导体和绝缘体的能带类似,即下面是已被价电子占满的满带(其下面还有为内层电

相关文档
最新文档