中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:几何综合题(含答案解析)
中考数学复习专题:几何综合题(含答案解析)

几何综合题

1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H . (1)如图1,若60BAC ∠=?

①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;

(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.

答案:

(1)①75B ∠=?,45ACB ∠=?;

②作DE ⊥AC 交AC 于点E .

Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.

Rt △ACH 中,由30DAC ∠=?,可得AH 33

+=

(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC

证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .

易证△ACH ≌△AFH .

∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =, ∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.

∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.

2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α?<

②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.

(2)当4590α?<

C

D

B

A

图1

备用图

C D

B

A

M

答案:(1)①补全的图形如图7所示.

② ∠NCE =2∠BAM .

(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.

证明:如图8,连接CM ,设射线AM 与CD 的交点为H .

∵ 四边形ABCD 为正方形,

∴∠BAD=∠ADC=∠BCD=90°,直线BD为正方形ABCD的对称轴,点A与点C关于直线BD对称.

∵射线AM与线段BD交于点M,

∴∠BAM=∠BCM=α.

?-.

∴∠1=∠2=90α

∵CE⊥AM,

∴∠CEH=90°,∠3+∠5=90°.

又∵∠1+∠4=90°,∠4=∠5,

∴∠1=∠3.

?-.

∴∠3=∠2=90α

∵点N与点M关于直线CE对称,

?-∠.

∴∠NCE=∠MCE=∠2+∠3=1802BAM

(31

3. 如图,已知60AOB ∠=?,点P 为射线OA 上的一个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;

(2)在点P 的运动过程中,请判断是否存在一个定点M ,证明你的判断.

答案:

(1)作

PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o

∴30OPE ∠=o

.

∴30

DPA OPE ∠=∠=o

.

∴120EPD ∠=o

. ∵DP PE =,6DP PE +=,

∴30PDE ∠=o ,3PD PE ==.

∴cos30DF PD =??=

∴2DE DF ==

(2)当M 点在射线OA 上且满足OM =DM

ME

的值不变,始终为1.理由如下: 当点P 与点M 不重合时,延长EP 到K 使得PK PD =.

∵,DPA OPE OPE KPA ∠=∠∠=∠,

∴KPA DPA ∠=∠. ∴KPM

DPM ∠=∠.

∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MK

MD =.

作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o

∴sin 60

3ML MO =?=o

.

∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.

∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MK

ME =.

∴ME MK

MD ==,即

1DM

ME

=. 当点P 与点M 重合时,由上过程可知结论成立.

4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边

所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;

(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明. 答案:(1)补全的图形如图所示.

(2)解:由题意可知,∠ECF=∠ACG=120°.

∴∠FCG=∠ACE=α.

∵四边形ABCD 是菱形,∠DAB=60°, ∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.

(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=

+.

证明:作CH ⊥AG 于点H.

由(2)可知∠BAC=∠DAC=∠AGC=30°.

∴CA=CG. ∴HG =

2

1AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF , ∴△ACE ≌△GCF. ∴AE =FG .

在Rt △HCG 中, .2

3

cos CG CGH CG HG =

∠?= ∴AG =3CG .即AF+AE =3CG .

5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点

为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;

(2)当α= 30°时,直接写出∠CMA 的度数;

(3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.

答案:(1)如图;

A

B

C

E

(2)45°;

(3)结论:AM CN.

证明:作AG⊥EC的延长线于点G.

∵点B与点D关于CE对称,

∴CE是BD的垂直平分线.

∴CB=CD.

∴∠1=∠2=α.

∵CA=CB,∴CA=CD.∴∠3=∠CAD.

∵∠4=90°,

∴∠3=1

2

(180°-∠ACD)=

1

2

(180°-90°-α-α)=45°-α.

∴∠5=∠2+∠3=α+45°-α=45°.

∵∠4=90°,CE是BD的垂直平分线,

∴∠1+∠7=90°,∠1+∠6=90°.

∴∠6=∠7.

∵AG⊥EC,

∴∠G=90°=∠8.

∴在△BCN和△CAG中,

∠8=∠G,

∠7=∠6,

BC=CA,

∴△BCN≌△CAG.

∴CN=AG.

∵Rt△AMG中,∠G=90°,∠5=45°,

∴AM AG.

∴AM CN.

6.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.

(1)依题意补全图1;

答案:(1)补全图形略 (2)①证明:

连接BD ,如图2,

∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.

∴△ADQ ≌△ABP . ∴DQ BP =,3Q ∠=∠.

∵在Rt QAP ?中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ?中,222

DP BP BD +=, 又∵DQ BP =,22

2BD AB =,

∴2

2

2

2DP DQ AB +=. ②BP AB =.

7.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;

(2)用等式表示线段C G ,AG ,BG 之间

答案:(1)证明:

∵ ∠CAB=90°. ∵ BG ⊥CF 于点G , ∴ ∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴ ∠ABG =∠ACF .

(2)CG =2AG +BG .

证明:在CG 上截取CH =BG ,连接AH , ∵ △ABC 是等腰直角三角形, ∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH . ∴ △ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .

8.如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF .

(1)依题意补全图形; (2)求证:∠FAC =∠APF ;

(3)判断线段FM 与PN 的数量关系,并加以证明.

答案:(1)补全图如图所示. (2)证明∵正方形ABCD ,

∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .

E

D

C

B

A

M H P

D

A

C

∴∠APF=45°+∠BAE.

∵BF=BE,

∴AF=AE,∠BAF=∠BAE.

∴∠FAC=45°+∠BAF.

∴∠FAC=∠APF.

(3)判断:FM=PN.

证明:过B作BQ∥MN交CD于点Q,

∴MN=BQ,BQ⊥AE.

∵正方形ABCD,

∴AB=BC,∠ABC=∠BCD=90°.

∴∠BAE=∠CBQ.

∴△ABE≌△BCQ.

∴AE=BQ.

∴AE=MN.

∵∠FAC=∠APF,

∴AF=FP.

∵AF=AE,

∴AE=FP.

∴FP=MN.

∴FM=PN.

9.如图所示,点P位于等边ABC

△的内部,且∠ACP=∠CBP.

(1) ∠BPC的度数为________°;

(2) 延长BP至点D,使得PD=PC,连接AD,CD.

①依题意,补全图形;

②证明:AD+CD=BD;

(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.M H

P

D A

C

解:(1)120°. ----------------------------2分

(2)①∵如图1所示.

②在等边ABC △中,60ACB ∠=?, ∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠, ∴60.CBP BCP ∠+∠=?

∴()180120.BPC CBP BCP ∠=?-∠+∠=?

∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,

∴CDP △为等边三角形.

∵60ACD ACP ACP BCP ∠+∠=∠+∠=?, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,

AC BC ACD BCP CD CP =??

∠=∠??=?

,,, ∴()SAS ACD BCP △≌△. ∴.AD BP =

∴.AD CD BP PD BD +=+=-----------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=?,

∴=60.ADB CDB ∠∠=?

∴=60.ADB CDB ∠∠=?

D

∴=BM BN BD =

= 又由(2)得,=2AD CD BD +=,

ABD BCD ABCD S S S ∴△△四边形=+11

22AD BM CD BN =

+g

g )

AD CD =+

2

2

=

?=-----------------------------------7分

10.如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A

的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α

(0°<α<60°且α≠30°). (1)当0°<α<30°时,

①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明; (2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.

解:(1)①3-. ………………………………………………………………………… 1分

② 0≤Q

L

.……………………………………………………………… 2分

(2

)设直线

+33y x =与x 轴,y 轴的交点分别为点A ,点B

,可得A ,

(0,3)B .

OA =3OB =,30OAB ∠=?.

由0≤

Q

L

y =.

①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E ,

可得11D E ∥OB ,

111

D E AE BO AO

=. ∵ ⊙D 的半径为1, ∴ 111D E =.

1AE =

11OE OA AE =-=.

1D x =

②如图14,当⊙D

与直线y =相切时,

相应的圆心2D 满足题意,其横坐标取到最小值.

作22D E x ⊥轴于点2E ,则22D E ⊥OA .

设直线y =与直线+3y =的交点为F .

可得60AOF ∠=?,OF ⊥AB .则

9cos 2AF OA OAF =?∠==.

图13

∵ ⊙D 的半径为1, ∴ 21D F =.

2272AD AF D F =-=

∴ 22cos AE AD OAF

=?

∠72=

=,

22OE OA AE =-=

2D x =

由①②可得,D x

≤D x

≤. ………………………………………… 5分

(3)画图见图15.

.……………………………… 7分

11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠

对称,连接,AF FE ,FE 交BD 于G .

(1)连接,DE DF ,则,DE DF 之间的数量关系是 ; (2)若DBC α∠=,求FEC ∠的大小; (用α的式子表

示)

(3)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.

G

F

E

D

C

B

A

图15

(1)DE DF =; (2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=?. ∵DBC α∠=, ∴120BDC α∠=?-.

∵点C 与点F 关于BD 对称,

∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.

∴F ,E ,C 在以D 为圆心,DC 为半径的圆上.

∴1

602FEC FDC ∠=∠=?+α.

(3)BG GF FA =+.理由如下: 连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,

∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠.

G

F

E

D

C

B

A

∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=, 则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.

∴FAD DBC ∠=∠.

由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.

四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.

∴△FGH 是等边三角形. ∴FH FG =,60H ∠=?. ∵CD CE =, ∴DA EB =.

在△AHD 与△BGE 中,

,,.AHD BGE HAD GBE AD BE ∠=∠??

∠=∠??=?

∴△△AHD BGE ?. ∴BG AH =.

∵AH HF FA GF FA =+=+,

∴BG GF FA =+.

H

G

F

E

D

C

B

A

12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.

(1)∠CAD= 度;

(2)求∠CDF的度数;

(3)用等式表示线段CD和CE之间的数量关系,并证明.

解:(1)45 ……………………………………………………………1分

(2)解:如图,连接DB.

∵90

,°,M是BC的中点,

AB AC BAC

=∠=

∴∠BAD=∠CAD=45°.

∴△BAD≌△CAD. ………………………………2分

∴∠DBA=∠DCA,BD = CD.

∵CD=DF,

∴B D=DF. ………………………………………3分

∴∠DBA=∠DFB=∠DCA.

∵∠DFB+∠DFA =180°,

∴∠DCA+∠DFA =180°.

∴∠BAC+∠CDF =180°.

∴∠CDF =90°. ………………………………………4分

21CD. ……………………………………5分

(3)CE=)

证明:∵90

∠=°,

EAD

∴∠EAF =∠DAF =45°. ∵AD =AE ,

∴△EAF ≌△DAF . …………………………………6分 ∴DF =EF .

由②可知,CF

. …………………………7分 ∴CE

=

)

1C D .

13.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,

连接EF ,交对角线BD 于点G ,连接AG .

(1)根据题意补全图形;

(2)判定AG 与EF 的位置关系并证明; (3)当AB = 3,BE = 2时,求线段BG 的长.

解:(1)图形补全后如图…………………1分

(2)结论:AG ⊥EF . …………………2分

证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .

∵四边形ABCD 是正方形,

∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°, ∠ADB =∠5=45°.

∵线段AE 绕点A 逆时针旋转90°,得到AF ,

A B

C E

D

∴AE=AF ,∠FAE =90°. ∴∠1=∠2.

∴△FDA ≌△EBA . …………………3分 ∴∠FDA =∠EBA =90°,FD=BE . ∵∠ADC =90°, ∴∠FDA +∠ADC =180°。 ∴点F 、D 、C 三点共线. ∴∠ADB =∠3=45°. ∵FM ∥BC , ∴∠4=∠5=45°, ∴FM=FD , ∴FM=BE .

∵∠FGM =∠EGB ,FM=BE ,∠4=∠5, ∴△FMG ≌△EGB . ∴FG=EG . ∵AE=AF ,

∴AG ⊥FE . ………………4分

(3) 解:如图,DB 与FE 交于点G .

∵AB =3,BE =2, ∴DC =3,CE =1,FD =2. ∴Rt △DAB 中,DB =32. ∵四边形ABCD 是正方形, ∴DH ∥BC ,

∴DH FD CE FC

=,即2

15DH =,

∴DH =

2

5

. ∴DG DH BG BE =,即2

3252

BG -=, x

y

∴BG =

52

2

. ………………7分

14.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB 上,连接AN ,平移△ABN ,使点

N 移动到点M ,得到△DEM (点D 与点A 对应,点E 与点B 对应),DM 交AC 于点P . (1)若点N 是线段MB 的中点,如图1.

① 依题意补全图1; ② 求DP 的长;

(2)若点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,若MQ =DP ,求

CE 的长.

解:(1)①如图1,补全图形. ………………… 1分

② 连接AD ,如图2.

在Rt △ABN 中,

∵∠B =90°,AB =4,BN =1, ∴17=AN .

∵线段AN 平移得到线段DM , ∴DM =AN =17, AD =NM =1,AD ∥MC , ∴△ADP ∽△CMP . ∴

2

1

==MC AD MP DP . ∴3

17

=

DP .………………… 3分 (2)连接NQ ,如图3.

由平移知:AN ∥DM ,且AN =DM .

图1

N M

A

B

C

N

M

A

B

C

备用图

图2

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

专题九几何综合体、代数和几何综合题(含问题详解)

2012年中考第二轮专题复习九:几何综合体、代数和几何综 合题 1(2011省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG. (1)求证:①DE=DG;②DE⊥DG (2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的 特殊四边形,并证明你的猜想: (4)当时,请直接写出的值. 考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG; (2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形; (4)由已知表示出的值. 解答:(1)证明:∵四边形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如图. (3)四边形CEFK为平行四边形. 证明:设CK、DE相交于M点, ∵四边形ABCD和四边形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四边形CKGD是平行四边形,

∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四边形CEFK为平行四边形. (4)=. 点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂 2(2011建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB的长; (2)设BP=x,问当x为何值时△PCQ的面积最大, 并求出最大值; (3)探究:在AB边上是否存在点M,使得四边形PCQM为 菱形?请说明理由. 考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。 分析:(1)作AE⊥BC,根据题意可知BE的长度,然后,根据∠B的正弦值,即可推出AB 的长度; (2)作QF⊥BC,根据题意推出BP=CQ,推出CP关于x的表达式,然后,根据∠C的正弦值推出高QF关于x的表达式,即可推出面积关于x的二次函数式,最后根据二次函数的最值即可推出x的值; (3)首先假设存在M点,然后根据菱形的性质推出,∠B=∠APB=∠BAP=45°,这是不符合三角形角和定理的,所以假设是错误的,故AB上不存在M点. 解答:解:(1)作AE⊥BC, ∵等腰梯形ABCD中,AD=4,BC=9, ∴BE=(BC﹣AD)÷2=2.5, ∵∠B=45°, ∴AB=, (2)作QF⊥BC, ∵等腰梯形ABCD, ∴∠B=∠C=45°, ∵点P和点Q的运动速度、运动时间相同,BP=x, ∴BP=CQ=x, ∵BC=9, ∴CP=9﹣x,QF=, 设△PQC的面积为y,

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

折叠几何综合专题---16道题目(含答案)

01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形; (2)探究线段EG,GF,AF之间的数量关系,并说明理由; (3)若AG=6,EG=25,求BE的长.

(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠ EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形; (2)解:EG 2 =1 2 GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H , ∵四边形EFDG 是菱形, ∴DE ⊥AF ,FH =GH =12GF ,EH =DH =1 2 DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF ,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2 =12 GF ·AF ; (3)解:∵AG =6,EG =25,EG 2 =12AF ·GF ,∴(25)2 =12 (6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10. ∵DF =EG =25,∴AD =BC =AF 2-DF 2=45, DE =2EH =2 EG 2 -(1 2 GF )2=8,

∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°, ∴Rt△DCE∽Rt△ADF,∴EC DF = DE AF ,即 EC 25 = 8 10 , ∴EC=85 5 ,∴BE=BC-EC= 125 5 . 02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8. (1)求证:AF=EF; (2)求证:BF平分∠ABD.

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学专题复习教学案几何综合题

几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC . 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

几何综合(习题)

几何综合(习题) ? 例题示范 例:如图,在四边形ABCD 中,AB =2,BC =CD =B =90°, ∠C =120°,则AD 的长为_______. D C B A 解:如图,连接AC . D C B A 在Rt △ABC 中,∵∠B =90°,AB =2,BC =∴tan ∠ACB = 3 AB BC = ∴∠ACB =30° ∴AC =2AB =4 ∵∠BCD =120° ∴∠ACD =∠BCD -∠ACB =90° 在Rt △ADC 中,AC =4,CD =∴AD = ? 巩固练习 C D B A

1. 如图,在△ABC 中,AB =15 m ,AC =12 m ,AD 是∠BAC 的外角平分线,DE ∥ AB 交AC 的延长线于点E ,那么CE =________. 2. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所 示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为________. D B A 3. 如图,矩形EFGD 的边EF 在△ABC 的BC 边上,顶点D ,G 分别在边AB ,AC 上.已知AB =AC=5,BC=6,设BE =x ,EFGD S y 矩形,则y 关于x 的函数关系式为________________. (要求写出x 的取值范围) G F E D C B A N M G F E D C B A 第3题图 第4题图 4. 如图,在△ABC 中有一正方形DEFG ,其中D 在AC 上,E ,F 在AB 上,直线 AG 分别交DE ,BC 于M ,N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为( ) A .43 B .32 C .85 D .127 5. 如图,在△ABC 中,AB =BC =10,AC =12,BO ⊥AC ,垂足为O ,过点A 作射线 AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .小明同学思考后给出了下面五条结论:①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ;

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

相关文档
最新文档