变电站并联补偿电容器组的配置

变电站并联补偿电容器组的配置
变电站并联补偿电容器组的配置

变电站并联补偿电容器组的配置

1前言

为了减少电网中输送的无功功率,降低有功电量的损失,改善电压质量,供电企业普遍在变电站内安装并联补偿电容器组(以后简称电容器组)。电容器组由电容器、串联电抗器、避雷器、断路器、放电线圈及相应的控制、保护、仪表装置组成。目前,国内绝大部分电容器制造厂只生产电容器,其他设备均需外购,在成套设计成套供货方面尚有不足之处。使用单位必须对电容器及配套设备进行选型。由于各地的具体情况不同,在电容器组的设备选型、安装布置上差别很大,本文就此提出一些分析意见。

2电容器容量的选择

电容器组容量的配置应使电网的无功功率实现分层分区平衡,各电压等级之间要尽量减少无功功率的交换。由于电容器组在运行中的容量不是连续可调的,从减少电容器组的投切次数、提高功率因数的角度出发,希望电容器组在大部分时间内能正常投入运行而不发生过补偿。通过对变电站负荷变化情况的分析,徐州地区变电站负荷率一般在70%~80%之间,一天当中约有2/3的时间负荷水平在平均负荷以上。我们以变电站变压器低压侧全年无功电度量除以年运行时间求出年平均无功负荷,电容器组容量按照年平均无功负荷的90%选取。实际运行时,由于电容器组额定电压一般为电网额定电压的

1.1倍,而变电站低压母线电压一般控制在电网额定电压的1~1.07倍,电容器组实际容

量要降低5.4%~17.4%,从而保证了电容器组在绝大部分时间内都能投入运行。对于负荷季节性变化比较大的农村变电站和预计近期内负荷将有较大增长的变电站,电容器组容量可以适当增加,但要求电容器组必须能减容运行。这一点对集合式与箱式电容器而言,要求具有中间容量抽头,组架式和半封闭式电容器组只要将熔断器去掉几只即可。

同时要求配有抑制谐波放大作用的串联电抗器有中间容量抽头,以保证电抗率不变。增加电容器分组数有利于提高补偿效果,但是相应地要增加设备投资,所有35~110kV变电站内电容器组一般按照一台变压器配置一组。从降低单位千乏投资的角度出发,单组电容器组容量不能太小。以10kV全膜三相集合式电容器组为例比较3600kvar和1200kvar 电容器组的单位千乏投资。两种电容器组均配置三台单相放电线圈(单台放电容量1700kvar),三只氧化锌避雷器,1%的干式空芯串联电抗器,一组真空开关柜,电力电缆长度40m,土建及安装费按照设备总投资的25%计算。各项投资详见表1。根据表1计算,3600kvar和1200kvar电容器组的单位千乏投资分别为65.5元和142.8元。1200kvar 电容器组的单位千乏投资已经超过自动投切的10kV线路杆上式电容器组的单位千乏投资。因此,变电站内电容器组单组容量不宜小于1200kvar。

表1电容器组投资比较表单位:万元

成套设备真空开关柜电缆土建安装总投资

3600kvar13.174.51.24.7223.59

1200kvar84.51.23.4317.13

3电容器组的选型

3.1型式选择

就电容器组而言,目前国内常用的主要有组架式、半封闭式、集合式、箱式四种,各有其优缺点。

组架式电容器组是将单台壳式电容器、熔断器等安装在框架上,框架采用热镀锌的型钢材料,是传统的结构形式。这类产品使用时间最长,运行经验丰富。优点是安全距离大、故障影响范围小、检修维护方便、容量增减灵活、单位容量造价较低。缺点是占地面积较大、安装及检修维护工作量大。除城市中心地段变电站外,多数变电站占地问题容易解决。因此,这类装置仍然是今后大量使用的主导产品。为缩小占地面积可选用单台容

量较大的全膜壳式电容器。

半封闭式电容器组是将单台壳式电容器双排卧放,端子向里,底部朝外,电容器带电部分用金属封闭起来,四周外壳接地。国外最早由ABB公司开发,在欧美得到广泛的应用。国内主要由桂林和锦州电容器厂生产。优点是结构紧凑,不需要设置隔离围栏,占地面积较小,容量增减灵活,单位容量造价较低。缺点是带电部分封闭后通风散热条件较差,绝缘子上易积灰,内部湿度较大时易形成凝露,造成闪络放电。运行中已发生多次事故,应进一步改进完善,目前不宜广泛推广应用。

变电站并联补偿电容器组的配置集合式电容器是将单台壳式电容器经串并联后装入大油箱内并充以绝缘油制成。国外最早由日本日新公司开发,国内则在1985年由合阳电力电容器厂首先开发成功。目前已有合阳、西安、锦州、无锡等厂的多种型号产品通过了两部鉴定,产量逐年大幅度提高,1996年已占到高压并联电容器年产量的20%。其优点是结构紧凑占地面积小,接头少,安装和运行维护工作量很小。为克服容量不能调整的缺点,无锡电容器厂开发了可调容量的集合式电容器,按照容量调整范围划分有50%/100%和33.3%/66.7%/100%两类产品。由于单元壳式电容器完全浸入绝缘油中,防止了单元壳式电容器的外绝缘发生故障。单元壳式电容器内部配有内熔丝,少量元件损坏后由熔丝切除,整台电容器仍可继续运行。缺点是含油量大,外壳大油箱易存在渗漏油,故障损坏后需返厂修理所用时间较长,单位容量造价较高。关于集合式电容器有两个问题需要注意:(1)为避免大容量集合式电容器发生相间短路故障时造成严重后果,容量超过5000kvar的集合式电容器必须做成三相分体结构,即一相一台。(2)集合式电容器的引出套管外绝缘爬电比距必须≥3.5cm/kV(相对于系统最高运行电压),以保证其绝缘强度。

箱式电容器是在集合式电容器基础上发展起来的一种电容器,与集合式电容器的不同之处是内部单元电容器没有外壳,直接浸入绝缘油中,外壳大油箱采用波纹油箱或带金属膨胀器,与外部大气完全隔离。同集合式电容器相比,外壳体积和内部含油量进一步减少,以西安电力电容器厂3000kvar产品为例,箱式电容器比集合式电容器外壳体积减少59.1%,重量减少60.6%。由于材料用量减少,价格比集合式电容器要低。缺点是内部元件发生故障由内熔丝切除后,会对大油箱内的绝缘油造成污染。国外只有日本生产和使用,与国内产品不同之处是内部由特大元件集合而成,没有内熔丝。国内目前已有合阳、西安、锦州等厂生产,这类产品代表着今后的发展方向,可以有选择性的逐步使用。1996年,桂林电容器厂开发积木型无油自愈式电容器,产品型号为BKMJJ,三相最大容量达到3000kvar,这种电容器由若干个单元串并联而成,单元则是由若干个经过树脂灌封的元件并联后装在一个容器内,接有放电电阻,所有带电部分均由阻燃ABS压制成的罩子盖住。根据容量大小对单元电容器按照水平或铅直方向进行组合。经挂网试运行后,1998年4月已通过鉴定。这种电容器满足了城市变电站设备向无油化方向发展的要求,在城网变电站中可以逐步推广应用。

3.2断路器的选择

对电容器组断路器的主要要求是:分闸时不发生重击穿,合闸时不应有明显弹跳。目前,6~10kV电压等级主要采用少油断路器和真空断路器。真空断路器的优点是耐频繁操作,灭弧室不需要检修,不存在渗漏油的问题。因此,存在一种倾向:即全部采用真空断路器。我们认为对此问题不能一刀切。真空断路器由于存在开断后重燃问题,运行中已经多次造成事故,即使是进口真空断路器也发生过这种事故。而少油断路器具有切除电容器不重燃的优点,东北电管局对少油断路器触头进行改造后可以连续操作1000次不检修不换油,解决了少油断路器不耐频繁操作的问题。因此,6~10kV电容器组断路器应与变电站出线断路器选型一致,不必全部采用真空断路器。设备订货时真空断路器要求

必须经过老练试验,少油断路器则要求对触头进行改造。35kV电容器组断路器自然是SF6断路器占绝对优势。

3.3串联电抗器

设计部门在进行电容器组设计时一般总是配置6%的串联电抗器。这样既增加了设备投资又不一定能起到好的作用。据对某电网3个220kV变电站24个110kV变电站18个35kV变电站的谐波实测结果表明,仅有3个变电站3次谐波含量偏高,4个变电站5次谐波含量偏高,分别需要配置4.5%和12%的串联电抗器抑制谐波放大。其它变电站谐波含量很低只需要考虑限制电容器组合闸涌流的问题。因此,变电站配置电容器组时应对电网背景谐波水平进行实测以确定串联电抗器的电抗率。油浸串联电抗器由于存在渗漏油和饱和的问题,一般已不再选用。干式空芯串联电抗器以其机械强度高、噪音低、维护量小的优点已得到广泛应用,为减少占地面积,可采用三相迭装产品。安装时必须注意三相的迭装顺序不能搞错。如果只需要考虑限制电容器组合闸涌流,可以采取阻尼式限流器,它是由阻尼电阻、放电间隙和小容量电抗器组成。合闸瞬间电抗器承受全部电压,放电间隙击穿将阻尼电阻接入电路限制涌流。涌流衰减后,电抗器端电压下降,放电间隙息弧,将阻尼电阻退出运行。

3.4放电线圈

放电线圈是保证设备与人身安全的必要装置,必须配置。关于放电线圈有以下两个问题要引起注意:

(1)放电线圈必须直接跨接在电容器两端,而不能接在电容器与电抗器串联后的两端。后一种接线方式既不能正确反映电容器内部故障后产生的不平衡电压,又延长了放电时间。

(2)集合式电容器不宜采用内藏放电线圈的结构。因为放电线圈去掉外壳装在集合式电容器油箱顶部后,虽然简化了外部接线,但内部增加了交叉接线,也就增加了故障点。运行中已发生过因内藏的放电线圈故障造成集合式电容器退出运行。鉴于放电线圈本身价格很便宜,从提高集合式电容器运行可靠性的角度出发,只有在放电线圈可靠性高出集合式电容器一到二个数量级时才能采用内藏放电线圈。为便于接线布置,可要求制造厂在集合式电容器的顶部或侧壁加装支架放置放电线圈。

3.5避雷器

少油断路器不存在切除电容器后重燃问题,一般可以不配置避雷器。真空断路器必须配置避雷器。电容器组的避雷器是起保护电容器作用的,其安装地点应尽量靠近电容器,由于发生过安装在开关柜内的避雷器爆炸造成母线上全部设备停电的事故,所以避雷器不宜安装在开关柜内。应优先考虑在电容器中性点安装一只氧化锌避雷器的接线方式,这种接线方式能够限制单相重燃过电压而且正常运行时避雷器不承受电压。

3.6关于全膜电容器的使用问题

全膜电容器具有损耗低、发热量小、温升低、体积小、重量轻的优点。国产全膜电容器自1986年开始生产以来,经过不断改进完善,质量已趋于稳定,在可靠性方面已经好于部分进口产品。自1995年以来产量逐年大幅度增长,已有多家产品通过了两部鉴定。同国外先进产品相比,差距主要表现在比特性上,材料消耗是国外先进产品的两倍。既便如此,同膜纸复合介质产品相比体积、重量均大幅度下降。以桂林电容器厂100kvar 产品为例:全膜产品比膜纸复合介质产品体积下降31.2%,重量下降44.4%。集合式产品以锦州电容器厂3000kvar产品为例:全膜产品比膜纸复合介质产品体积下降55%,重量下降47.9%。箱式电容器采用全膜产品后可取消散热器。最近,电容器制造业制订了关于加速发展国产高压全膜电容器的若干措施,必将进一步提高国产高压全膜电容器的质量。因此,新增电容器应全部采用全膜产品,浸渍剂优先选用苄基甲苯(M/DBT)和SAS—40。

4结论

变电站并联补偿电容器组容量一般按照低压侧年平均无功负荷的90%选取,用地不紧张的地区优先选用组架式与集合式产品。城市中心变电站可逐步选用干式或箱式电容器,新增电容器应全部选用全膜产品,浸渍剂优先采用M/DBT或SAS—40。

作者单位:江苏徐州电业局(徐州221005)

参考文献

1 房金兰.国内外电容器的目前水平及有关技术发展的探讨.电力电容器,1997(1)

2 倪学峰等.关于并联电容器过电压保护方式的分析.电力电容器,1997(4)

3 并联电容器运行情况通报,调网(1996)136号

2

3

4摘要:对一起电容器速断跳闸事故的原因进行了分析,并提出了相应的措施。访问中国电力网

关键词:谐波电流;过负荷中国电力网资料频道提供电力行业最新统计资料

中图分类号:TM531.1 文献标志码:B 文章编号:1003-0867(2007)12-0037-02

110 kV张河变电站10 kV母线开口三角保护出现单相接地信号,大约1 s后,电容器速断保护动作,当检修人员赶到现场,发现第一组电容器的外壳已明显鼓肚、变形。分析了引起事故导致电容器速断跳闸的原因,并对配套设备加以改进,增加必要的保护装置,使无功补偿装置顺利运行。

1 故障原因分析

1.1 并联电容器一次原理接线图

图1一次原理接线图

该变电站补偿电容5000 kvar,分4组自动投切,一次原理接线图如图1所示,每组电容器容量1250 kvar,电容器型号为BAM11-1250-3W,电抗器接于电源侧。4组电容器安装一套总保护装置:保护配置速断、过流、过压、失压等保护。电容器内部故障保护设置内熔丝。配套设备包括:投切电容器为真空断路器,安装于10 kV中置柜内,各分组为真空交流接触器,金属氧化物避雷器安装于电容器母线上,电压互感器TV并接于电容器首、末两端,中性点与电容器中性点相连,一次线圈做放电用铁芯电抗器接于电源侧,电抗率为6%。

1.2 电容器组故障分析

电容器组采用常用的星型接线方式,三相共体外壳接于同一铁框架,框架接地。电容器

内部结构为多个元件并联的四串结构,并设置内熔丝保护,检修人员与厂家人员对损坏的电容器进行解剖,发现受损电容器的A、B相内熔丝均熔断了两根,外包封破裂,经过认真分析,认为一相熔丝熔断两根后,造成外包封损伤,在外包封受伤的情况下,长期运行发展成对壳击穿,并发展成单相接地。由于单相接地呈不稳定电弧接地,使健全相产生过电压而另一相也有两熔丝熔断,外包封受伤致使在过电压作用下发展成对壳击穿,由此形成相间短路,尽管保护可靠动作,但巨大的短路电流产生的热效应,仍对电容器造成一定程度的损伤,使电容器外壳严重变形。

这起事故主要是内熔丝熔断未被发现而造成,引起内熔丝熔断的原因是电容器的过电流,而过电压和高次谐波都可能造成电容器的过电流,由于电容器组的总保护设置过压保护,自动投切装置按电压和功率因数投切,因此由于系统异常,造成过电压引起内熔丝熔断的可能性很小。但是由于电容器投切频繁,尽管装有金属氧化物避雷器,分合闸引起的过电压被限制在一定范围内,但是操作过电压的累积效应可能对电容器造成损坏,引起内熔丝熔断。

另外由于电网中存在大量的非线性负荷,使得电网中谐波占有一定含量。110 kV张河变电站除担任城郊居民用电外,主要担任工业供电,除几条10 kV工业专线外,其他10 kV 线路上还有一些小型化工厂、铸造厂等工业用户,这些用户都可能产生谐波。尽管每户产生的谐波很少,但可以汇集成较大的谐波电流馈入电网,使电网的谐波水平升高,影响电网设备的安全运行。由于此变电站的无功补偿装置,配置电抗率为6%的串联电抗器,6%的电抗率虽然能对5次及以上谐波有抑制作用,但在3次谐波下使串联电抗器与补偿电容器的阻抗成容性,出现谐波电流放大现象,使电容器过负荷。尽管母线上以5次谐波为主,3次谐波含量不是很高,而装设电容器后,容性阻抗将原有的3次谐波含量放大,可能造成内熔丝熔断。由于总保护按四组电容器额定电流的1.3倍整定,而4组电容器全部投入的情况极少。当某一段时间内谐波含量偏高时,总过流保护不能动作,造成某相内熔丝熔断,而内熔丝熔断后不能被及时发现,导致事故扩大,造成速断跳闸。

从保护配置来看,电容器内部故障的保护只设置内熔丝保护,而并未设置导致事故扩大的后备保护——不平衡电压保护,使内熔丝熔断后不能及时发现,造成速断跳闸事故,因此,保护配置不完善是造成电容器事故扩大的主要原因。

另外,不定期测量电容量也是造成事故扩大的原因之一。由于电容器内部装置最直接的反应是电容量的变化,而电容量测量手段落后,进行电容器电容量的测量时,需采用拆除连接线的测量方法,不仅测量麻烦而且可能因拆装连接线导致套管受力而发生套管漏油的故障。因此,自投入运行以来检修人员从未进行过电容量测量,而又未设置反应电容器内部故障的保护,当内部个别内熔丝熔断时,无法及时发现,造成事故扩大。

2 改进措施

2.1 在各分组回路中安装过负荷保护

由于过流保护根据4组电容器全部投入时整定,对分组谐波电流放大造成的过流现象反应迟钝,甚至不反应,因此,在各分组回路安装过负荷保护,由于交流接触器只能开断正常情况下的负荷电流,不能开断故障电流,将交流接触器更换为ZN-28型真空断路器,

在谐波含量高时,作用于跳闸,避免谐波对电容器造成损坏和内熔丝熔断。

2.2 在各分组回路安装开口三角电压保护

当电容器某相内熔丝熔断时,容抗发生变化,与其他两相容抗不等,造成故障相与健全相电压不平衡。于是,在各分组回路电压互感器的二次绕组的开口三角处安装一只低整定值的电压继电器,当一相内熔丝熔断时,在开口三角处出现不平衡电压,发出报警信号,此装置能准确反映电容器内部故障,且不受系统接地和系统不平衡电压的影响,及时将受伤的电容器退出运行。

2.3 定期测量电容量

针对电容量测量困难,购置了先进的测量设备,采用全自动电容电桥定期测量电容器组,单台电容器的电容量,不需拆连接线,测量简便快捷,准确可靠。检修人员定期进行电容量测量,当电容器某一相个别内熔丝熔断后,电容量将发生变化,当测得电容量减少,超过3%时,及时将受伤的电容器退出运行。

3 结束语

设计和维护等方面的疏忽都可能对电容器的安全运行带来隐患,因此,配置完善的保护,定期测量电容量,防微杜渐,才能减少甚至避免电容器事故扩大,提高电容器的可用率,延长电容器的使用寿命。

不是什么辅助触点,上面还有接出来的电阻丝吧?

那是限流电阻.

在给电容器送电的瞬间,电容器会产生一个很大的充电电流,形象的叫做涌流,形容瞬间电流大的意思,这个电流可以是电容器额定电流的几十甚至一、二百倍.

这样大的瞬间电流对接触器、电容等等电气元件造成伤害,也对系统产生影响,为了限制这个涌流,才加了这个限流电阻。

原理是:在接触器线圈得电的时候,这个限流电阻先行接通电源与电容,给电容器进行充电,由于有了这个电阻,涌流可以被限制在三五十倍;而后接触器的主触头才闭合。

变电站10kV电容器出现故障原因分析

变电站10kV电容器出现故障原因分析 摘要:电网规模为适应经济社会发展需要,也在不断发展扩大,电网系统无功电压的重要作用日益凸显,不断有新的无功补偿装置进入电网系统工作。随着无功电压系统的长时间运行,导致电容器组出现故障的情况屡有发生。因此,找出电容器组出现故障的原因,并提出相应解决措施十分有必要。 关键词:电容器故障原因分析 一、前沿 在电力系统中,由于无功功率不足,会使系统电压及功率因数降低,从而损坏用电设备,严重时会造成电压崩溃,使系统瓦解,造成大面积停电。另外,功率因数和电压的降低,还会使电器设备得不到充分利用,造成电能损耗增加,效率降低,限制了线路的送电能力,影响电网的安全运行及用户正常用电。 二、电容器故障原因 对出现故障的电容器进行综合检测分析,发现绝缘电阻、油色谱以及电容量均出现不同程度损坏情况。随后调取了部分相关信息,如保护信息、保护装置型号,对相关元件如电抗器与避雷器等进行测试分析,在现场实测谐波,发现电容器组损坏原因有以下几点: 1 电压未进行保护整定 变电站将不平衡电压标准均设定为5V,并未根据实际情况对非平衡电压标准进行设置,建议调整为3V相对合理。缩短动作时间,将时间改为0.2至0.5秒之间,这样即使出现故障三相仍能准确灵敏运行。建议在电压正常运行情况下再增加1V。就各变电站对电容器组的保护设置而言,其中有的变电站尚未设置非平衡电压保护,如电容器出现故障问题时,三相电压将失去平衡,因此电容器的保护内容应以非平衡电压的保护为主。此外,变电站保护的装置型号老旧、设置不完整,将造成故障进一步扩大,出现熔断器发生群爆情况。部分变电站的非平衡电压保护装置尚未投入使用,若出现异常情况将导致故障扩大升级,进而导致电容器组部分功能薄弱,无法进行有效保护。 2 开关选型不当 开关的型号选择不恰当,或者真空开关质量较低等原因,可能使开关损坏频率较大,导致开关重燃。根据实地调查情况来看,各变电站出现故障的电容器开关都未使用大型厂家生产的比较成熟的品牌,也未发现厂家关于出厂开关的相关试验报告。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

预防高压并联电容器事故措施示范文本

预防高压并联电容器事故措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

预防高压并联电容器事故措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 总则 1.1 为预防并联电容器事故发生,保障电网安全、可 靠运行,特制定本预防措施。 1.2 本措施是依据国家的有关标准、规程和规范设备 运行经验和检修而制定的。 1.3 本措施针对并联电容器设备在运行中容易导致典 型、频繁出现的事故提出了具体的预防措施。 1.4 本措施适用于中电投某风电场系统的35(6.3、) kV电压等级并联电容器。 2 引用标准 以下为设备设计、制造及试验所应遵循的国家、行业

和企业的标准及规范,但不仅限于此: GB 6915-1986 高原电力电容器 GB 3983.2-1989 高电压并联电容器 GB 11025-1989 并联电容器用内部熔丝和内部过压力隔离器 GB 15116.5-1994 交流高压熔断器并联电容器外保护用熔断器 GB 50227-1995 并联电容器装置设计规范 DL 402-1991 交流高压断路器订货技术条件 DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件 DL 462-1992 高压并联电容器用串联电抗器订货技术条件 DL/T 604-1996 高压并联电容器装置订货技术条件 DL/T 628-1997 集合式高压并联电容器订货技术条件

变电站电容器组的配置

变电站10kV 电容器组的配置 引言 目前,电力系统中为了提高电压质量,减少网络损耗,普遍配置了无功补偿装置,由于电容器组容量可大可小,即可集中使用,又可分散配置,具有较大的灵活性,且价格较低,损耗较小,维护方便,故为目前系统中使用最广泛的无功电源之一。变电站设计中一般将电容器组布置在10kV 侧。由于10kV 侧配置电容器存在系统短路容量较小、分组数较多、易发生谐振等问题,故如何合理选择10kV 电容器组就显得尤为重要。 1、电容器总容量的选择 变电站安装的“最大容性无功量”的选择原则为:对于直接供电末端变电所,其最大容性无功量应等于装置所在母线上的负荷按提高功率因数所需补偿的最大容性无功量与主变压器所需补偿的最大容性无功之和。即: cbm cfm c Q Q Q += (1) 0ef fm cfm Q P Q ?= (2) e e m d cbm S I I I U Q ?+?=)100(%)100(%)(022 (3) 式中:c Q :变电站配置最大容性无功量(kvar ); cfm Q :负荷所需补偿的最大容性无功量(kvar ); cbm Q :主变压器所需补偿的最大容性无功量(kvar ); fm P :母线上的最大有功负荷(kW ); 0ef Q :由1cos φ补偿到2cos φ时,每kW 有功负荷所需补偿的容性无功量(kvar/kW ); (%)d U :需要进行补偿的变压器一侧的阻抗电压百分值(%); m I :母线装设补偿装置后,通过变压器需要补偿一侧的最大负荷电流值(A ); e I :变压器需要补偿一侧的额定电流值(A );

(%)0I :变压器空载电流百分值(%); e S :变压器需要补偿一侧的额定容量(kV A ); 通过式(1)、(2)、(3)对变电站无功容量进行估算,负荷所需补偿的最大容性无功量约为主变容量的5%~10%(按补偿到功率因数0.96考虑),主变压器所需补偿的最大容性无功量14%~16%。 综上所述,变电站的容性无功补偿以补偿主变的无功损耗为主,现变电站均按照主变容量来配置电容器补偿容量。根据《国家电网公司电力系统无功补偿技术配置原则》(以下简称配置原则)要求,变电站可按照主变压器容量的20%-25%配置容性无功补偿装置。因此变电站的电容器组总容量除个别情况外,大多数情况应按照以上要求配置,与电容器组的电压等级无关。 2、电容器分组容量的选择 确定了电容器组总容量后,还需对电容器组分组容量进行选择。 (1)若分组容量过大,会引起投切时母线电压波动增大、变电站投运初期负荷变小,无法投入电容器进行无功补偿等问题。 (2)若分组容量过小,会引起增加设备投资、减少变电站出现回路数、增大维护工作量、增大变电站的布置难度等问题。 因此电容器分组的总原则应是:在满足系统要求的前提下,尽量加大分组容量,减少组数。 2.1 电容器分组容量与母线电压波动的研究 电容器在进行投切操作时,将引起母线电压的变化,其变化幅度为: d fz S Q U 100%=? (4) 式中:%U ?:母线电压波动率; fz Q :分组电容器容量(Mvar); d S :电容器所接母线三相短路容量(MV A)。 从式(4)可以看出,母线电压波动率与投切电容器的容量成正比,与母线三相短路容量成反比。《城市电力网规划设计导则》中规定:变电站10kV 侧母线短路电流需控制在20kA 以内, 10kV 侧极限短路容量为1.732×10.5×20=

变电站电容器的安全运行

变电站电容器的安全运 行 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变电站电容器的安全运行1严格控制电容器的运行电压、电流、环境温度 1.1运行电压 运行中电容器内部的有功功率损耗由其介质损耗和导体电阻损耗组成,而介质损耗占电容器总有功功率损耗的98%以上,其大小与电容器的温升有关,可用下式表示: P=Qtans=WCU2tans=314C2tans Q=314CU2 式中:P为电容器的有功功率损耗,kW;Q为电容器的无功功率,kvar;tanS为介质损耗角正切值;W为电网角频率,rad/s;C为电容器的电容量,F;U为电容器的运行电压,kV。 由公式可知:当运行电压超过额定值将使电容器过负荷,而电容器运行电压比额定值低,则降低了无功出力,如运行电压为额定电压的90%时,无功功率降低19%,使容量没有充分利用,也是不经济的。同时运行电压升高,使电容器发热而且温升也增加,由于电容器中介质损失引起的有功功率损耗P=WCU2tans也随着电压值的平方变化,损耗经转换为热能而被消耗的,运行电压升高,发热量也随之增加。另一方面,电容器的寿命随电压的升高而缩短,在高场强下,绝缘介质老化加速,寿命缩短。因此,电容器运行电压原则上等于额定电压,并严格控制在一定的范围以内,以保证电容器的安全运行。

《变电站运行规程》中规定“电容器长期运行中的工作电压不能超过电容器额定电压的1.1倍。”在运行中应经常监视电容器的运行电压,超过规定电压时应退出电容器组的运行。在选择安装电容器组时也要考虑防止电容器发生过电压运行,应根据系统运行电压水平选用合适额定电压的电容器。 1.2过电流 近年来,随着大型电弧炉、整流设备、家用电器等非线性用电设备的广泛应用,各种谐波源产生的高次谐波电流注入电网,从而引起电力系统的电压和电流波形的严重畸变。电容器对高次谐波最敏感,因为高次谐波电压叠加在基波电压上不仅使电容器的运行电压有效值增大而且使其峰值电压增加更多,致使电容器因过负荷而发热,并可能发生局部放电损坏,高次谐波电流叠加在电容器基波电流上使电容器电流增大,增加了电容器的温升,导致电容器过热损坏。 电容器对电网高次谐波电流的放大作用十分严重,一般可将5次~7次谐波放大2倍~5倍,当系统参数接近谐波谐振频率时,高次谐波电流的放大可达10倍~20倍。因此,不仅须考虑谐波对电容器的影响,还需考虑被电容器放大的谐波损坏电网设备,影响电网安全运行。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

并联电容器组配套装置及应用技术

并联电容器组配套装置及应用技术 摘要:阐述高压并联电容器组的配套装置断路器、串联电抗器、放电装置、氧化锌避雷器及熔断器的电气特性和实际应用中的配置问题。 高压并联电容器组的配套装置,包括投、切电容器组用的断路器、串联电抗器、放电元件、氧化锌避雷器及熔断器等设备。在电容器组的安装、运行和试验中,必须充分了解它们之间的有机联系和相互关系、电气性能和技术标准,在实际应用中,合理配置、有效配合,以确保设备、系统和人身的安全。 一断路器在高压并联电容器组上的应用 电容器在电网中的运行方式,随着无功负荷及电网电压变化而变化,因此电容器组用断路器的操作较为频繁,为此必须解决好两方面问题:①合闸时的频率、高幅值的合闸涌流给断路器带来的过电压、机械应力和机械振动;②开断时,电弧重燃给断路器及其他回路设备带来的重击穿过电压及绝缘冲击。故并联电容器除应满足一般的技术性能和要求以外,还必须满足以下要求:①合闸时,触头不应有明显的弹跳和振动;②分闸时不允许有严重的电弧重燃而导致的击穿过电压;③应有承受合闸涌流的耐受能力;④经常投、切的断路器应具有承受频繁操作的能力。根据目前国产断路器的生产情况,要同时满足以上四点要求,尚有难度,例如真空断路器虽然适于频繁的操作要求,但存在合闸弹跳和重燃问题,必须加装氧化锌避雷器以进行防止过电压的配合、加装串联电抗器以降低合闸涌流倍数的配合。可见,断路器在电容器组上的应用,尚无法完成其独立开断的任务,必须有其他配套设备进行补偿性配合。 二串联电抗器在高压并联电容器组上的应用 为了限制电容器合闸过程中的涌流、操作过电压及电网谐波对电容器的影响,大容量电容器一般应区分具体情况,加装串联电抗器。其作用为:①降低电容器组合闸涌流倍数及涌流频率;②减少电网中高次谐波引起的电容器过负荷;③减少电容器组用断路器在两相重燃时的涌流以利灭弧;④抑制一组电容器故障时,其他电容器组对其短路电流的影响;⑤抑制电容器回路中产生的高次谐波及谐波过电压。可见,加装串联电抗器对电容安全运行的重要性、对断路器顺利完成开断任务的必要性。但在实际应用中,是否加装串联电抗器,还要根据电容器的分组方式及安装地点的具体情况而定。比如装设在配电线路35kV农村变电所母线上的电容器组,容量较小,大多在2000kvar以下,一般没必要加装串联电抗器。但在下列情况下,必须加装串联电抗器:①采用“△”连接的电容器组;②装设于一次变电站中容量较大的电容器组; ③变电站装有两组以上且频繁投切的电容器组;④电容器投运时有谐波现象或因谐波引起电容器过负荷等。 三放电装置在高压并联电容器组上的应用 电容器从电源断开时,两极处于储能状态,如果电容器整组从电源断开,储存电荷的能量非常大,必然在电容器两极之间持续保持着一定数值的残余电压,其初始值,即是电源电压的有效值,此时电容器组在带电荷的情况下,一旦再次投入,将产生强烈冲击性的合闸涌流,并伴有大幅值的过电压出现,工作人员一旦不慎触及就有可能遭到电击伤、电灼伤的严重伤害。为此,电容器组必须加装放电装置。根据标准规定,与电容器连接的放电装置应能使电容器从电源断开后,其剩余电压在10min内降至75V以下。高压成套装置用放电装置的选择和安装与低压成套装置用放电装置十分相似又略有不同:①低压成套装置用放电装置通常有灯泡、带变压器指示灯和电阻三种形式。放电元件采用“V”形和“△”形连接方式,多以“△”连接为推荐方式,原因是任一相发生断线,仍能转化成“v”形连接方式,维持放电的不间断进行; ②高压电容器组通常除了在电容器内部接入放电电阻以外,配套装置中还必须加装与电容器直接相连的放电装置。一般中小容量的电容器组,放电装置可以采用相应电压等级的电压互感器,2O00kvar及以上的电容器组,多选用专用的放电线圈来完成。

电容器技术要求

介休瑞东煤业35kV变电站 磁控式高压无功动态补偿装置 技术规范书 晋中电力设计院 二〇一一年二月

1 工程概况 1.1 项目名称:介休瑞东煤业35kV变电站工程 1.2 项目单位:介休义棠瑞东煤业有限公司 1.3 工程规模:变电站主变容量为2×10000kV A,2台主变互为备用。35kV部分为单母分段接线方式,二回进线,分别由介休110kV变电站和灵石110kV英武变电站引入。10kV部分亦为单母分段接线方式。出线24回,本期22回出线。 1.4 工程地址:介休瑞东煤业35kV变电站 1.5 交通、运输:汽运 1.6工程布置:电容器成套装置采用室内柜式安装,磁控电抗器室外安装,控制屏放于主控室。 2.环境条件 注:1. 环境最低气温超过-25℃, 需要进行参数修正; 2. 污秽等级为Ⅳ级,需要进行参数修正; 3. 海拔高度大于1000米,需要进行参数修正。 3.系统运行条件 3.1 系统标称电压:10kV 3.2 最高运行电压:12kV 3.3 额定频率:50Hz 3.4 中性点接地方式:非有效接地 3.5 电容器组接线方式:星形 3.6 辅助电源:DC220V 4.装置要求 设备安装于10kV侧,电容器滤波安装容量6000kvar,分5次、7次、11次兼高通三个滤波支路,(各个投标厂家需根据经验对各个滤波支路分组并提供容值、电抗值详细计算说明书),另根据煤矿负荷波动,配磁控电抗器4500kvar实现系统所需无功的动态连续

5.设备名称及数量 磁控式高压动态无功补偿装置10kV-6000kvar 2套,每套设备主要配置如下:序号名称型号及规格单位数量备注 1 滤波支路5 次 隔离开关GN19-12/630 组 1 2 避雷器HY5WR-17/45 只 3 3 喷逐式熔断器BR2-12 只 6 4 放电线圈FDZR-1.7-12/√3-1 台 3 5 滤波电容器AAM-12/√3-350-1W 或AFM-12/√3-350-1W 台 6 总容量2100kvar 6 滤波电抗器LKSGKL-10-84-4 台 1 7 附件足量 8 7 次隔离开关GN19-12/630 组 1 9 避雷器HY5WR-17/45 只 3 10 喷逐式熔断器BR2-12 只 6 11 放电线圈FDZR-1.7-12/√3-1 台 3 12 滤波电容器AAM-12/√3-300-1W 或AFM-12/√3-300-1W 台9 总容量1800kvar 13 滤波电抗器LKSGKL-10-36-2 台 1 14 附件足量 15 11 次 兼 高 通隔离开关GN19-12/630 组 1 16 避雷器HY5WR-17/45 只 3 17 喷逐式熔断器BR2-12 只 6 18 放电线圈FDZR-1.7-12/√3-1 台 3 19 滤波电容器AAM-12/√3-350-1W 或AFM-12/√3-350-1W 台 6 总容量2100kvar 20 滤波电抗器LKSGKL-10-16.8-0.8 台 1 21 高通电阻器套 1 22 附件足量 23 磁 控 支隔离开关GN19-12/1250 组 1 24 电流互感器JQJC-10 300/5A 只 3 25 磁控电抗器4500kvar 台 1

并联电容器的使用及运行维护实用版

YF-ED-J4612 可按资料类型定义编号 并联电容器的使用及运行 维护实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

并联电容器的使用及运行维护实 用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 电力电容器是电力系统中的无功补偿设备 之一,它具有无噪音、消耗能量小、安装方便 等优点,被广泛应用在10kV配电线路、变电站 10kV母线及配电所400V母线中。它安装在电力 系统中,可以补偿无功功率,提高功率因数, 从而提高设备出力,降低功率损耗和电能损 失,并改善电压质量,所以在10kV配电线路、 变电站10kV母线及配电所400V母线上应用较 为普及。在电力系统中多数采用并联电容器作 为无功补偿设备。一、电容器的安装要求

(1)电容器分层安装时,一般不超过三层,层间不应加隔板。电容器母线对上层构架的垂直距离不尖小于20cm,下层电容器的底部距地面应大于30cm。 (2)电容器构架间的水平距离不应小于 0.5m,每台电容器之间的距离不应小于50cm,电容器的铭牌应面向通道。 (3)要求接地的电容器,其外壳应与金属构架共同接地。 (4)电容器应在适当部位设置温度计或贴示温蜡片,以便监视运行温度。

并联电容器对电力系统无功补偿及电压调节问题的探讨_马文成

DOI :10.3969/j.issn.1001-8972.2012.09.069 并联电容器对电力系统无功补偿及电压调节问题的探讨 马文成 固原供电局,宁夏 固原 756300 摘 要 变电站并联电容器可以对电网的无功功率进 行集中补偿。通过对无功功率的合理补偿, 从而达到调节电压、使系统经济和稳定运 行。但在实际运行中,往往由于设计原因, 无功负荷的分布不可预见性等因素导致变电 站母线并联电容器不能合理的补偿无功和调 节电压。下面就某站10kV 母线并联电容器运 行中存在的问题加以分析和探讨。 关键词 并联电容器;无功补偿;电压调节 某变电站电压等级为110/35/10kV ,两台 主变容量分别为25000kVA 和20000kVA 的有载调 压变压器,正常时20000kVA 变压器运行,另一 台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关 联成单母运行。10kV Ⅱ段母线装TBB 210- 3600/3600Kvar 成套电容器装置,电容器型号 为:BFFH 4-11/ -2×1800-1×3W 密集型电 容器,每组容量为1800Kvar ,两组共 3600Kvar ,其额定电流为89A ,串联电抗器型 号为CKGKL-12/10-1的空芯电抗器,额定电 抗率为1%。 1 运行中存在的问题 该站自2000年投运以来,因10kV 母线并联 电容器的补偿容量不合理致使电容器不能正常 投入运行,因此,10kV 母线输送的无功负荷不 能实现就地补偿,从而不利于电网运行的经济 性和稳定性。 1.1 并联电容器投入时补偿容量过剩 图例分析如下: 图1 上图数据为该站10kV 母线2011年有功、无 功负荷平均值,从图中可以看出,10kV 母线 年输送无功负荷最大值为1500Kvar ,最小值为 500Kvar ,平均值为1000Kvar 。若投入一组容量 为 的电容器时除补偿了10kV 母线输送的无功 负荷外,还向系统倒送无功容量800Kvar 。按照 规定,电力系统无功补偿应以分级补偿,就地 平衡的原则进行,向系统倒送无功时将会引起 过电压,系统稳定性受到破坏。因此,向系统 倒送无功是不允许的。 1.2 并联电容器投入时对母线电压影响较 大 若正常运行时投入一台20000kVA 的有载调 压变压器时,从图A 中可知10kV 母线年输送有 功功率最大值为6000kW ,最小值为3000kW , 平均值为4500kW 。正常运行时,在110kV 母线 确保电压合格率的情况下,35kV 及10kV 母线 通过有载调压完全可以满足各级母线电压合格 率的要求。当电容器投入时,除补偿了10kV 母线输送的无功功率外,还向系统倒送了大量 无功。此时,变压器输出的无功功率减少,导 致高压侧母线向系统输送的无功减少而电压升 高。变压器中、低压侧母线电压随之相应升 高,尤其低压侧母线电压升高较大,而并联电 容器运行时向系统补偿的无功容量与其端电压 的平方成正比,电压升高浮度越大,向系统输 送的无功容量越大,如此恶性循环,可能导致 电容器过电压保护动作跳闸,系统其它设备超 过额定电压运行时,其绝缘受到威胁。此时, 用有载调压来降低电压运行已不能满足电压合 格率的要求。 1.3 并联电容器退出运行时对系统经济运 行的影响 变电站并联电容器投入电网的目的是为 了补偿系统无功的不足,减少电源向系统输送 的无功功率,从而提高有功输送容量。因电源 向系统远距离输送无功负荷时,在线路及变压 器等感性、容性元件及阻性元件上消耗一定的 有功功率,因此,电源远距离大容量输送无功 不经济。变电站采用并联电容器通过就地无功 补偿,可以降低电源向系统及用户输送的无功 负荷,从而提高了有功输送容量。相对于电源 输送无功时,变电站并联电容器的单位容量费 用最低,有功功率损耗最小(约为额定容量的 0.3%~0.5%),一次性投资,运行维护简便。 因此用系统减少输送的无功功率来相应的提高 有功容量的输送能力,从经济性方面比较, 并联电容器投资成本小,最多1~2年可收回成 本。因此,获得了最好的经济效益。 从以上分析可以看出,当该站并联电容器 退出运行时,据查10kV 母线年输送无功电能约 760万度。因此,在当前负荷情况下,并联电容 器退出运行最不经济。 2 应采取的措施 针对以上分析,该站10kV 母线并联电容器 在电压调整、无功补偿过剩及运行经济性方面 存在着相互制约的矛盾,如何解决这一问题, 本人提出采取以下措施: 2.1 改变10kV 母线并联电容器的接线方 式,改造图如下: 图2 图3 图2为原接线,改造前当一组电容器投 入运行时向系统输送的总无功补偿容量为 Q 1=U 2ωC ,式中:U 为母线端电压,当f 为工 频时,ω为一常数,C 1=C 2,因C 1和C 2并联, 所以C=C 1+C 2,即Q 1=2U 2ωC 1。图C 为改造后 的接线图,总无功补偿容量为Q 2=U 2ωC ,式 中:U 为母线端电压,当f 为工频时,ω为一 常数,C 1=C 2,因C 1和C 2串联,所以C=C 1/2, 即Q 2=U 2ωC 1/2。所以 Q 1/Q 2=2U 2ωC 1/ U 2ωC 1/2=4,即Q 2=Q 1/4=3600/4=900(Kvar)。 通过计算可知,改造后两组电容器串联后 再三相并联接于电网时的总无功功率900Kvar 。 考虑到后期无功负荷的增长给补偿带来新 -119- 的问题,上述改造中在实际设备上可通过如图 C 所示加装一组隔离开关来实现,即通过操作 拉开G 2隔离开关,合上G 1隔离开关来实现投入 无功容量900Kvar 。后期无功负荷增长较大时, 可通过操作拉开G 1隔离开关,合上G 2隔离开关 来实现投入无功容量 1800Kvar 。 2.2 改变并联电容器的接线方式后对系统 及各元件的影响 2.2.1 对系统的无功补偿情况 图A 中,按目前年平均输送无功负荷曲线 可以看出,年平均无功输送容量为1000Kvar , 改造后并联电容器投入电网运行时补偿的无功 容量为900Kvar ,因此,可以实现就地补偿无 功的能力。对于后期无功负荷增长带来的无功 补偿不足时,可通过操作 G 1、G 2隔离开关来实 现电容器无功容量在900Kvar 与1800Kvar 之间转 换。 2.2.2 对电压质量的影响 改造后并联电容器输送的总无功容量为改 造前的一半,因此电容器投入运行时对电压的 影响相对较小,当各级母线电压变化时可通过 变压器有载调压装置调整电压,以及无功补偿 情况投退并联电容器来调整电压。 2.2.3 改造后的并联电容器运行时的经济 性 通过无功就地平衡补偿,据查可实现年累 计补偿无功负荷约760万度,相对电源系统输送 无功来说,可减少网损,提高电源输送能力, 最终达到经济效益最大化。 2.2.4 改造后对成套并联电容器装置各元 件的影响 2.2.4.1 对电容器各参数的影响 电容器额定电压为11/ kV ,改造后C1和 C2串联,当接在10kV 母线上时,C1和C2 串联 时分压,即C1与C2各承受电压为改造前端电压 的 一 半 , 电 容 器 通 过 的 电 流 为 I=Q2/2U=900/2×10=45(A)。因此,改造后的 各电容器承受的电压和通过的电流均在额定参 数内。 2.2.4.2 对电抗器的影响 因电抗器额定电压为10kV ,额定电流为 189A ,改造后均在额定值范围内。 2.2.4.3 对继电保护的影响 当并联电容器主接线改变后,其输送的电 流和各电容器承受的电压相应的发生变化,因 此,原保护定值不能满足需要,应重新计算并 整定,即可通过现有微机保护整定两套定值, 当电容器的无功容量在900Kvar 与1800Kvar 之间 转换时,切换相应的定值实现保护功能。 笔者认为通过上述改造后,可解决该站目 前10kV 母线无功负荷的补偿问题,从而实现了 该站并联电容器长时间不能投入电网运行的难 题,同时,提高了10kV 系统的功率因数,优化 了电网运行方案,提高了系统运行的经济性。 参考文献 [1] 韩祯祥,吴国炎 .电力系统分析. 浙江大学出 版社, 2002年版,227页 [2] 李坚,郭建文 .变电运行及设备管理技术问 答.中国电力出版社 ,2005年版,158页 作者简介 马文成 学历:大学 职称:工程师。

低压自愈式并联电容器试验大纲

BZMJ0.45-40-3低电压自愈式并联电容器试验大纲 0ZTR.102.014 浙江正泰电器股份有限公司 2013-3-27

BZMJ0.45-40-3低电压自愈式并联电容器技术条件 0ZTR.102.014 1 电容测量和容量计算 按GB/T 12747.1-2004第7章执行。电容器的实测电容与其额定值之间的偏差应在-5%~+10%范围内。 2 损耗角正切tanδ 按GB/T 12747.1-2004第8章执行。电容器在额定频率、额定电压下,20℃时的损耗角正切tanδ应不大于0.002。 3端子间电压试验 按GB/T 12747.1-2004第9.2条执行。电容器两个端子间的电介质应能承受2.15U N的交流试验电压,历时10s。 4端子与外壳间电压试验(干试) 按GB/T 12747.1-2004第10.2条执行。电容器端子与外壳间应能承受3kV的交流试验电压,历时1min。 5 内部放电器件试验 按GB/T 12747.1-2004第11章执行。电容器内装有放电电阻,该放电电阻应能在3min内将电容器的剩余电压自2U N降到75V以下。 6密封性试验 按GB/T 12747.1-2004第12章执行。电容器通体加热到75℃,保持8小时,应无渗漏现象。 7 热稳定性试验 按GB/T 12747.1-2004第13章执行。单元之间间距100mm。试验温度45℃。8高温下电容器损耗角正切测量 按GB/T 12747.1-2004第14章执行,损耗角正切tanδ应不大于0.002。 9放电试验 按GB/T 12747.1-2004第16章执行。试验电压为2U N的直流电压,10min中内进行5次。在试验后的5min内进行一次端子间耐压试验,历时2s。 10自愈性试验 按GB/T 12747.1-2004第18章执行。 11老化试验 按GB/T 12747.1-2004第17章执行。 12破坏试验 按GB/T 12747.1-2004第19章执行。 编制: 校核: 批准:

10kV并联电容器组技术规范书(通用技术规范)

山东陵城区恒盛35kV变电站新建工 程 10kV 并联电容器组成套装置 招标文件 (技术规范通用部分) 2016年07月济南

目录 1 总则 2 使用条件 3 技术参数和要求 4 试验 5 供货范围 6 供方在投标时应提供的资料 7 技术资料和图纸交付进度 8 标志、包装、贮存和运输 9 技术服务与设计联络

1 总则 1.1本规范书适用于10kV并联电容器组成套装置,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和与规范书的差异(表)”为标题的专门章节加以详细描述。本规范书的条款,除了用“宜”字表述的条款外,一律不接受低于本技术规范条款的差异。不允许直接修改本技术规范书的条款而作为供方对本技术规范书的应答。 1.4本设备技术规范书和供方在投标时提出的“对规范书的意见和与规范书的差异(表)”经需、供双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.5供方须执行现行国家标准和行业标准。应遵循的主要标准如下: GB 4208-2008 外壳防护等级(IP代码) GB 1984-2003 高压交流断路器 GB 2706-1999 交流高压电器动、热稳定试验方法 GB/T 11024.1-2001 标称电压1kV以上交流电力系统用并联电容器第1部分:总则性能、试验和定额安全要求安装和运行导则 GB/T 11024.2-2001 标称电压1kV以上交流电力系统用并联电容器第2部分:耐久性试验 GB/T 11024.4-2001 标称电压1kV以上交流电力系统用并联电容器第4部分: 内部熔丝 GB/T 11022-1999 高压开关设备和控制设备标准的共用技术要求 GB/T5582-1993 高压电力设备外绝缘污秽等级 GB 50060-1992 3~110kV高压配电装置设计规范 GB 15116.5-1994 交流高压熔断器并联电容器外保护用熔断器 GB 50227-1995 并联电容器装置设计规范

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法 无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。

35KV变电站电力电容器运行规程

35KV变电站电力电容器运行规程 2009-2-23 35KV变电站电力电容器运行规程 1、运行前的检查 a.对电容器组及相关设备进行外观检查; b.对电容器组保护定值进行核对并按调度命令投入其保护压板。 c.室内照明电容器组的通风及照明装置应良好。 2、运行中的规定 对新投入运行的电容器组应在额定电压下冲击合闸三次(每次间隔5分钟),24小时试运行期间,应加强巡视检查。 2.1电容器正常巡视检查项目 a.外壳无膨胀、鼓肚及渗漏油现象,电抗器油位正常; b.套管应清洁、无裂纹和放电现象; c.引线接头无松动、过热、脱落及断线; d.无异常响声,熔丝应完整; e.电容器网门关闭良好,并加锁。 2.2电容器应根据所属调度下达的调压曲线进行投停操作,系统电压低时应首先投电容器,如果满足不了,再调整变压器有载分头,系统电压高时,首先调整变压器有载分头,如满足不了,再切电容器。

2.3电容器组断路器拉、合闸间隔时间,不宜小于5分钟。 2.4电容器停电工作时,必须经过充分放电才能工作,熔丝熔断的单个电容器工作时必须对该电容器进行充分放电。 2.5电容器室应通风良好,温度达到十40℃或超过厂家规定时,应将电容器短时停止运行。 2.6电容器本体温度不得超过60℃。 2.7串、并联电容器的长期运行电压不得超过其额定电压的1.1倍,电流不得超过其额定电流的1.3倍。厂家如有特殊规定的,可按制造厂规定执行。 2.8 连接电容器组的母线停电时,应先停电容器组后停负荷;送电时顺序与此相反。 2.9电容器容量不能任意变动,个别电容器损坏时,应更换容量和参数相同产品,并经试验合格方可投入运行。 2.10巡视检查电容器组只能透过网栏观察,严禁打开或进入网栏内。 3、异常及事故处理 3.1电容器发生下列异常运行情况之一者,应立即将其退出运行,并汇报调度 a.套管闪络或严重放电。 b.接头严重过热或熔化。 c.外壳膨胀变形或严重漏油。 d.内部有放电声及放电线圈有异响。 e.电容器爆炸、起火。

变电所电容器的常见故障处理

变电所电容器的常见故障处理 1、电容器的常见故障。当发现电容器的下列情况之一时应立即切断电源。(1)电容器外壳膨胀或漏油。 (2)套管破裂,发生闪络有为花。 (3)电容器内部声音异常。 (4)外壳温升高于55℃以上示温片脱落。 2、电容器的故障处理 (1)当电容器爆炸着火时,就立即断开电源,并用砂子和干式灭火器灭火。(2)当电容器的保险熔断时,应向调度汇报,待取得同意后再拉开电容器的断路器。切断电源对其进行放电,先进行外部检查,如套管的外部有无闪络痕迹,外壳是否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。 (3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。未查明原因之前,不得试投。 3、处理故障电容器时的安全事项。处理故障电容器应在断开电容器的断路器,拉开断路器两侧的隔离开关,并对电容器组放电后进行。电容器组经放电电阻、放电变压器或放电电压互感器放电之后,由于部分残余电荷一时放不尽应将接地的接地端固定好,再用接地棒多次对电容器放电直至无火花及放电声为止,然后将接地卡子固定好。由于故障电容器可能发生引线接触不良,内部断线或保险熔断等现象,因此仍可能有部分电荷未放出来,所以检修人员在接触故障电容器以前,还应戴上绝缘手套,用短路线将故障电容器的两极短接,还应单独进行放电。

相关文档
最新文档