重组质粒的转化(转菌)

重组质粒的转化(转菌)
重组质粒的转化(转菌)

重组质粒的转化

重组质粒的转化(热休克法)

本方案不仅适合于转化连接体系,同样适合于转化已有的质粒(一般1~2μl质粒即可)。

本流程以α-互补鉴定为例。适用于含有β-半乳糖苷酶基因(LacZ)的载体(如T载体),载体含有LacZ的调控序列和头146个氨基酸的编码信息。不能使用α-互补鉴定的载体可以使用含相应抗生素的平板鉴定(即直接使用LB/Amp或LB/Kana等,不用加IPTG/X-Gal)。

㈠试剂及材料:

1.IPTG溶液(异丙基硫代-β-D-半乳糖苷,200mg/ml): 2g IPTG溶于8ml双蒸去离子水

中,用双蒸去离子水调节体积至10ml,0.22um滤器过滤除菌,分装1ml/管,-20℃保存。

2.X-Gal(5-溴-4氯-3吲哚-β-D-半乳糖苷):已购入,铝箔纸包裹避光,-20℃保存。

3.LB液体培养基(无抗生素)。

4.含有ampicillin/IPTG/X-Gal的LB培养板(LB/Amp/IPTG/X-Gal): 在含有ampicillin

的LB培养板表面加入4μl 200mg/ml IPTG和16μl 50mg/ml X-Gal,用无菌玻璃涂布器均匀涂布平板表面,37℃×30min可完全吸收,即可使用。(注意:4μl 200mg/ml IPTG 加上16μl 50mg/ml X-Gal不足以涂布整个平板表面,可同时加入含与平板相同抗生素的LB液体培养基100μl左右。)

5.感受态细胞。

6.42℃水浴。

7.冰浴。

㈡操作流程:

1.准备LB/Amp/IPTG/X-Gal平板或者其它筛选用平板,使用前将平板预热至室温。

2.从-80℃中取出冰冻的感受态细胞(如JM109),臵冰浴中约5min至刚刚融化。轻

轻晃动使细胞混匀,仍臵冰浴中。

3.离心连接反应管,吸取5~20μl连接体系至臵于冰上的感受态细胞中。

4.轻轻晃动使其混匀,臵冰上30min。

5.于准确调温的42℃水浴中热休克45~50sec,切勿摇晃、震动。

6.速回冰浴2min。

7.加入800μl已经预热到室温的无抗生素的LB液体培养基。

8.摇菌:37℃×200rpm×1.5~2 h。

9.铺板:将100μl转化体系均匀涂布于准备好的LB/amp/IPTG/X-Gal平板或者其它筛

选用平板(可将1ml全部铺板)。

10.液体被吸收后倒臵培养37℃×过夜。

11.蓝白斑鉴定:臵4℃下1~4h使蓝色充分显现,以便蓝白斑鉴定。白色菌落为带有

重组质粒的克隆。非α-互补鉴定的话,没有蓝白斑鉴定这步,过夜培养所产生菌

落即为可能带有重组质粒的克隆。

本方案不仅适合于转化连接体系,同样适合于转化已有的质粒(一般1~2μl质粒即可)。

原理:新鲜培养的细菌细胞遇到高效致敏剂时,其细胞表面会形成微小的孔洞,有利于外源DNA分子进入细胞内,从而形成转化。以下流程以博大泰克公司高效感受态细胞DH5α、BL21(DE3)、JM109等为例。

本流程以α-互补鉴定为例。适用于含有β-半乳糖苷酶基因(LacZ)的载体(如T载体),载体含有LacZ的调控序列和头146个氨基酸的编码信息。不能使用α-互补鉴定的载体可以使用含相应抗生素的平板鉴定(即直接使用LB/Amp或LB/Kana等,不用加IPTG/X-Gal)。

㈠试剂及材料:

1.IPTG溶液(异丙基硫代-β-D-半乳糖苷,200mg/ml): 2g IPTG溶于8ml双蒸去离子水

中,用双蒸去离子水调节体积至10ml,0.22um滤器过滤除菌,分装1ml/管,-20℃保存。

2.X-Gal(5-溴-4氯-3吲哚-β-D-半乳糖苷):已购入,铝箔纸包裹避光,-20℃保存。

3.LB液体培养基(无抗生素)。

4.含有ampicillin/IPTG/X-Gal的LB培养板(LB/Amp/IPTG/X-Gal): 在含有ampicillin

的LB培养板表面加入4μl 200mg/ml IPTG和16μl 50mg/ml X-Gal,用无菌玻璃涂布器均匀涂布平板表面,37℃×30min可完全吸收,即可使用。(注意:4μl 200mg/ml IPTG 加上16μl 50mg/ml X-Gal不足以涂布整个平板表面,可同时加入含与平板相同抗生素的LB液体培养基100μl左右。)

5.致敏感受态细胞。

6.试剂A(随感受态细胞提供)。

7.无菌水(随感受态细胞提供,自制亦可)。

8.冰浴。

㈡操作流程:

1.准备LB/Amp/IPTG/X-Gal平板或者其它筛选用平板,使用前将平板预热至室温。

2.从-80℃中取出冰冻的感受态细胞(约80~100 μl),臵冰浴中约5min至刚刚融化。

轻轻晃动使细胞混匀,仍臵冰浴中。

3.离心连接反应管,吸取5~20μl连接体系至臵于冰上的一个无菌管中。

4.在管中加入试剂A 20μl,无菌水稀释至100 μl,混匀。

5.将以上混合液加入到感受态细胞中,轻轻晃动使其混匀。

6.冰浴20min。

7.室温放臵10 min。

8.加入400μl已经预热到室温的无抗生素的LB液体培养基。

9.摇菌:37℃×200rpm×1~1.5h。

10.铺板:将100~600μl转化体系均匀涂布于准备好的LB/amp/IPTG/X-Gal平板或者其

它筛选用平板(可将1ml全部铺板)。

11.液体被吸收后倒臵培养37℃×过夜。

12.蓝白斑鉴定:臵4℃下1~4h使蓝色充分显现,以便蓝白斑鉴定。白色菌落为带有

重组质粒的克隆。非α-互补鉴定的话,没有蓝白斑鉴定这步,过夜培养所产生菌

落即为可能带有重组质粒的克隆。

本方案不仅适合于转化连接体系,同样适合于转化已有的质粒(一般1~2μl质粒即可)。㈠试剂及材料:

1.LB液体培养基(无抗生素)。

2.适当的选择性LB培养板。

3.电转感受态细胞(制备方案见相关流程)。

4.电转化仪Mμltiporator?和电转杯。

5.冰浴。

㈡操作流程:

1.从-80℃中取出一管冻存的电转感受态细胞(40μl~300μl/管,根据拟使用的电转杯

容积而定,一般使用1mm电转杯,其最大容积100 μl,最少需40μl电转感受态细胞,可以使用更多的电转感受态细胞,但与连接体系或质粒混合后,不要超过电转杯最大体积),臵冰浴中约5min至刚刚融化。

2.离心连接反应管,吸取5~10μl连接体系加入到感受态细胞中,使用吸头轻轻吹打

几次使其混匀。

3.将以上混合液加入到预冷的电转杯中,小心除去气泡,将电转杯插入电转仪。

4.电转化(电转参数可参考表19)。

5.立即加入无抗生素的LB液体培养基1ml,轻轻混匀,将以上混合液转入一个无

菌的培养管中。

6.摇菌:37℃×200rpm×0.5~1h。

7.铺板:将适当量的转化体系均匀涂布于预温到室温的选择性LB培养板上。

8.液体被吸收后倒臵培养37℃×过夜。

表格21、电转参数参考

重组质粒的构建与转化

实验目的 1. 学习在实现DNA 体外重组过程中,正确选择合适的载体和限制性内切酶并能用限制性核酸内切酶对 载体和目的DNA 进行切割,产生利于连接的合适末端。 2. 学习设计构建重组DNA 分子的基本方法,掌握载体和外源目的DNA 酶切的操作。 3. 学习利用T4 DNA 连接酶把酶切后的载体片段和外源目的DNA 片段连接起来,构建体外DNA 分子的 技术,了解并掌握几种常用的连接方式。 4. 掌握利用Cacl 2制备感受态细胞的方法。 5. 学习掌握热击法转化 E.coli 的原理和方法。 6. 学习并掌握使用红白菌落法筛选获得重组子以及α互补筛选法的原理及方法。 7. 学习并掌握使用Omaga 试剂盒抽提质粒的方法及进一步确定重组质粒中含有外源目的DNA 片段。 实验原理: (一)限制性核酸内切酶的酶切反应 体外构建重组DNA 分子,首先要了解目的基因的酶切图谱,选用的限制性内切酶不能在目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源供体DNA 时不能得到完整的目的基因。其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。常用的酶切 方法有双酶切法和单酶切法两种。本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA 片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。 在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA 片段以相反方向插入载体分 子中,或目的DNA 串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。单酶

切法简单易行,但是后期筛选工作比较复杂。各种限制性内切酶都有其最佳反应条件,最主要的 因素是反应温度和缓冲液的组成。在双酶切体系中,如果两种酶对盐离子的浓度和温度要求一致,原则上可以将这两种酶同时加入一个反应体系中同步酶切;如果不一致,则酶切反应最好分步进 行,常用的酶切顺序是:先低盐后高盐,先低温后高温。 酶切与连接是两个密切相关的步骤,要达到高效率的连接,必须酶切完全,酶切的DNA 数量要适当。另外,酶切反应的规模也取决于需要酶切的DNA 的量,以及相应的所需酶的量。一般的,酶切0.2~1.0 μg的DNA 分子时,反应体积约为15~20 μg,DNA 的量越大,反应体积可按比例适当放大。酶的用量参照标准:一个标准单位酶能在指定的缓冲液系统和温度下,1h 完全酶解1μg 的pBR322 DNA 分子。如果酶活力低,可以适当增加酶的用量,但是最高不能超过反应 总体积的10% 。因为限制性核酸内切酶一般是保存在50% 甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5% ,就会抑制酶的活性。 (二)载体与外源DNA 的连接反应 连接反应总是紧跟酶切反应,外源DNA 片段与载体分子连接的方法即DNA 分子体外重组技术主要依赖限制性核酸内切酶和DNA 连接酶催化完成的。DNA 连接酶催化两双链DNA 片段相邻的5’-磷酸和3’-OH 间形成磷酸二酯键。在分子克隆中最有用的DNA 连接酶是来自T4 噬菌体的T4 DNA 连接酶,它可以连接黏性末端和平末端。连接反应时,载体DNA 和外源DNA 的摩尔数之比控制在1:(1~3 )之间,可以有效地解决DNA 多拷贝插入的现象。实际操作中,反应温度介于酶作用速率和末端结合速率之间,一般是16℃,平末端适当提高连接反应温度。反应时间与温度有关,随温度的提高,反应速度增加,所需时间会相应减少,16℃下最常用的连接时间为12-16h 。 (三)感受态细胞的制备及质粒转化

重组质粒的构建经验 [技巧]

重组质粒的构建经验 [技巧] 重组质粒的构建经验~~~ 昨天我在版中我看很多谷友询问重组质粒的构建问题,有些谷友说构建质粒需要一个月,甚至更长时间,这让我联想我刚做分子生物学时候的曲折。重组质粒构建是常用的分子生物学手段,其实只是最基本的方法,一般一个星期同时构建三二个组质粒是没有问题的。在国内先进的实验中,也大都是由实验员搞定。但是其中还是有些基本的技巧需要掌握。在这里将我的心得分享于大家,这也是我本人几年来一线工作时的经验积累,以期能为谷友提供借鉴,让大家在实验中少走弯路。所涉及内容如下: 1) 克隆基因的酶切位点问题 2) 载体酶切的问题 3) 连接片段浓度比的问题在阐明上述问题同时,本人尽可能举些实验中的问题案例予以说明。 一、克隆基因的酶切位点问题 1、克隆位点选择的问题。首先要对目标基因进行酶切位点扫描分析,列出其所含酶切位点清单。然后对照质粒多克隆位点,所选择的克隆位点必须是目标基因所不含的酶切位点。这是常识,不赘述。 2、保护碱基数目的问题。在设计PCR引物时,引入酶切位点后,常常要加入保护碱基,这是大家所熟知的。但是保护碱基数量多少,可能被新手所忽视。这种忽视碰可能会大大影响后续的实验进展。一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA片段上。如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。下面是我提供这类酶的列表及其所需最少的保护碱基数,相信下列将有助于大这家的实验设计。 NcoI 4 NdeI 6 NheI 3 NotI 8 PmeI 6 SacI 3 SalI 3 SmaI 3 HindIII 3 BstI 8 SphI 4

完整word版重组质粒的构建转化筛选和鉴定

重组质粒的构建、转化、筛选和鉴定 实验目的: 1.学习在实现DNA体外重组过程中,正确选择合适的载体和限制性内切酶并能对限制性核酸内切酶对载体和目的DNA进行切割,产生利于连接的合适末端。 2.学习设计构建重组DNA分子的基本方法,掌握载体和外源目的DNA酶切的操作。 3.学习利用T4DNA连接酶把酶切后的载体片段和外源目的DNA片段连接起来,构建体外DNA分子的技术,了解并掌握几种常用的连接方式。 4.掌握利用Cacl 感受态细胞的方法。2 5.学习掌握热击法转化E.coli的原理和方法。 6.掌握α互补筛选法和PCR检测法筛选重组子的方法。并鉴定体外导入目的DNA片段的大小。 7.学习和掌握PCR反应的基本原理和操作技术,了解引物设计的基本要求。 实验原理: 外源DNA与载体分子的连接即为DNA重组技术,这样重新组合的DNA分子叫做重组子。重组的DNA分子式在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经酶切连接导入感受态细胞中,将DNA分子限制性内切酶起来。将重组质粒的载体分子和外源选择性培养基互补筛选法酶切筛选出重组子,并可通过中培养,可以通过转化后的细胞在α电泳PCR检验的方法进行重组子的鉴定。及1.重组子的构建 酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA时不能得到完整的目的基因。其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。常用的酶切方法有双酶切法和单酶切法两种。本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。单酶切法简单易行单是后期筛选工作比较复杂。各种限制性内切酶都有去最佳反应条件,最“先限制性内切酶在使用时应遵循在双酶切体系中,主要的因素是反应温度和缓冲液的组成, 低盐后高盐,先低温后高温”的原则进行反应。 (要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。可以适当增加酶的用量,但是最高不能超过反应总体积的10%,因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。) 连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核算内切酶和DNA连接酶催化完成的。DNA连接酶催化两双链DNA片段相邻的5'-磷酸和3'-OH间形成磷酸二酯键。在分子克隆中最有用的DNA连接酶是来自T4噬菌体的T4 DNA 连接酶,它可以连接黏性末端和平末端。连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:(1~3)之间,可以有效地解决DNA多拷贝插入的现象。反应温度介于酶作用速率和末端结合速率之间,一般是16℃,用常用的连接时间为12-16h。 2.感受态细胞的制备及质粒转化 构建好的重组DNA转入感受态细胞中进行表达的现象就是转化。能进行转化的受体细胞必须是感受态细胞,即受体细胞最容易接受外源DNA片段实现转化的生理状态,它决定于受体菌的遗传特性,同时与菌龄、外界环境等因素有关。人工转化是通过人为诱导的方法使细胞具有摄取DNA

构建重组质粒基本方法

构建重组质粒基本方法 1.cDNA编码区片段的PCR扩增 50ul ×2 模版 1 5‘引物 1 3‘引物 1 dNTP 1 10×buffer 5 Taq 1 Milliq H2O 40 2.PCR产物纯化 1、加5倍体积的PB 2、将Spin柱放于2ml收集管上 3、加样液,14Krpm,离心1min 4、弃去排出液 5、加0.75ml PE, 14Krpm,离心1min 6、弃去排出液,14Krpm,离心1min 7、将Spin柱放在洁净1.5ml的Epp管中 8、往Spin柱的膜中央加入50μl的EB(或milliq H2O),静置2min, 14Krpm, 离心1min 3.双酶切 载体和PCR产物分别用一下条件进行双酶切(反应体系均为30ul,37℃,酶切n 小时): 4.双酶切后的载体用试剂盒割胶回收 1.割胶并称重,加3倍体积的QG(胶块每100mg约合100μl的体积)

2.50℃,恒温10min,等到胶完全被溶解 3.将一个Spin柱放在一个2ml的收集管中 4.加样液,14Krpm,离心1min 5.弃去排出液 6.加0.75ml PE, 14Krpm,离心1min 7.弃去排出液,14Krpm,离心1min 8.将Spin柱放在洁净1.5ml的Epp管中 9.往Spin柱的膜中央加入50μl的EB(或milliq H2O),静置2min, 14Krpm, 离心1min 5.连接 上述双酶切产物经过纯化(其中载体酶切产物割胶回收,PCR片段酶切后纯化步骤与上述PCR产物纯化步骤相同),在T4 DNA连接酶作用下16℃连接过夜。连接体系如下: 载体 2ul PCR 片段 6ul 10xT4 buffer 1ul T4 DNA ligase 1ul 6.转化 取上述连接液5μl转化到预先制备的DH5α化学感受态细胞中,冰浴30分钟,42℃热激2min,置冰上5min,加入1mlLB培养液37℃摇床45min,离心5000rpm,1-5min(不要离心太久,以免太实),最后均匀涂布在含有100 ng/ml 抗生素的LB平板上(100-150 ul)。将平板在37℃倒置培养过夜。挑取阳性克隆菌落转划到另一块含有100 ng/ml抗生素的LB平板上,并对之进行编号,37℃倒置培养过夜。 7.菌落原位PCR 挑取转划后长出的阳性克隆菌落,加入3ul细菌DNA提取液破细胞。将 细菌裂解液作为PCR模板,其他PCR组分及PCR条件同上。PCR产物在2% 凝胶上进行电泳分析。 8. QIAGEN试剂盒抽提质粒

大肠杆菌质粒转染实验-QIAGEN大提试剂盒

质粒抽提 一、溶液及培养基配制: 1、LB液体培养基 (1)配方: 酵母提取物(Yeast extract)5g/L 胰蛋白胨(Tryptone)10g/L (2)配制: A、称量:称取培养基各成分所需量,置于烧杯中。 B、溶化:加入所需水量2/3的蒸馏水于锥形瓶中,搅拌使药品全部溶化。 C、定容。 D、加塞、包扎。 F、高压灭菌121 C, 30min ,灭菌后室温保存备用。若要分装需要在超净台内。 G、培养基完全溶解,降至室温后,加氨苄霉素(AMP )。先将AMP用三蒸水配制为 100mg/ml母液,而后每1ml母液加至1000ml培养基。(可以多配制一些,分装为1ml/管)2、LB固体培养基 (1)配方: 酵母提取物(Yeast extract)5g/L 氯化钠(NaCl)5g/L 胰蛋白胨(Tryptone)10g/L 氨苄青霉素溶液100^g/ml (终浓度)(即100mg溶于1ml超纯水或生理 盐水或PBS,再加入1000ml培养基) 琼脂粉15g/L (2)配制: A、称量:称取培养基各成分所需量,置于烧杯中。 B、溶化:加入所需水量2/3的蒸馏水于烧杯中,搅拌使药品全部溶化。 C、5mol/L NaOH 溶液调pH 到7.4。 D、定容。 E、分装、加塞、包扎。 F、高压灭菌121 C, 30min。 G、火菌后,将融化的LB固体培养基置与55 C的水浴中(或室温),待培养基温度降到55 C时(手可触摸)加入抗生素,(免温度过高导致抗生素失效),并充分摇匀。 (3)倒板: 一般20ml倒1块板,培养基倒入培养皿后,打开盖子,水分晾干后盖上盖子并用封口膜封口,4 C保存备用,使用前提前拿出,防止水蒸气滴入板中。 首要检查是否有足够的固体和液体LB培养基,基本上每个质粒需要一块固体培养基,小摇 的2ml和大摇的250ml LB培养基。小摇的可以在一个50ml离心管中预备着,每次直接取 用。转化所需L形玻璃棒需确认已灭菌摇菌器申请,张评浒老师,王雪师姐; 注意:考虑到多种东西需要灭菌,可以在转化之前或者小摇大摇那天一起灭菌。所有需要提前灭菌的东西有:足量液体LB培养基灭菌后加入AMP蓝黄白枪头至少个一盒,备用; 1.5ml doff 管;Beckman离心机专用离心管;锡箔纸;250ml锥形瓶,500或者1000ml锥形瓶;电动移液器所用移液管(可以考虑用5ml移液枪,则先灭菌5ml枪头);超纯水和TE

重组质粒的构建

重组质粒构建 生物学——屠仁军(新浪) 一、载体与外源片段(PCR产物)的双酶切 为了保证做连接反应时有足够的外源DNA片段,应该加入1ug的DNA进行酶切反应;两种酶分别加1ul,10×buffer 2ul,1ug的DNA,加水至20ul。(因此要跑胶分析DNA以及载体的浓度,取1-2ul,电泳检测其含量。1ul体积太少,可以将其稀释在9ul水中,再加loading buffer。6ul 15000bp的marker,2500bp条带的亮度约是100ng DNA。可对比marker的亮度算出酶切回收的DNA的浓度,以便于确定连接反应时的用量。Image J软件可以做灰度分析。) 双酶切反应结束后,使用PCR cleanup试剂盒回收DNA与载体。回收完之后用同样的方法分析其浓度。(也可以用分光光度计直接测量DNA的浓度,但是,一般酶切反应之后其浓度会比较小,取1ul 稀释100倍之后浓度很低,可能已经低于仪器的测量范围,而电泳灵敏度很高,还可一排除杂带、RNA、蛋白质等对浓度的干扰。) 二、连接反应 载体100ng,DNA片段根据大小,1ul buffer,1ul T4连接酶,加水至10ul;16℃连接12-16h。 载体(约0.03pmol)与外源DNA的摩尔比大约1:3-1:10之间,根据载体与DNA片段的长度,可算出需要的量。因为载体的大小一般在5kb-10kb,因此,严格的算出0.03pmol的载体的质量意义不大,大约100ng即可。如果时间比较紧张,可以25℃连接15min,之后可取5ul进行转化,剩余5ul于16℃继续连接。 三、质粒转化到感受态大肠杆菌中 从-70℃中取出感受态,指尖轻转融化后立即插入冰上,5ul连接产物+100ul感受态大肠杆菌,充分混匀后冰浴30min,然后42°热激90s,热激时不要晃动EP管。然后立即插入冰上,静置2min。(连接产物的量尽量不超过感受态体积的5%,否则会降低转化效率,从而得不偿失。)在超净台中向EP管中加入700ul 无抗性LB培养

大肠杆菌感受态细胞的制备原理、步骤以及重组质粒转化解析

一、目的 1.了解感受态细胞生理特性及制备条件,掌握大肠杆菌感受态细胞制备方法。 2.掌握质粒DNA 转化大肠杆菌的方法,了解转化的条件和利用半乳糖苷酶基因插入失活选择重组质粒DNA 的原理。 二、原理 (一)大肠杆菌感受态细胞制备的原理 所谓感受态,是指细菌生长过程中的某一阶段的培养物,只有某一生长阶段中的细菌才能作为转化的受体,能接受外源DNA而不将其降解的生理状态。感受态形成后,细胞生理状态会发生改变,出现各种蛋白质和酶,负责供体DNA 的结合和加工等。细胞表面正电荷增加,通透性增加,形成能接受外来的DNA 分子的受体位点等。本实验为了把外源DNA(重组质粒)引入大肠杆菌,就必须先制备能吸收外来DNA分子 的感受态细胞。在细菌中,能发生感受态细胞是占极少数。而且,细菌的感受态是在短暂时间内发生。 目前对感受态细胞能接受外来DNA 分子的本质看法不一。主要有两种假说: 1、局部原生质体化假说――细胞表面的细胞壁结构发生变化,即局部失去细胞壁或局部溶解细胞壁,使DNA 分子能通过质膜进细胞。证据有: (1)发芽的芽孢杆菌容易转化; (2)大肠杆菌的原生质体不能被噬菌体感染,却能受噬菌体DNA 转化; (3)适量的溶菌酶能提高转化率。 2、酶受体假说――感受态细胞的表面形成一种能接受DNA 的酶位点,使DNA分子能进入细胞。证据是:(1)蛋白质合成的抑制剂如氯霉素,可以抑制转化作用;

(2)细胞分裂过程中,一直有局部原生质化,但感受态只在生长对数期的中早期出现;(3)分离到感受态因子,能使非感受态细胞转变为感受细胞。 目前对感受态细胞的转化理论尚未有统一结论,但是许多实验室一直进行探索,试图从实验中获得明确回答。有人根据pBR322 质粒DNA对E?coli K――12X1776菌株的转化结果,认为: 近来,在许多研究室都发现CaCl2对受体菌处理,可提高转化效率几十倍,通常把细胞悬浮在pH6.0 的100mmol/L CaCl2中,在冰浴条件下,放置过夜,转化率转高,但一过24小时,转化率测恢复为原来的水平。 (二)重组DNA 的转化原理 我们已经制备好大肠杆菌感受态细胞,接下的实验是把重组的DNA 引入受体细胞,使受体菌具有新的遗传特性,并从中选出转化子。作为受体的大肠杆菌C600 或DH5α,必须不同外来DNA分子发生遗传重组,通常是rec基因缺陷型的突变体,同时它们必须是限制系统缺陷或限制与修饰系统均缺陷的菌株。这样外来的DNA分子不会受其限制酶的降解。保持外来DNA 分子在受体细胞中的稳定性。制备的大肠杆菌细胞就具有这三种缺陷(rk- mk- rec-)同时此受体细胞还是氨苄青霉素敏感(Ap)。 在体外构建好的重组分子上具有分解氨苄青霉素(Ap)基因存在,当它导入受体细胞后,就赋于这些受体细胞新的特性,即Ap 抗性。同时载体质粒上具有乳糖操纵的β一半乳糖苷酶基因(lacZ,我们可以利用外源基因插入载体β一半乳糖苷酶基因(lacZ,使其失去β一半乳糖苷酶活性的原理来选择新构建的重组子。

质粒的酶切、连接、与转化

质粒DNA酶切、连接、转化、筛选、鉴定 (2011-04-29 10:42:22) 转载▼ 质粒DNA酶切、连接、转化、筛选、鉴定 实验目的 1、学习和掌握限制性内切酶的特性 2、掌握对重组质粒进行限制性内切酶酶切的原理和方法 3、掌握利用CaCl2制备感受态细胞的方法 4、学习和掌握热击法转化E.coli的原理和方法 5、掌握α互补筛选法的原理 6、学习用试剂盒提取重组质粒DNA的方法 7、复习琼脂糖凝胶电泳的原理及方法 实验原理 重组质粒的构建需要对DNA分子进行切割,并连接到合适的载体上进行体外重组。限制性核酸内切酶和DNA连接酶的发现与应用,为重组质粒的构建提供了有力的工具。 限制性核酸内切酶酶切分离法适于从简单基因组中分离目的基因。质粒和病毒等DNA 分子小的只有几千碱基,大的也不超过几十万碱基,编码的基因较少,获得目的基因的方法也比较简单。 DNA连接酶催化两双链DNA片段相邻的5’-磷酸和3’-羟基间形成磷酸二酯键。在分子克隆中最有用的DNA连接酶是来自T4噬菌体的DNA 连接酶:T4 DNA连接酶。T4 DNA 连接酶在分子克隆中主要用于:1、连接具有同源互补粘性末端的DNA片段;2、连接双链DNA分子间的平端;3、在双链平端的DNA分子上添加合成的人工接头或适配子。 目的DNA片段与载体DNA片段之间的连接方式(以T4DNA连接酶为例)主要有以下几种: (一)、具互补粘性末端片段之间的连接 大多数的核酸内切限制酶都能够根据识别位点切割DNA分子,形成1~4核苷酸单链的粘性末端。当载体和外源DNA用同一种限制性内切酶切割时,产生相同的粘性末端,连接后仍保留原限制性内切酶的识别序列;如果用两种能够产生相同的粘性末端的限制酶(同尾酶)切割时,虽然可以有效地进行连接,但是获得的重组DNA分子消失了原来用于切割的那两种限制性核酸内切酶的识别序列,这样不利于从重组子上完整地将插入片段重新切割下来。 (二)、平末端的连接 载体分子和外源DNA插入片段并不一定总能产生出互补的粘性末端。实际上有许多情况都是例外的,因为有些限制酶切割DNA分子之后所形成的都是平末端的片段;有的实验要用两种不同的限制酶分别切割载体分子和外源DNA,形成的也多半是非互补的粘性末端或平末端;再如用机械切割法制备的DNA片段,PCR扩增的和化学合成的DNA片段或由RNA为模板反转录合成的cDNA片段,也不会具有互补的粘性末端。 理论上任何一对DNA平末端均能在T4DNA连接酶催化下进行连接,这给不同DNA分子的连接带来了方便。但是,平末端连接更为复杂,且速度也慢得多,因为一个平末端的5’磷酸基团或3’羟基与另一个平末端的3’羟基和5’磷酸基团同时相遇的机会显著减少,通常

大肠杆菌感受态细胞的制备和转化原理

大肠杆菌感受态细胞的制备和转化(原理) 感受态细胞的概念重组DNA分子体外构建完成后,必须导入特定的宿主(受体)细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。在原核生物中,转化是一个较普遍的现象,在细胞间转化是否发生,一方面取决于供体菌与受体菌两者在进化过程中的亲缘关系,另一方面还与受体菌是否处于一种感受状态有着很大的关系。 1、感受态细胞的概念 所谓的感受态,即指受体(或者宿主)最易接受外源DNA片段并实现其转化的一种生理状态,它是由受体菌的遗传性状所决定的,同时也受菌龄、外界环境因子的影响。cAMP可以使感受态水平提高一万倍,而Ca2+也可大大促进转化的作用。细胞的感受态一般出现在对数生长期,新鲜幼嫩的细胞是制备感受态细胞和进行成功转化的关键。 制备出的感受态细胞暂时不用时,可加入占总体积15%的无菌甘油或-70℃保存(有效期6个月)。 2、转化的概念及原理 在基因克隆技术中,转化特指将质粒DNA或以其为载体构建的重组DNA 导入细菌体内,使之获得新的遗传特性的一种方法。它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。 等化学试剂法)处理受体细胞经过一些特殊方法(如:电击法,CaCl 2 后,使细胞膜的通透性发生变化,成为能容许外源DNA分子通过的感受态细胞。进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。 法),该法最先是由Cohen于1972大肠杆菌的转化常用化学法(CaCl 2 的低渗溶液中,菌细胞膨胀成球年发现的。其原理是细菌处于0℃,CaCl 2

重组质粒的构建与转化

实验目的 1.学习在实现DNA体外重组过程中,正确选择合适的载体和限制性内切酶并能用限制性核酸内切酶对 载体和目的DNA进行切割,产生利于连接的合适末端。 2.学习设计构建重组DNA分子的基本方法,掌握载体和外源目的DNA酶切的操作。 3.学习利用T4 DNA连接酶把酶切后的载体片段和外源目的DNA片段连接起来,构建体外DNA分子的 技术,了解并掌握几种常用的连接方式。 4.掌握利用Cacl2制备感受态细胞的方法。 5.学习掌握热击法转化E.coli的原理和方法。 6.学习并掌握使用红白菌落法筛选获得重组子以及α互补筛选法的原理及方法。 7.学习并掌握使用Omaga试剂盒抽提质粒的方法及进一步确定重组质粒中含有外源目的DNA片段。 实验原理: (一)限制性核酸内切酶的酶切反应 体外构建重组DNA分子,首先要了解目的基因的酶切图谱,选用的限制性内切酶不能在目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源供体DNA时不能得到完整的目的基因。其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。常用的酶切方法有双酶切法和单酶切法两种。本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA 片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。 在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。单酶

切法简单易行,但是后期筛选工作比较复杂。各种限制性内切酶都有其最佳反应条件,最主要的因素是反应温度和缓冲液的组成。在双酶切体系中,如果两种酶对盐离子的浓度和温度要求一致,原则上可以将这两种酶同时加入一个反应体系中同步酶切;如果不一致,则酶切反应最好分步进行,常用的酶切顺序是:先低盐后高盐,先低温后高温。 酶切与连接是两个密切相关的步骤,要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。一般的,酶切0.2~1.0μg的DNA分子时,反应体积约为15~20μg,DNA的量越大,反应体积可按比例适当放大。酶的用量参照标准:一个标准单位酶能在指定的缓冲液系统和温度下,1h完全酶解1μg的pBR322 DNA分子。如果酶活力低,可以适当增加酶的用量,但是最高不能超过反应总体积的10%。因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。 (二)载体与外源DNA的连接反应 连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核酸内切酶和DNA连接酶催化完成的。DNA连接酶催化两双链DNA片段相邻的5’-磷酸和3’-OH间形成磷酸二酯键。在分子克隆中最有用的DNA连接酶是来自T4噬菌体的T4 DNA连接酶,它可以连接黏性末端和平末端。连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:(1~3)之间,可以有效地解决DNA多拷贝插入的现象。实际操作中,反应温度介于酶作用速率和末端结合速率之间,一般是16℃,平末端适当提高连接反应温度。反应时间与温度有关,随温度的提高,反应速度增加,所需时间会相应减少,16℃下最常用的连接时间为12-16h。 (三)感受态细胞的制备及质粒转化

大肠杆菌质粒DNA的提取_百替生物

一、大肠杆菌质粒DNA的提取 质粒DNA的提取是从事基因工程工作中的一项基本实验技术,但提取方法有很多种,以下介绍一种最常用的方法: 碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下: 1、接1%含质粒的大肠杆菌细胞于2ml LB培养基。 2、37℃振荡培养过夜。 3、取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。 4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。 5、加入0.2ml溶液II(0.2 mM/L NaOH,1%SDS),轻轻翻转混匀,置于冰浴5 min 。 6、加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min 。 7、以10,000rpm离心20min,取上清液于另一新Ep管 8、加入等体积的异戊醇,混匀后于?0℃静置10min。 9、再以10,000rpm离心20min,弃上清。 10、用70%乙醇0.5ml洗涤一次,抽干所有液体。 11、待沉淀干燥后,溶于0.05mlTE缓冲液中 煮沸法 1、将1.5ml培养液倒入eppendorf管中,4℃下12000g离心30秒。 2、弃上清,将管倒置于卫生纸上几分钟,使液体流尽。 3、将菌体沉淀悬浮于120ml STET溶液中, 涡旋混匀。 4、加入10ml新配制的溶菌酶溶液(10mg/ml), 涡旋振荡3秒钟。 5、将eppendorf管放入沸水浴中,50秒后立即取出。 6、用微量离心机4℃下12000g离心10分钟。 7、用无菌牙签从eppendorf管中去除细菌碎片。 8、取20ml进行电泳检查。 [注意] 1. 对大肠杆菌可从固体培养基上挑取单个菌落直接进行煮沸法提取质粒DNA。 2. 煮沸法中添加溶菌酶有一定限度,浓度高时,细菌裂解效果反而不好。有时不同溶菌酶也能溶菌。 3. 提取的质粒DNA中会含有RNA,但RNA并不干扰进一步实验,如限制性内切酶消化,亚克隆及连接反应等。 质粒DNA的大量提取和纯化 在制作酶谱、测定序列、制备探针等实验中需要高纯度、高浓度的质粒DNA,为此需要大量提取质粒DNA。大量提取的质粒DNA一般需进一步纯化,常用柱层析法和氯化绝梯度离心法。 (一)、碱法 1、取培养至对数生长后期的含pBS质粒的细菌培养液250ml,4℃下5000g离心15分钟,弃上清,将离心管倒置使上清液全部流尽。 2、将细菌沉淀重新悬浮于50ml用冰预冷的STE中(此步可省略)。 3、同步骤1方法离心以收集细菌细胞。 4、将细菌沉淀物重新悬浮于5ml溶液I中,充分悬浮菌体细胞。 5、加入12ml新配制的溶液II, 盖紧瓶盖,缓缓地颠倒离心管数次,以充分混匀内容物,冰浴10分钟。 6、加9ml用冰预冷的溶液III, 摇动离心管数次以混匀内容物,冰上放置15分钟,此时应形成白色絮状沉淀。

重组质粒的构建.

重组质粒的构建实验流程—质粒构建 基因提取—1、2、3 基因提取—1、2、3 PCR反应扩增目的基因—4、3 PCR反应扩增目的基因—4、3 DNA片段回收—5、3 DNA片段回收—5、3 重组质粒检测:(1)PCR (2)双酶切—8、5 重组质粒检测:(1)PCR (2)双酶切—8、5 测序 测序 重组质粒提取—2、 3 重组质粒提取—2、 3 菌种保藏—7 菌种保藏—7 目的片段与载体连接及转化—6 目的片段与载体连接及转化—6

实验操作 1、 LB培养基配置 LB培养基用于一般细菌培养,特别用于分子生物学试验中大肠杆菌的保存和培养。其中蛋白胨、酵母膏粉提供氮源、维生素和生长因子,NaCl维持均衡的渗透压,葡萄糖提供碳源,琼脂是培养基的凝固剂。 【试剂】 胰蛋白胨(Tryptone)、酵母提取物(Yeast Extract)、NaCl、琼脂(Agar) 【实验步骤】 1、 LB固体培养基配方(配置100ml培养基)

胰蛋白胨(Tryptone) 1g 酵母提取物(Yeast Extract) 0.5g NaCl 1g 琼脂(Agar) 1.5g 单蒸水 100ml 蛋白胨很易吸潮,在称取时动作要迅速,另外, 称药品时严防药品混杂,一把药匙用于一种药品、或 在称取一种药品后,洗净、擦干,再称取另一种药 品,瓶盖也不要盖错。 2、液体培养基除不加琼脂外,其余同固体培养基一样。 3、包扎 用报纸封住瓶口,再用皮筋捆扎好,用记号笔注明培养基名称、组别、日期。 4、灭菌 将上述培养基以1.05kg/cm2、121.3℃、20min高压蒸汽灭菌。如因特殊情况不能及时灭菌,则应放入4℃冰箱内暂存。灭菌后,将锥形瓶放入烘箱烘干,烘干后,4℃保存。 5、 LB固体培养基倒板 配置:如上述配方配置100ml的LB固体培养基。 抗生素的加入:将凝固的培养基放入微波炉内加热至完全融化,然后置于55℃的水浴中,待培养基温度降至55℃时(手可触摸)加入抗生素,以免温度过高导致抗生素失效,并充分摇匀。 倒板:一般10ml倒1个板子,培养基倒入培养皿后,打开盖子,在紫外下照10—15min。 保存:将培养皿倒置放于4℃保存,一个月内使用。 二、质粒的提取(protocol)

载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定

实验一载体与目的基因的连接与转化以及 重组DNA的提取与酶切鉴定 一、实验目的 1.CaCl2法制备感受态细胞 2.目的基因与载体连接(c-myc+pSV2;粘端连接) 3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r) 4.质粒DNA的小量快速制备 5.质粒DNA的限制性内切酶酶切 6.DNA的琼脂糖凝胶电泳 二、实验原理 通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。 受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。 分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。通过离心可将染色体DNA及大分子RNA、蛋白质等去除。 三、实验器材和试剂 1.器材 恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培

质粒DNA转化感受态大肠杆菌 protocol

质粒DNA转化感受态大肠杆菌 一、实验原理 转化(transformation)是将一种生物(供体)的遗传物质(通常为DNA)转入另一种生物(受体)并使其在受体中得以保存和繁殖的过程。大肠杆菌不是天然感受菌,在低温(0~5℃)环境下经CaCl2处理,细胞壁变松变软后能摄入外源DNA,这种状态称为感受态细胞(competent cell)。质粒DNA或重组DNA粘附在细菌细胞表面,经过42°C短时间的热击处理,促进吸收DNA.然后在非选择培养基中培养一代,待质粒上所带的抗菌素基因表达,就可以在含抗菌素的培养基中生长。 二、实验材料准备 1. 器材 微量移液取样器,移液器吸头,恒温水浴锅,制冰机,恒温摇床,培养皿(已铺好固体LB-Amp),超净工作台,酒精灯,玻璃涂棒,1.5 ml Eppendorf管,50 ml离心管,乳胶手套,恒温培养箱 2. 试剂 LB液体培养基、LB固体培养基、100mg/ml 氨苄青霉素(或卡拉霉素) 、感受态细胞 3. 材料处理 转化之前超净台紫外照射15-20min; 枪头、50ml离心管需提前灭菌,烘箱烘干; 液体LB培养基灭菌后放到冷库,防止长菌; 三、转化 1.从-70℃冰箱中取200μl感受态细胞悬液,置冰上解冻1-2 min。 2.加入质粒DNA溶液(含量不超过50ng,体积不超过10μl),轻轻摇匀,冰上放置30分钟。

3.42℃水浴中热击90秒, 然后迅速置冰上2min,整个过程不要振荡菌液。 4.向管中加入200μl LB液体培养基(不含抗生素),混匀后37℃振荡培养(225 rpm)1小时,使细菌恢复正常生长状态,并表达质粒编码的抗生素抗性基因。 5. 将上述菌液摇匀后涂布于含Amp(或kna)的LB琼脂平板上,正面向上放置半小时,待菌液完全被培养基吸收后,37℃倒置培养12-16小时。 四、注意事项 1.加液体LB培养基之前观察其是否长菌 2.玻璃涂布棒上的酒精熄灭后稍等片刻,待其冷却后再涂 3.提前打开水浴锅,将温度调到42度 4.实验目的是表达蛋白,可热击完直接涂平板;目的是质粒扩增或后续要PCR,需在热击 后37℃振荡培养复苏1小时 5.实验室常用的用于质粒扩增的感受态菌是Top10,用于质粒表达的感受态菌是BL21 Star (DE3)

重组质粒构建(protocol)

重组质粒的构建(beta版) 一、引物设计: 1.选择合适的载体。酶切位点及其顺序(酶切位点的顺序一定不能颠倒;注意ATG和stop codon)。 2.在NCBI上再次确认目的片段的碱基序列。 1,使用word 2,设计引物:primer-up Primer-down 3,另设计一对引物扩增CDS区,引物位于CDS区之外,扩增产物包含完整的CDS区。引物长度约20个碱基。 4,核对----送公司合成。 5,对公司合成的引物快速离心,在超净台按照管子上标注的体积加入高压水(dd2H2O),配成100umol/ul(100uM),-20℃保存。使用时按1:3比例稀释成25uM工作浓度。 二、PCR(P出目的片段): (一)、PCR P出目的片段: 2,pcr: cDNA 1ul 10x PFU buffer 2.5ul ℃ 5min dNTP 1ul ℃ 30sec F’-Primer 1ul ℃ 30sec R’-Primer 1ul ℃ X min PFU 0.5ul ℃ 5min dd2H2O 18ul (X是根据片段的长度设定,1000bp/min,退火温度根据Tm值来计算,一般低于Tm值5℃) 3,跑胶、回收: (1),配胶: 0.6g 琼脂糖 60ml 1X TAE 0.6ul (待温度降到50-60℃左右时)

25分钟后,即可点样跑胶。 (2),跑胶:130-150V、25-30分钟左右。 (3),紫外灯下观察,切胶(要带防护手套和口罩) 4,胶回收(胶回收试剂盒): 按照试剂盒的protocol来做,在胶回收的最后一步,Elution Buffer预先在55-65℃温箱中水浴,放在37℃温箱中2min。 对胶回收的产物跑胶验证。可建立10ul的体系:回收产物5ul、6xloading buffer 2ul、dd2H2O 5ul。 三、酶切、链接: 1,目的片段酶切:(酶切时间根据酶的活性,70℃15-20min灭活) insert (胶回收产物) 10ul 10 x buffer 2ul 20ul的体系dd2H2O 6ul EcoRI 1ul HindⅢ1ul 2,载体酶切:(1~2小时) Vector (1ug/ul):5 ul(总量5ug) 10 x buffer 2ul 20ul的体系dd2H2O 11ul EcoRI 1ul HindⅢ1ul 为方便以后使用,载体可以一次性多切点。 3,酶切时,首先要核对一下酶的buffer,有时双酶切时两个酶不能共用一种buffer,那么就要先切一端,酶切回收后再用另一酶切另一端,然后再酶切产物回收。 4,连接: 10x T4 Ligation Buffer 1ul Vector 1ul 10ul体系insert 3ul(2~3ul) T4 DNA Lignase 1ul dd2H2O 4ul 附:Ligation system DNA片段克隆到质粒载体上 载体与插入DNA的摩尔数比例为1:3-10。最佳的摩尔数比例因载体类型的不同而不同,例如cDNA 和基因组DNA克隆载体。可根据以下公式计算插入DNA用量: [实例]: 载体与插入片段的摩尔数比例为1:3,如连接反应中加入100ng 6kb载体,插入片段大小为0.5kb,这时应加入插入片段的量为:

大肠杆菌感受态细胞的制备和转化原理及注意事项

大肠杆菌感受态细胞的制备和转化原理及注意事项 1、感受态细胞的概念 重组DNA分子体外构建完成后必须导入特定的宿主(受体细胞)使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。在原核生物中,转化是一个较普遍的现象,在细胞间转化是否发生,一方面取决于供体菌与受体菌两者在进化过程中的亲缘关系,另一方面还与受体菌是否处于一种感受状态有着很大的关系。所谓的感受态:即指受体或者宿主最易接受外源DNA片段并实现其转化的一种生理状态,是由受体菌的遗传性状所决定的同时也受菌龄、外界环境因子的影响。cAMP可以使感受态水平提高一万倍,而Ca2+也可大大促进转化的作用。细胞的感受态一般出现在对数生长期新鲜幼嫩的细胞是制备感受态细胞和进行成功转化的关键。制备出的感受态细胞暂时不用时可加入占总体积15%的无菌甘油或-70℃保存有效期6个月 。 2、转化的概念及原理 在基因克隆技术中,转化特指将质粒DNA或以其为载体构建的重组DNA导入细菌体内使之获得新的遗传特性的一种方法。它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。受体细胞经过一些特殊方法 ,如电击法、CaCl2等化学试剂法处理后,使细胞膜的通透性发生变化,成为能容许外源DNA分子通过的感受态细胞。进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。大肠杆菌的转化常用化学法CaCl2法该法最先是由Cohen于1972年发现的。其原理是细菌处于0℃CaCl2的低渗溶液中,菌细胞膨胀成球形,转化混合物中的DNA形成抗DNase的羟基-钙磷酸复合物粘附于细胞表面,经42℃短时间热冲击处理,促使细胞吸收DNA复合物,在丰富培养基上生长数小时后,球状细胞复原并分裂增值,被转化的细菌中重组子中基因得到表达,在选择性培养基平板上可选出所需的转化子。Ca2+处理的感受态细胞其转化率一般能达到5× 106~2×107转化子/ug质粒DNA可以满足一般的基因克隆试验。如在Ca2+的基础上联合其它的二价金属离子如Mn2+、Co2+、DMSO或还原剂等物质处理细菌,则可使转化率提高 100~1000倍。化学法简单、快速、稳定、重复性好,菌株适用范围广,感受态细菌可以在-70℃保存,因此被广泛用于外源基因的转化。除化学法转化细菌外,还有电击转化法,电击法不需要预先诱导细菌的感受态,依靠短暂的电击,促使DNA进入细菌,转化率最高能达到109~1010转化子/ug闭环DNA。因操作简便愈来愈为人们所接受。 3、感受态细胞制备及转化中的影响因素

实验七 感受态细胞的制备和重组质粒的转化

实验七感受态细胞的制备和重组质粒的转化 【实验目的】 1.掌握用CaCl2法制备感受态细胞的原理和方法。 2.学习和掌握质粒DNA的转化和重组质粒的筛选方法。 【实验原理】 质粒在不同的细菌之间转移是微生物世界中一种普遍的现象,一个细菌品系通过吸收另一个细菌品系的质粒DNA而发生了遗传性状的改变,这种现象叫做转化,获得了外源DNA的细胞称为转化子。 在基因克隆技术中,所谓转化是指质粒或重组质粒被导入受体细胞,表达相应的选择标记基因,并在一定的培养条件下,在选择性培养基上长出转化子的过程。质粒必须通过转化进入细菌细胞内,才能进行扩增和表达,从而获得大量的克隆基因,使我们能够进行进一步的DNA操作,如亚克隆等;或者获得其表达产物。转化效率的高低与受体菌的生理状态有关。细菌吸收外源DNA的能力最高时的状态被称为感受态细胞(competent cell)。有些种类的细菌在其生长的任一阶段都处于感受态,而另一些细菌只有处于某个生长时期时(一般为对数生长早、中期),才会处于感受态,如本实验所用的大肠杆菌。用一定浓度的CaCl2 处理对数生长早中期的细菌可以大大提高细菌吸收周围环境中的DNA分子的能力。对这种现象的一种解释是CaCl2能使细菌细胞壁的通透性增强,从而提高转化率。这种转化方法称为“化学法”。目前还可以使用电激的方法,通过瞬间的高压电流,在细胞上形成孔洞,使外源DNA进入胞内,从而实现细胞的转化。电激转化的效率往往比化学法高出1到2个数量级,达到1 x 108转化子/μg DNA,甚至1 x 109转化子/μg DNA,所以常用于文库构建时的转化或遗传筛选。 微生物转化是基因工程的常用技术,大肠杆菌是基因工程中最常用的受体菌,本实验即是用前面实验获得的重组质粒转化大肠杆菌细胞。 【试剂与器材】 〈一〉试剂 1.LB液体培养基: 参见附录 每组配200mL, 其中100mL分装于500mL三角瓶中,另各取3mL装于2只大试管中,其余装于装于500mL三角瓶中,121℃高压蒸汽灭菌20分钟。 2.LB/Amp/IPTG/X-Gal平板(1): 配1L LB液体培养基,加入20g琼脂粉和1支搅拌棒,同上高压灭菌,趁热取出置搅拌器上冷却,待冷至55℃左右, 加氨苄青霉素(Ampicillin)至终浓度100μg/ml (Amp储存液一般为100mg/mL), 倒平板,每皿倒约15 mL,室温放置过夜至冷凝水挥发干净。使用前半小时在培养基表面加20μL 50mg/mL X-gal 和100μL 0.1mol/L IPTG,涂匀,待这两种化合物渗入琼脂后,即可用于转化菌的涂布。 每组制备LB平板2个,LB/Amp 平板5个,LB/Amp/IPTG/X-Gal平板6个。 3.IPTG储存液(0.1mol/L):1.2g IPTG加水至50ml,过滤除菌,4℃储存。 4.X-gal储存液:50mg/ml溶于二甲基甲酰胺溶剂中,过滤除菌,4℃储存。 5.1 mol/L CaCl2储存液,使用浓度为0.1mol/L,CaCl2应使用分析纯,配100mL,高压灭菌,全班用。6.甘油(灭菌),全班50mL,同上高压灭菌。 7.酸洗无菌玻璃珠,涂布平板用,用50mL三角瓶分装,同上高压灭菌,烘干备用。 〈二〉器材 1. 37℃温箱、水浴锅、恒温振荡器等 2. 高速冷冻离心机 3. 微量移液器等

相关文档
最新文档