信号发生器实验报告

信号发生器实验报告
信号发生器实验报告

姓名:好听易唱学号:201022070636

3.5 仿真信号产生实验

一、实验目的:

1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。

2.掌握常用测试仿真信号的产生。

3.学会产生复杂的函数波形和任意波形。

二、实验内容:

1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。

2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。

3. 产生任意波形信号,并显示和存盘。

4. 采用公式节点,产生规定的复杂函数信号。

三、实验器材:

安装有LabVIEW8.5软件的计算机1台

四、实验原理:

1.虚拟仪器中获得信号数据的3个途径:

(1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。

(2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。

(3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。

2.测试信号在LabVIEW中的表示

在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。

波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。对周期信号,1个周期的采样点数等于采样频率除以信号频率。

3.仿真信号产生函数

在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。

4.公式节点产生仿真信号

用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。公式波形.Vi产生的信号是波形数据,它的途径是:模板函数→信号处理→波形生成→公式波形.vi。

五、实验步骤:

1.设计一个简易的正弦波发生器,频率、幅值和直流偏值在面板上可调,还可叠加噪声信号,并显示波形。

分析:采用Express VI仿真信号发生器可以完成。

(1)前面板设计:应包括的控件有波形频率、幅度和直流偏值输入设置,噪声的标准偏差设置,显示波形的图形控件,还可用一个选择开关控制程序启动和停止。见下图.

(2)框图程序设计:

(3)运行程序:改变以上参数,注意观察信号波形的变化。

图1 正弦波加噪声发生器程序

2.设计一个简易的仿真多波形发生器,可产生频率、幅值和直流偏值可调的正弦、方波、三角波、锯齿波信号,还可叠加高斯噪声信号,并且采样率和采样点可选,显示波形。

分析:Express VI仿真信号发生器使用方便,在编程时用户可改变各种参数,并能马上演示结果。但是有些参数(包括波形类型、采样率和采样点等)无输入端口,即运行程序后用户不能从面板改变。而波形发生器VI提供了更多和灵活的输入端口。所以本题目采用波形发生器VI中的函数来完成。

(1)前面板设计:在1题的前面板基础上再增加波形选择旋钮knob控件和采样率和采样点输入簇控件,并对旋钮(Knob)控件的文本列表属性进行设置,正弦波、三角波、方波、锯齿波对应数值分别为0~3。再选用一些面板装饰控件,调整各控件的位置、大小和显示层数,把前面板设计成较美观、实用的虚拟仪器面板,参考界面如下图所示。

(2)框图程序设计:选用波形发生器VI中的Basic Function Generator函数产生要求的4种周期信号,它的输入参数见图3(a)。连接波形选择knob旋钮到signal type端口,连接频率、幅度、采样参数簇端口。选用波形发生器VI中的Gaussian White Noise Waveform函数产生标准偏差可调的高斯白噪声,用2次加法运算完成信号的直流偏值设置和叠加高斯白噪声,因为Labview中的许多运算具有多态性(即不同类型的数据可参与运算)。然后全部放入1个While循环中,用开关控制循环的结束。程序框图如下图所示:

(3)运行程序:①分别改变信号的类型、频率、幅值和直流偏值,观察输出信号的变化。②改变噪声的

大小,观察输出信号的变化。

(4)在程序中添加1个指示型波形数据簇,连接到输出波形上。让噪声等于0,分别改变波形和改变采样频率和采样点数,观察输出信号波形变化,记录波形数据。注意信号的频率与采样频率的关系。如下图所示:

3.产生如下图所示的任意波形信号,显示波形,并且把波形数据存盘,存放格式为2维的电子表格文件。程序前面板如下图所示:

提示:采用Express VI中的Simulate Arbitrary Signal,打开对话框,根据要求从图中得到1组X和Y 的值定义信号,时间间隔取1秒。使用Waveform Graph显示波形,可使用Write To Spreadsheet File函数存盘。需注意的是,Simulate Arbitrary Signal输出的波形数据为动态数据,只有1组Y的值,X初始值和X间隔。若直接存盘,只有Y的值,无X的值。想一想,怎样得到X的值。

程序框图如下所示:

此外,也可以不采用Express VI 中的Simulate Arbitrary Signal ,使用数组或表格输入,产生任意波形,只是需要自己做的事更多。

4.采用公式节点,产生信号:y(t)=sin(wt)+0.6sin(3wt)+0.2sin(5wt)+t ,信号的频率和幅值面板上可调。 提示:函数Formula Waveform 产生波形,公式中2f ωπ=,π用pi(1)表示,t 表示自变量时间,公式中不能省略乘号“*”。还要选择合适的采样率和采样点数,才能得到需要的波形。程序前面板如下图所示:

程序框图如下图所示:

参考波形如下图所示:

焊接操作规程

XXXXX 操作规程XXXX-XXXX-XXXX 焊接操作规程共 7 页第1 页 第A版第0次修改 1 目的 通过对焊接过程的控制,确保产品的焊接质量。 2 适用范围 本程序适用于公司电子仪器设备的焊接过程。 3 职责 3.1生产车间负责产品的焊接。 3.2质管部负责产品焊接效果的检验。 3.3人力资源部负责焊接作业人员的培训、考核。 4工作程序 4.1作业前 4.1.1为确保焊接质量,须对焊接作业人员的工序认知及操作水平进行考核,考核合格后方可上岗。 4.1.2根据焊件大小与性质选择合适的烙铁头。 焊件及工作性质选用烙铁 烙铁头温度(℃)(室温、220V电压) 一般印制电路板、安装导线20W内热式,30W外热式、恒温式 300~400 集成电路20W内热式、恒温式、储能式 焊片、电位器、2~8W电阻、大电解电容35~50W内热式、恒温式 50~75W外热式 350~450 8W以上大电阻,φ2以上到线等较大元器件100W内热式 150~200W外热式 400~550 维修、调试一般电子产品 20W内热式、恒温式、感应式、 储能式、两用式 4.1.3焊接作业前先清洗烙铁头,去除表面氧化层,然后将电烙铁插头插入电源插座上,检查烙铁是否发热。若在确保插头插好的情况下烙铁不发热,则应及时更换烙铁,切勿随意拆开烙铁,不能用手直接触碰烙铁头。 4.2焊接步骤 4.2.1加热焊件 电烙铁的焊接温度由实际使用情况决定。一般来说以焊接一个锡点的时间限制在3±1秒

XXXXX 焊接操作规程共 7 页第2 页 第A版第0次修改最为合适。焊接时烙铁头与印制电路板成45°角,电烙铁头顶住焊盘和元器件引脚然后给元器件引脚和焊盘均匀预热。 4.2.2移入焊锡丝 焊锡丝从元器件脚和烙铁接触面处引入,焊锡丝应靠在元器件脚与烙铁头之间。 4.2.3移开焊锡 当焊锡丝熔化(要掌握进锡速度)焊锡散满整个焊盘时,即可以45°角方向拿开焊锡丝。 4.2.4移开电烙铁 焊锡丝拿开后,烙铁继续放在焊盘上持续1~2秒,当焊锡只有轻微烟雾冒出时,即可拿开烙铁,拿开烙铁时,不要过于迅速或用力往上挑,以免溅落锡珠、锡点、或使焊锡点拉尖等,同时要保证被焊元器件在焊锡凝固之前不要移动或受到震动,否则极易造成焊点结构疏松、虚焊等现象。 加热焊件移入焊锡 移开焊锡移开电烙铁 4.3焊接要领 4.3.1烙铁头与被焊件的接触方式 4.3.1.1接触位置 烙铁头应同时接触要相互连接的2个被焊件(如焊脚与焊盘),烙铁一般倾斜45度,应避免只与其中一个被焊件接触。当两个被焊件热容量悬殊时,应适当调整烙铁倾斜角度,烙铁与焊接面的倾斜角越小,使热容量较大的被焊件与烙铁的接触面积增大,热传导能力加强。两个被焊件能在相同的时间里达到相同的温度,被视为加热理想状态。 4.3.1.2接触压力 烙铁头与被焊件接触时应略施压力,热传导强弱与施加压力大小成正比,但以对被焊件表面不造成损伤为原则。

能产生方波,三角波,正弦波地信号发生器(用741)

模拟电子技术 ——课程设计报告 题目:信号发生器 专业: 班级: 学号: : 日期: 指导老师: 目录(信号发生器) 1 信号发生器的总方案及原理框图 1.1 电路设计原理框图 1.2 电路设计方案设计

2 设计的目的及任务 2.1 课程设计的目的 2.2 课程设计的任务与要求 2.3 课程设计的技术指标 3 各部分电路设计 3.1 正弦波产生电路的工作原理 3.2 正弦波——方波发生电路的工作原理3.3 方波——三角波转换电路的工作原理3.4 电路的参数选择与计算 3.5 总电路图 4 电路的仿真 4.1 正弦波发生电路仿真 4.2 方波——三角波发生电路的仿真 5 电路的安装与调试 5.1 正弦波发生电路的安装与调试 5.2 正弦波——方波的安装与调试 5.3 方波——三角波的安装与调试 5.4 总电路的安装与调试 5.5 电路安装与调试中遇到的问题及分析解决方法 6 电路的实验结果 6.1 正弦波发生电路的实验结果

6.2 正弦波——方波转换电路的实验结果6.3 方波——三角波转换电路的实验结果 6.4 实测电路误差分析及改进方法 7 实验总结 1 信号发生器的总方案及原理框图 1.1 电路设计原理框图 电路设计原理框图如图1所示。 三角波

图1 电路设计原理框图 1.2 电路设计方案设计 1、采用RC串并联网络构成的RC桥式振荡电路产生正弦波。 2、将第一级送出的正弦波经过第二级的滞回电压比较器输出方波。 3、将第二级的方波通过第三级的积分器输出三角波。 4、电路完成。 2 设计的目的及任务 2.1 课程设计的目的 1、学习用集成运放构成正弦波、方波、三角波发生器。 2、学习波形发生器的调整和主要性能指标的测试方法。

模拟信号源实验报告

实验1 模拟信号源实验 一、实验目的 1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用; 3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.频率计1 台 3.20M 双踪示波器1 台 4.小电话单机1 部 三、实验原理 本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、ADPCM、CVSD(Δ M)等实验的音频信号源。本模块位于底板的左边。 1.非同步函数信号 它由集成函数发生器XR2206 和一些外围电路组成,XR2206 芯片的技术资料可到网上搜索得到。函数信号类型由三档开关K01 选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V,可由W03调节;频率范围约500HZ~5KHZ,可由W02 调节;直流电平可由W01 调节(一般左旋到底)。非同步函数信号源结构示意图,见图2-1。 2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。2KHz 方波信号由“时钟与基带数据发生模块”分频产生。U03 及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04 可测试其波形。用其作为PAM、PCM、ADPCM、CVSD(Δ M)等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。W04 用来改变输出同步正弦波的幅度。同步信号源结构示意图,见图2-2。

FSSS作业指导书

编写日期:2008-08-05 编写:马光伟 审核: 批准: 前言 FSSS系统一般分为两个部分,即燃烧器控制系统BCS(Burner ControlSystem)和燃料安全系统FSS(Fuel Safety System)。燃烧器控制系统的功能是对锅炉燃烧系统设备进行监视和控制,保证点火器,油枪和磨煤机组系统的安全启动、停止和运行。燃料安全系统的功能是在锅炉点火前和跳闸停炉后对炉膛进行吹扫,防止可燃物在炉膛堆积。在检测到危及设备、人身安全的运行工况时,启动主燃料跳闸(MFT),迅速切断燃料,紧急停炉。 FSSS系统对保证电厂锅炉系统的安全运行具有重要作用,为了规范FSSS系统现场调试及大修后检测FSSS系统的各项功能和试验,严格执行有关规程要求,保证校验人员在大量现场工作中可以安全、优质地完成任务,内蒙古电力科学研究院热控自动化研究所编写了FSSS系统现场作业指导书。 由于编写者水平有限,有不正确的地方望大家提出。 目录 1.适用范围-----------------------------------------------4 2.引用文件-----------------------------------------------4 3.现场作业前准备-----------------------------------------4 4.现场作业流程-------------------------------------------9 5.试验条件检查-------------------------------------------9 6.FSSS所涵盖的系统及设备--------------------------------10 7.FSSS系统试验内容--------------------------------------10 8.试验后应达到的指标------------------------------------23 9.结束工作----------------------------------------------24 关键词:作业指导书

数字信号源实验报告

实验一数字信号源实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握集中插入帧同步码时分复用信号的帧结构特点。 3、掌握数字信号源电路组成原理。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。 2、用示波器观察NRZ、FS、BS三信号的对应关系。 3、学习电路原理图。 三、基本原理 本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示‘1’码,熄状态表示‘0’码。 本模块有以下测试点及输入输出点: ? CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ? BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ? FS 信源帧同步信号输出点/测试点,频率为7.1KHz ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器US2:计数器74161;US3:计数器74193; US4:计数器40160 ?并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 ?八选一US5、US6、US7:8位数据选择器4512 ?三选一US8:8位数据选择器4512 ?倒相器US10:非门74HC04 ?抽样US9:D触发器74HC74

SPM作业指导书

SPM智能化静止进相机作业指导书 XDL/JS/0D3-27 一、紧固件的检查 (1) 二、控制线与转子电缆的连接 (1) 三、通电试车 (1) 四、常见故障及处理 (1) 附表:电源板的电压输出参数 (2) 襄樊大力工业控制股份有限公司制 2003/08/23

一、紧固件的检查 由于长途运输,设备在调试前应检查并紧固所有紧固件。包括所有器件和端子排上的螺钉、螺帽。 二、控制线与转子电缆的连接 1.电源线从端子排X1上A.B.C.N接至配电柜,A.B.C接三相火线,N接零线。电源线型号 的选择参见随机《进相机使用说明书》。 2.控制线的连接要求参见随机《进相机电器图》。 3.转子电缆接在KM3下端,起动柜过来的电缆接在KM2的下端。 4.通电前认真核对接线有无漏接、错接、松动的现象。 三、通电试车 1.模拟试车 短接311和313,将检测转子电流信号的霍尔互感器(TA1,TA2,TA3)上的插件取下,接在信号发生器上,将“中控/现场”旋钮打至“现场”位置。合上空开,电源指示灯亮,待KA1吸合后,按下“进相”按钮,此时KM3吸合KM2释放,同时进相指示灯亮。进相机顶端的排风扇的风向应自下而上(若风向相反,对调任意两相电源进线即可)。 试验正常后,按下“退相”按钮,此时KM2吸合KM3释放,进相指示应灯熄。 断开空开,去掉311和313的短接线;恢复霍尔互感器上的信号线(注意相序)。 2.带载试车(负载需达到60%以上) 2.1. 通电前认真核对接线有无漏接、错接、松动的现象。主电机正常运行后,观 察面板上的功率因素表若在超前位置,则需停机将12、14号线对调。如果仍不正常,必须严格检查功率因素表的信号是否是A、C相的电压,B相电流信号。 2.2.合上空开,观察各控制板指示灯的状态。控制板第一指示灯常亮,第二、三、 四指示灯应交替闪亮;触发板第一指示灯先闪亮十秒钟左右,随即六个指示灯闪亮;电源板上的所有指示灯常亮。表明允许进相。 2.3.按下“进相”按钮,进相指示灯亮,电流下降,功率因素上升。 2.4.观察逆变变压器输入输出电流范围,如下表所示。 若复位后各指示灯状态仍不正常,参见故障处理第一条。 2.6.如果电流上升,需先退相,关掉电源。对调进相机背面端子排X3上的01和03 号线。 2.7.如果电流波动较大,说明有环流产生,处理方法见故障处理第二条。 四、常见故障及处理 1.进相机触发板六个指示灯具有故障指示功能。指示灯所指示故障如表:

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

EDA课程设计-正弦信号发生器的设计

《EDA技术》设计报告 设计题目正弦信号发生器的设计 院系:信息工程学院 专业:通信工程____ 学号: 姓名:__________

一.设计任务及要求 1.设计任务: 利用实验箱上的D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波 2.设计要求: (1) 用VHDL 编写正弦波扫描驱动电路 (2)设计可以产生正弦波信号的电路 (3)连接实验箱上的D/A 转换器和示波器,观察正弦波波形 二.设计方案 (1)设计能存储数据的ROM 模块,将正弦波的正弦信号数据存储在在ROM 中,通过地址发生器读取,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 (2)用VHDL 编写正弦波信号数据,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 三.设计框图 图 1 设计框图 信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM 用于存储待采样的波形幅度数值,TLV5620用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。其中,ROM 设置为7根地址线,8个数据位,8位并行输出。TLV5260为串行输入的D/A 转换芯片,因此要把ROM 中并行输出的数据进行并转串。 四.实现步骤 1.定制ROM 计 数 器 7根地址线 8 位 R O M 并转串输出 CLK TLV5620D/A 转换 RST

ROM的数据位选择为8位,数据数选择128个。利用megawizard plug-in manager定制正弦信号数据ROM宏功能块,并将上面的波形数据加载于此ROM中。如图3所示。 图2 ROM存储的数据 图3 调入ROM初始化数据文件并选择在系统读写功能 2.设计顶层

正弦信号发生器(2012)(DOC)

正弦信号发生器 摘要:本系统以MSP430和DDS为控制核心,由正弦信号发生模块、功率放大模块、频率调制(FM)、幅度调制(AM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生1kHz~10MHz正弦信号;经滤波、放大和功放模块达到正弦信号输出电压幅度 =6V±1V 并具有一定的驱动能力的功能;产生载波信号可设定的AM、FM信号;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK 信号且二进制基带序列码速率固定为10kbps,二进制基带序列信号可自行产生。 关键词:DDS;宽频放大;模拟调频;模拟调幅。 一、方案比较与论证 1.方案论证与选择 (1)正弦信号产生部分 方案一:使用集成函数发生器芯片ICL8038。 ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。它是电压控制频率的集成芯片,失真度很低。可输入不同的外部电压来实现不同的频率输出。为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。 方案二:锁相环频率合成器(PLL) 锁相环频率合成器(PLL)是常用的频率合成方法。锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。通过鉴相器获得输出的信号FO与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi 由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。一般来说PLL的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。 方案三:直接数字频率合成(DDS) DDS是一种纯数字化方法。它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如图1所示:

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

正弦信号发生器

正弦信号发生器[2005年电子大赛一等奖] 2008年06月15日星期日 17:06 摘要:以SPCE061A单片机为核心,通过DDS合成技术设计制作了一个步进值能任意调节的多功能信号源。该信号源在1KHz~10MHz范围能输出稳定可调的正弦波,并具有AM、FM、ASK和PSK等调制功能。信号输出部分采用低损耗电流反馈型宽带运放作电压放大,很好地解决了带宽和带负载能力的要求。系统带中文显示和键盘控制功能,操作简便,实现效果良好。 一、方案论证 1、信号产生 方案一:使用传统的锁相频率合成的方法。要求产生1KHz到10MHz的信号,用锁相环直接产生这么宽的范围很困难,所以先产生50.001M到60M的可调信号,然后把此信号与一个50M的本振混频,得到需要的频率。此方法产生的频率稳定度高,但波形频谱做纯很困难,幅度也不恒定,实现也麻烦。 方案二:采用专用DDS芯片产生正弦波。优点:软件设计,控制方便,电路易实现,容易直接达到题目要求的频率范围和步进值,且稳定性和上法一样,频谱纯净,幅度恒定,失真小。 综上所述,选择方案二用专用DDS芯片AD9850产生正弦波。AD9850是采用DDS技术、高度集成化的器件,当它在并行工作方式时,有8根数据线、3根控制线与单片机相连。AD9850的频率控制字为: 其中FTW为频率控制字,为要输出的正弦的频率,为系统时钟的频 率,由晶振产生。 2、模拟频率调制 方案一:使用内调制(软件调制),通过单片机中断,对外来模拟调制信号进行采样,采样速率为32KHz,然后对采样值进行转换,把电压转换成对应的频偏,然后转换成相应的频率控制字送DDS,以实现对1KHz正弦信号的调频,这样可以满足最大频偏的精度要求。 方案二:使用外调制,通过锁相环控制DDS总时钟,在锁相环电路中进行频率调制,来改变DDS输出信号频率,间接实现调频,这样实现简单,频域内频谱连续,但是很难做到精确的10KHz和5KHz的最大频偏。 综合以上方案,选择方案一,实际中要求调制信号是固定不变的1KHz正弦信号,所以,我们直接把正弦信号存储在单片机中,并且换算好频率控制字。 3、模拟幅度调制 方案一:使用二极管调幅电路。较常用的二极管调幅电路有二极管平衡调幅电路和二极管环形调幅电路。但由于二极管的特性不一致,会造成电路不可能完全对称,造成控制信号的泄漏。 方案二:充分利用单片机SPCE061A的资源,1K的调制信号使用单片机的DA 口输出,经滤波放大后送MC1496与DDS产生的载波进行混频,这样效果非常好,而且成本低。 综合以上方案,选择方案二。 4、ASK和PSK数字调制

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书 专业:班级:学号: 姓名:实验时间: 实验目的 1、学会数字合成函数信号发生器常用功能的设置、使用; 2、会从函数信号发生器胡频率计上读出信号频率; 3、在了解数字双踪示波器显示波形的工作原理基础上,观察 并测量以下信号:(见下表)学会数字示波器的基本操作与 读书; 实验仪器 F40函数信号发生器、UTD2102CE数字示波器、探头。 实验原理 1、函数信号发生器的原理

该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。 2、示波器显示波形原理 如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与 正弦波电压相等时,则显示完整的周期的正弦波形,若在示波 器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上 示波器的锯齿波,则在荧光屏上将的到两个正弦波。 实验内容 1、做好准备工作,连接实验仪器电路,设置好函数信号发生 器、示波器; (1)、把函数信号发生器的“函数输出”输出端与示波器的 X CH1信号输入端连接,两台仪器的接通220V交流电源。 (2)、启动函数信号发生器,开机后仪器不需要设置,短暂 时间后,即输出10K Hz的正弦波形。 (3)、需要信号源的其他信号,到时在进行相关的数据设定 (如正弦波2的波形、频率、点频输出、信号幅度)等。 2、用示波器观察上表中序号1的信号波形(10KHz);过程如下: (1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。

信号发生器期间核查操作规程

奥维通信股份有限公司移动通信工程实验室 文件编号:AWTC-IOP-01 信号发生器期间核查操作规程

目录 1目的 (2) 2检查范围 (2) 3检查内容 (2) 4使用的设备 (2) 5检查依据 (2) 6核查条件 (2) 7期间核查方法 (2) 7.1输出信号频率的期间核查 (2) 7.2输出电平的期间核查 (3) 8评定 (4) 8.1频率期间核查允许误差范围 (4) 8.2输出电平期间核查允许误差范围 (4) 9检查周期 (5) 10相关记录 (5)

信号发生器期间核查操作规程 1目的 在信号源两次检定/校准之间或仪器维修后投入使用前进行期间核查,验证设备是否保持检定/校准时的状态,确保检验结果的准确性和有效性。 2检查范围 适用于本实验室所使用的N5182A等信号发生器的期间核查。 3检查内容 输出信号频率、输出低电平、输出高电平 4使用的设备 5检查依据 JJF 1174-2007 《数字信号发生器校准规范》 AWTC-EOP-01《信号源操作规程》 6核查条件 23℃±5℃; 相对湿度≤80%; 7期间核查方法 7.1输出信号频率的期间核查 7.1.1仪器仪表连接图下图所示:

7.1.2被核查信号发生器置于未调制状态,调节信号发生器电平使频谱分析仪正常工作。频谱分析仪取样时间的设定应使其显示位数比指标要求的有效位多一位。 7.1.3从低到高改变被核查信号发生器的载波频率f,按低、中、高选取一半测试点与根据通信制式频段选取典型测试点相结合的原则(或按照技术说明书要求)选取10个频率 ,并记入到《信号发生器期间核查记录》附表A.1当点,从频谱分析仪上读出频率值f 中 7.1.4被核查信号发生器的误差计算公式按式(1)计算: △=f - f (dB)(1) 7.2输出电平的期间核查 7.2.1输出信号高电平的期间核查 7.2.1.1仪器仪表连接图下图所示: 7.2.1.2被核查信号发生器置于未调制状态,调节信号发生器输出电平为最大值,按低、中、高选取一般测试点与根据通信制式频段选取典型测试点相结合的原则(或按技术说明书要求)选取不同频率点,按高、中、低原则线后调节信号发生器输出电平不少于3个校准点(包括0dBm),从功率计上读出电平值L0,记录于《信号发生器期间核查记录》附表 A.2当中。 7.2.1.3输出高电平误差按式(2)计算: △= L - L (dB)(2) 7.2.2输出信号低电平的期间核查 7.2.2.1仪器仪表连接图下图所示:

实验一 信号源实验

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、带话筒立体声耳机一副 3、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS 信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

函数信号发生器实验报告

青海师范大学 课程设计报告课程设计名称:函数信号发生器 专业班级:电子信息工程 学生姓名:李玉斌 学号:20131711306 同组人员:郭延森安福成涂秋雨 指导教师:易晓斌 课程设计时间:2015年12月

目录 1 设计任务、要求以及文献综述 2 原理综述和设计方案 2.1 系统设计思路 2.2设计方案及可行性 2.3 系统功能块的划分 2.4 总体工作过程 3 单元电路设计 3.1 安装前的准备工作 3.2 万用表的安装过程 4 结束语 1设计任务、要求 在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。 该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。幅值输出部分由峰值检测电路和芯片7107等构成。 技术要求: 1. 信号频率范围 1Hz~100kHz; 2. 输出波形应有:方波、三角波、正弦波; 3. 输出信号幅值范围0~10V; 4. 具有数字显示输出信号频率和电压幅值功能。

2原理叙述和设计方案 2.1 系统设计思路 函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成器件(如单片集成电路函数信号发生器ICL8038)。产生方波、正弦波、三角波的方案也有多种,如先产生方波,再根据积分器转换为三角波,最后通过差分放大电路转换为正弦波。频率计部分由时基电路、计数显示电路等构成,整形好的三角波或正弦波脉冲输入该电路,与时基电路产生的闸门信号对比送入计数器,最后由数码管可显示被测脉冲的频率。产生的3种波经过一个可调幅电路,由于波形不断变化,不能直接测出其幅值,得通过峰值检测电路测出峰值(稳定的信号幅值保持不变),然后经过数字电压表(由AD转换芯片CC7107和数码管等组成),可以数字显示幅值。 2.2设计方案及可行性 方案一:采用传统的直接频率合成器。首先产生方波—三角波,再将三角波变成正弦波。 方案二:采用单片机编程的方法来实现(如89C51单片机和D/A转换器,再滤波放大),通过编程的方法控制波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率变换。 方案三:是利用ICL8038芯片构成8038集成函数发生器,其振荡频率可通过外加直流电压进行调节。 经小组讨论,方案一比较需要的元件较多,方案二超出学习范围,方案三中的芯片仿真软件中不存在,而且内部结构复杂,不容易构造,综合评定,最后选择方案一。 2.3系统功能块的划分 该系统应主要包括直流稳压电源,信号产生电路,频率显示电路和电压幅值显示电路四大部分。 直流稳压电源将220V工频交流电转换成稳压输出的直流电压,信号产生电路产生的信号,经过适当的整形,作为频率显示电路的输入,从而达到了数字显示频率的要求;产生的信号经过幅频显示部分(峰值检测电路和数模转换),便

仪器仪表万用表操作规程

仪器仪表万用表操作规程 一、使用前应熟悉万用表各项功能,根据被测量的对象,正确选用档位、量程及表笔插孔。 二、在对被测数据大小不明时,应先将量程开关,置于最大值,而后由大量程往小量程档处切换,使仪表指针指示在满刻度的1/2以上处即可。 三、测量电阻时,在选择了适当倍率档后,将两表笔相碰使指针指在零位,如指针偏离零位,应调节“调零”旋钮,使指针归零,以保证测量结果准确。如不能调零或数显表发出低电压报警,应及时检查。 四、在测量某电路电阻时,必须切断被测电路的电源,不得带电测量。 五、使用万用表进行测量时,要注意人身和仪表设备的安全,测试中不得用手触摸表笔的金属部份,不允许带电切换档位开关,以确保测量准确,避免发生触电和烧毁仪表等事故。

首先打开数字万用表的电源,然后选择所测对象是电压、电流、电阻或其他量。接下来便是量程,不能确定参数时可置于最大量程,再逐步减小量程。测量前还应检查表笔是否处于正确孔位。拨动量程开关时用力要适度,避免可能造成开关金属片的损坏。使用完毕,功能量程开关最好置于高压挡。 2.数字万用表的测试中的几点说明 (1)对于高阻挡,电阻的测试结果与指针表测试结果有差别是正常的。这主要是因测试条件略有不同。 (2)测试相关极性的物理量时,其极性显示与表笔是对应的。也就是说,当不显示极性时,红表笔触点为电位高端或电流流入端,极性显示“-”时,红表笔触点则为电位低端或电流流出端。 (3)电阻挡及二极管挡与指针表有别。指针表测量电阻时,红、黑表笔与测试源极性相反,即黑表笔为测试源正端,红表笔为负端。而数字表却与测试源极性一致,即红表笔为测试源正端,黑表笔为负端,这

相关文档
最新文档