欧几里得算法实验

欧几里得算法实验
欧几里得算法实验

实验报告填写说明

1.每门实验课程均应按本格式完成实验报告。

2.实验报告要求双面打印。

3.学生应在做完实验后指定时间内完成实验报告,交指导教师

评阅。

4.学生必须依据实验指导书,提前预习实验目的、实验基本原

理、实验内容及方法。

5.教师将在实验过程中抽查学生预习情况。

6.在课程全部实验项目完成后,分班级按学生学号将各实验项

目报告装订成册,并附实验课程成绩汇总表,交课程承担单位(实验中心或实验室)保管存档。

信息安全中的数学方法与技术课程实验报告

2. 求解同余方程 (mod )ax b n 实验结果截图如下:

数值稳定性验证实验报告

实验课程:数值计算方法专业:数学与应用数学班级:08070141 学号:37 姓名:汪鹏飞 中北大学理学院

实验1 赛德尔迭代法 【实验目的】 熟悉用塞德尔迭代法解线性方程组 【实验内容】 1.了解MATLAB 语言的用法 2.用塞德尔迭代法解下列线性方程组 1234123412341234 54 1012581034 x x x x x x x x x x x x x x x x ---=-??-+--=?? --+-=??---+=? 【实验所使用的仪器设备与软件平台】 计算机,MATLAB7.0 【实验方法与步骤】 1.先找出系数矩阵A ,将前面没有算过的x j 分别和矩阵的(,)A i j 相乘,然后将累加的和赋值给sum ,即(),j s u m s u m A i j x =+?.算 出()/(,) i i x b sum A i i =-,依次循环,算出所有的i x 。 2.若i x 前后两次之差的绝对值小于所给的误差限ε,则输出i x .否则重复以上过程,直到满足误差条件为止. 【实验结果】 (A 是系数矩阵,b 是右边向量,x 是迭代初值,ep 是误差限) function y=seidel(A,b,x,ep) n=length(b); er=1; k=0; while er>=ep

k=k+1; for i=[1:1:n] q=x(i); sum=0; for j=[1:1:n] if j~=i sum=sum+A(i,j)*x(j); end end x(i)=(b(i)-sum)/A(i,i); er=abs(q-x(i)); end end fprintf('迭代次数k=%d\n',k) disp(x') 【结果分析与讨论】 >> A=[5 -1 -1 -1;-1 10 -1 -1;-1 -1 5 -1;-1 -1 -1 10]; b=[-4 12 8 34]; seidel(A,b,[0 0 0 0],1e-3) 迭代次数k=6 0.99897849430002 1.99958456867649 2.99953139743435 3.99980944604109

数值分析—龙贝格算法

数值分析 实 验 报 告 专业:信息与计算科学 班级: 10***班 学号: 1008060**** 姓名: ******

实验目的: 用龙贝格积分算法进行积分计算。 算法要求: 龙贝格积分利用外推方法,提高了计算精度,加快了收敛速度。 1--4R R R R 1-j 1-j 1-k 1-j k 1-j k j k ,,,,+= ,k=2,3,… 对每一个k ,j 从2做到k ,一直做到|R R 1-k 1-k k k -,,| 小于给定控制精 度时停止计算。 其中: T R h k 1k =,(复化梯形求积公式),2h 1-k k a -b = 程序代码: #include #include #define M 10 static float a, b, T[M], S[M], C[M], R[M]; float f(float x) { float y; if(0.0 == x) { x = 0.0000001f; } y = (float)1/sqrt(1-x*x); return y; } int p(int n) { int i=0,t=1;

while(t!=n) { t*=2; ++i; } return i; } float t(int n) { float g,h,q=0; if(1==n) { h = (float)fabs(b-a); q = (f(a)+f(b))*h/2; } else { float x = a; g = 0; h = (float)fabs(b-a)*2/n; x = x+h/2; while(x

算法实验报告

实验一分治与递归算法的应用 一、实验目的 1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。 2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。 3.学会利用分治算法解决实际问题。 二 . 实验内容 金块问题 老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。并对自己的程序进行复杂性分析。 三.问题分析: 一般思路:假设袋中有n 个金块。可以用函数M a x(程序 1 - 3 1)通过n-1次比较找到最重的金块。找到最重的金块后, 可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。第二步,分别找出在A和B中最重和最轻的金块。设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。在第二步中,若n>2,则递归地应用分而治之方法 程序设计 据上述步骤,可以得出程序1 4 - 1的非递归代码。该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。 当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。 首先处理n≤1的情况。若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。 在for 循环中,外层if 通过比较确定( w [ i ] , w [ i + 1 ] )中的较大和较小者。此工作与前面提到的分而治之算法步骤中的2) 相对应,而内层的i f负责找出较小重量值和较大重量值中的最小值和最大值,

操作系统磁盘调度算法实验报告

操作系统磁盘调度算法 实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录

1.课程设计目的 编写目的 本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解。 2.课程设计内容 设计内容 系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)。 1、先来先服务算法(FCFS) 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进

程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。 2、最短寻道时间优先算法(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。 3、扫描算法(SCAN) 扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。这样自里向外地访问,直到

实验二 银行家算法

实验四银行家算法 一、实验目的 1.理解死锁避免相关内容; 2.掌握银行家算法主要流程; 3.掌握安全性检查流程。 操作系统中的死锁避免部分的理论进行实验。要求实验者设计一个程序,该程序可对每一次资源申请采用银行家算法进行分配。 二、实验设备 PC机、windows 操作系统、VC++6.0 三、实验要求 本实验要求3学时完成。 1.设计多个资源(≥3); 2.设计多个进程(≥3); 3.设计银行家算法相关的数据结构; 4.动态进行资源申请、分配、安全性检测并给出分配结果。 5.撰写实验报告,并在实验报告中画出银行家算法和和安全性检查算法流程图。 四、预备知识 死锁避免定义:在系统运行过程中,对进程发出的每一个资源申请进行动态检查,并根据检查结果决定是否分配资源:若分配后系统可能发生死锁,则不予分配,否则予以分配。 由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。 1 系统安全状态 1)安全状态 所谓系统是安全的,是指系统中的所有进程能够按照某一种次序分配资源,并且依次地运行完毕,这种进程序列{ P1 ,P2 …Pn}就是安全序列。如果存在

这样一个安全序列,则系统是安全的。 并非所有的不安全状态都会转为死锁状态,但当系统进入不安全状态后,便有可能进入死锁状态;反之,只要系统处于安全状态,系统便可避免进入死锁状态。所以避免死锁的实质:系统在进行资源分配时,如何使系统不进入不安全状态。 2)安全状态之例 假设系统有三个进程,共有12台磁带机。各进程的最大需求和T0时刻已分配情况如下表: 答:T0时刻是安全的,因为存在安全序列:P2 →P1→ P3 不安全序列:P1→… P3→… P2→P3→P1 3)由安全状态向不安全状态的转换 如果不按照安全序列分配资源,则系统可能会由安全状态进入不安全状态。例如,在T0时刻以后,P3又请求1台磁带机,若此时系统把剩余3台中的1台分配给P3,则系统便进入不安全状态。因为,此时也无法再找到一个安全序列,例如,把其余的2台分配给P2,这样,在P2完成后只能释放出4台,既不能满足P1尚需5台的要求,也不能满足P3尚需6台的要求,致使它们都无法推进到完成,彼此都在等待对方释放资源,即陷入僵局,结果导致死锁。 2 利用银行家算法避免死锁 1)银行家算法中的数据结构 ①可利用资源向量Available。 这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该

操作系统磁盘调度算法实验报告

《操作系统原理》 课程设计报告书 题目:磁盘调度 专业:网络工程 学号: 学生姓名: 指导教师: 完成日期:

目录 第一章课程设计目的 (1) 1.1 编写目的 (1) 第二章课程设计内容 (2) 2.1 设计内容 (2) 2.1.1、先来先服务算法(FCFS) (2) 2.1.2、最短寻道时间优先算法(SSTF) (2) 2.1.3、扫描算法(SCAN ) (3) 2.1.4、循环扫描算法(CSCAN ) (3) 第三章系统概要设计 (4) 3.1 模块调度关系图 (4) 3.2 模块程序流程图 (4) 3.2.1 FCFS 算法 (5) 3.2.2 SSTF 算法 (6) 3.2.3 SCAN 算法 (7) 3.2.4 CSCAN 算法 (8) 第四章程序实现 (9) 4.1 主函数的代码实现 (9) 4.2.FCFS 算法的代码实现 (11) 4.3 SSTF 算法的代码实现 ...................................................... 13 4.4 SCAN 算法的代码实现..................................................... 15 4.5 CSCAN 算法的代码实现.................................................... 17 第五章测试数据和结果 (20)

第六章总结 (23)

第一章课程设计目的 1.1 编写目的 本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解

数值分析龙贝格实验报告

实验三 龙贝格方法 【实验类型】 验证性 【实验学时】 2学时 【实验内容】 1.理解龙贝格方法的基本思路 2.用龙贝格方法设计算法,编程求解一个数值积分的问题。 【实验前的预备知识】 1.计算机基础知识2.熟悉编程基本思想3.熟悉常见数学函数; 【实验方法或步骤】 龙贝格方法的基本思路龙贝格方法是在积分区间逐次二分的过程中,通过 对梯形之值进行加速处理,从而获得高精度的积分值。 1. 龙贝格方法的算法 步骤1 准备初值()f a 和()f b ,用梯形计算公式计算出积分近似值 ()()12b a T f a f b -=+??? ? 步骤2 按区间逐次分半计算梯形公式的积分近似值令 2i b a h -=,0,1,2,...i =计算12102122n n n i i h T T f x -+=??=+ ??? ∑,2i n = 步骤3 按下面的公式积分梯形公式:()223n n n n T T S T -=+ 辛普生公式:()2215n n n n S S C S -=+ 龙贝格公式:()2263n n n n C C R C -=+ 步骤4 精度控制 当2n n R R ε-<,(ε为精度)时,终止计算,并取2n R 为近似值否则将步长折 半,转步骤2。

[实验程序] #include #include # define Precision 0.00001//积分精度要求 # define e 2.71828183 #define MAXRepeat 10 //最大允许重复 double function(double x)//被积函数 { double s; s=2*pow(e,-x)/sqrt(3.1415926); return s; } double Romberg(double a,double b,double f(double x)) { int m,n,k; double y[MAXRepeat],h,ep,p,xk,s,q; h=b-a; y[0]=h*(f(a)+f(b))/2.0;//计算T`1`(h)=1/2(b-a)(f(a)+f(b)); m=1; n=1; ep=Precision+1; while((ep>=Precision)&&(m

天津理工大学操作系统实验3:磁盘调度算法的实现

人和以吟实验报告学院(系)名称:计算机与通信工程学院

【实验过程记录(源程序、测试用例、测试结果及心得体会等) 】 #include #include #include using namespace std; void Inith() { cout<<" 请输入磁道数: "; cin>>M; cout<<" 请输入提出磁盘 I/O 申请的进程数 cin>>N; cout<<" 请依次输入要访问的磁道号: "; for(int i=0;i>TrackOrder[i]; for(int j=0;j>BeginNum; for(int k=0;k=0;i--) for(int j=0;jSortOrder[j+1]) const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber]; // ------- int FindOrder[MaxNumber]; // ---------- double AverageDistance; // ----------- bool direction; // int BeginNum; // int M; // int N; // int SortOrder[MaxNumber]; // ------ bool Finished[MaxNumber]; 移动距离 ; 寻好序列。 平均寻道长度 方向 true 时为向外, false 开始磁道号。 磁道数。 提出磁盘 I/O 申请的进程数 排序后的序列 为向里

Romberg龙贝格算法实验报告.

Romberg龙贝格算法实验报告 2017-08-09 课程实验报告 课程名称: 专业班级: CS1306班学号: U201314967 姓名:段沛云指导教师:报 告日期: 计算机科学与技术学院 目录 1 实验目的 (1) 2 实验原理 (1) 3 算法设计与流程框图 (2) 4 源程序 (4) 5 程序运行 (7) 6 结果分析 (7) 7 实验体会 (7) 1 实验目的 掌握Romberg公式的用法,适用范围及精度,熟悉Romberg算法的流程,并能够设计算法计算积分 31 得到结果并输出。 1x 2 实验原理 2.1 取k=0,h=b-a,求T0= 数)。 2.2 求梯形值T0( b-a

),即按递推公式(4.1)计算T0。 k 2 h [f(a)+f(b)],令1→k,(k记区间[a,b]的二分次2 2.3 求加速值,按公式(4.12)逐个求出T表的第k行其余各元素Tj(k-j) (j=1,2,….k)。 2.4 若|Tk+1-Tk| n-1 11T2n=[Tn+hn∑f(xi+)] 22i=0 1 Sn=T2n+(T2n-Tn) 31 Cn=S2n+(S2n-Sn) 151 Rn=C2n+(C2n-Cn) 63 3 算法设计与流程框图 算法设计:(先假定所求积分二分最大次数次数为20) 3.1 先求T[k][0] 3.2 再由公式T (k)m 4m(k+1)1)=mTm-1-mTm(k-1(k=1,2,) 求T[i][j] 4-14-1 3.3 在求出的同时比较T[k][k]与T[k-1][k-1]的大小,如果二者之差的绝对 值小于1e-5,就停止求T[k][k];此时的k就是所求的二分次数,而此时的T[k][k]就是最终的结果 3.4 打印出所有的T[i][j];程序流程图

实验二(贪心算法)

华东师范大学计算机科学技术系上机实践报告 课程名称:算法设计与分析年级:05上机实践成绩: 指导教师:柳银萍姓名:张翡翡 上机实践名称:贪心算法学号:10052130119上机实践日期:2007-4-10 上机实践编号:NO.2组号:上机实践时间:10:00-11:30 一、目的 了解熟悉掌握贪心算法实质并学会灵活运用,从而解决生活中一些实际问题。 二、内容与设计思想 1.超市的自动柜员机(POS)要找给顾客各种数值的现金,表面上看,这是一个很简单的任务,但交给机器办就不简单了。你作为一个计算机专家,要求写一个程序来对付这个“简单”的问题。 你的自动柜员机有以下的币种:100元,50元,20元,10元,5元,2元,1元。你可以假设每种钱币的数量是无限的。现在有一笔交易,需要找个客户m元,请你设计一个算法,使得找给顾客的钱币张数最少。 要求: 输入:第一行仅有一个整数n(0

算法实验报告二

算法设计与分析实验 学院:信息工程 专业:计算机科学与技术

算法实验报告二排序问题求解 一、实验目的: 1)以排序(分类)问题为例,掌握分治法的基本设计策略。 2)熟练掌握一般插入排序算法的实现; 3)熟练掌握快速排序算法的实现; 4) 理解常见的算法经验分析方法; 二、实验要求: 1.生成实验数据. 要求:编写一个函数datagenetare,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。这些数作为后面算法的实验数据。 2.实现直接插入排序算法. 3.实现快速排序算法. 三、实验主要步骤: #include #include #include #include #define RAND_MAX 10000 #define Max 1000 int I_Change_count = 0; //插入排序比较计数器 int I_Move_count = 0; //插入排序移动计数器 int S_Change_count =0; //选择排序比较计数器 int S_Move_count = 0; //选择排序移动计数器 int Q_Change_count = 0; //快速排序比较计数器 int Q_Move_count = 0; //快速排序移动计数器 void main() { long num; long Array[Max],Brray[Max],Crray[Max];//分别用来保存随机数作为两个排序的对象int A_Length; int Low = 0; int High; time_t t; void InsertSort(long Array[],int A_Length); //void SelectSort(long Brray[],int A_Length); void QuickSort(long Crray[],int Low,int High);

操作系统实验 磁盘调度算法

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第六讲磁盘调度算法 一、实验概述 1. 实验名称 磁盘调度算法 2. 实验目的 (1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机; (2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法; (3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。 3. 实验类型 验证性+设计性实验 4. 实验内容 (1)验证先来先服务(FCFS)磁盘调度算法; (2)验证最短寻道时间优先(SSTF)磁盘调度算法; (3)验证SSTF算法造成的线程“饥饿”现象; (4)验证扫描(SCAN)磁盘调度算法; (5)改写SCAN算法。 二、实验环境 在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。 三、实验过程 1. 设计思路和流程图 (1)改写SCAN算法 在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。算法流程图如下图所示。 图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法 在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside 确定磁头移动的方向,而是规定磁头只能从外向内移动。当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。算法流程图如下图所示。

龙贝格积分实验报告

二、Romberg 积分法 1.变步长Romberg 积分法的原理 复化求积方法对于提高精度是行之有效的方法,但复化公式的一个主要缺点在于要事先估计出部长。若步长过大,则精度难于保证;若步长过小,则计算量又不会太大。而用复化公式的截断误差来估计步长,其结果是步长往往过小,而且''()f x 和(4)()f x 在区间[,]a b 上的上界M 的估计是较为困难的。在实际计算中通常采用变步长的方法,即把步长逐次分半(也就是把步长二等分),直到达到某种精度为止,这种方法就是Romberg 积分法的思想。 在步长的逐步分半过程中,要解决两个问题: 1. 在计算出N T 后,如何计算2N T ,即导出2N T 和N T 之间的递推公式; 2. 在计算出N T 后,如何估计其误差,即算法的终止的准则是什么。 首先推导梯形值的递推公式,在计算N T 时,需要计算1N +个点处的函数值在计算出N T 后,在计算2N T 时,需将每个子区间再做二等分,共新增N 个节点。为了避免重复计算,计算2N T 时,将已计算的1N +个点的数值保留下来,只计算新增N 个节点处的值。为此,把2N T 表示成两部分之和,即 由此得到梯形值递推公式 因此 由复化梯形公式的截断误差有 若''()f x 变化不大时,即''''12()()f f ηη≈,则有 式(2)表明,用2N T 作为定积分I 的近似值,其误差大致为21 ()3 N N T T -, 因此其终止条件为 其中ε是预先给定的精度。 积分公式 将上述方法不断推广下去,可以得到一个求积分的序列,而且这个序列很快收敛到所求的定积分。记 (0)N N T T =,将区间N 等分的梯形值。(1)N N T S =,将区间N 等分的Simpson

实验二 FFT算法的MATLAB实现

班级:学号:姓名 实验二FFT算法的MATLAB实现 (一)实验目的: (1)掌握用matlab进行FFT在数字信号处理中的高效率应用。 (2)学习用FFT对连续信号和时域离散信号进行谱分析。 (二)实验内容及运行结果: 题1:若x(n)=cos(nπ/6)是一个N=12的有限序列,利用MATLAB计算它的DFT 并进行IDFT变换同时将原图与IDFT变换后的图形进行对比。当求解IFFT变换中,采样点数少于12时,会产生什么问题。 程序代码: N=12; n=0:11; Xn=cos(n*pi/6); k=0:11; nk=n'*k; WN=exp(-j*2*pi/N) WNnk=WN.^nk XK=Xn*WNnk; figure(1) stem(Xn) figure(2) stem(abs(XK)) 运行结果:

IFFT变换中,当采样点数少于12时图像如下图显示:

分析:由图像可以看出,当采样点数小于12时,x(n)的频谱不变,周期为6,而XK 的频谱图发生改变。 题2:对以下序列进行谱分析 132()()103()8470x n R n n n x n n n =+≤≤?? =-≤≤??? 其他n 选择FFT 的变换区间N 为8和16点两种情况进行频谱分析,分别打印其幅频特 性曲线并进行对比、分析和讨论。 ㈠ 程序代码: x=ones(1,3);nx=0:2; x1k8=fft(x,8); F=(0:length(x1k8)-1)'*2/length(x1k8); %进行对应的频率转换 stem(f,abs(x1k8));%8点FFT title('8点FFTx_1(n)'); xlabel('w/pi'); ylabel('幅度'); N=8时:

磁盘调度算法实验报告 (2)

磁盘调度算法 学生姓名: 学生学号: 专业班级: 指导老师: 2013年6月20日

1、实验目的: 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。 2、问题描述: 设计程序模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN 和循环SCAN算法的工作过程。假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。 3、需求分析 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。 通过已知开始磁道数、访问磁道总数、磁道号访问序列、访问方向及访问方式得到访问序列及移动距离和平均移动距离! (1)输入的形式; int TrackOrder[MaxNumber];//被访问的磁道号序列 int direction;//寻道方向 int Num;//访问的磁道号数目

int start;// (2)输出的形式; int MoveDistance[MaxNumber]={0};//移动距离 double AverageDistance=0;//平均寻道长度 移动的序列! (3)程序所能达到的功能; 模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的工作过程。假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。 (4)测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。 开始磁道号:100 磁道号方向:内(0)和外(1) 磁道号数目:9 页面序列:55 58 39 18 90 160 150 38 184 4、概要设计 说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。

matlab计算方法实验报告5(数值积分)

计算方法实验报告(5) 学生姓名杨贤邦学号指导教师吴明芬实验时间2014.4.16地点综合实验大楼203 实验题目数值积分方法 实验目的●利用复化梯形、辛普森公式和龙贝格数值积分公式计算定积分的 近似植。 实验内容●梯形、辛普森、柯特斯法及其Matlab实现; ●变步长的梯形、辛普森、柯特斯法及其Matlab实现。 ●题目由同学从学习材料中任意选两题 算法分析梯形:function y=jifeng_tixing(a,b,n,fun) fa=feval(fun,a); fb=feval(fun,b); s=0; h=(b-a)/n; for k=1:n-1 xk=a+k*h; s=feval(fun,xk)+s; end y=(h/2)*(fa+fb+2*s); 辛普生:function y=jifeng_xingpu(a,b,n,fun) fa=feval(fun,a); fb=feval(fun,b); h=(b-a)/n; s=0; s2=feval(fun,a+0.5*h); for k=1:n-1 xk=a+k*h; s=feval(fun,xk)+s; s2=feval(fun,xk+(h/2))+s2; end

与源程序y=(h/6)*(fa+fb+2*s+4*s2); 龙贝格:function r2=jifeng_long(fun,a,b,e) h=b-a; t1=(h/2)*(feval(fun,a)+feval(fun,b)); k=1; r1=10; r2=0; c2=0; while abs(r2-r1)>e; s=0; x=a+h/2; while x=3 r1=r2; c2=s2+(1/15)*(s2-s1); r2=c2+(1/63)*(c2-c1); k=k+1;h=h/2; t1=t2;s1=s2; c1=c2; end end

算法分析与设计实验二:动态规划法

题目:用动态规划法实现求两序列的最长公共子序列。 程序代码 #include #include //memset需要用到这个库 #include using namespace std; int const MaxLen = 50; class LCS { public: LCS(int nx, int ny, char *x, char *y) //对数据成员m、n、a、b、c、s初始化{ m = nx; //对m和n赋值 n = ny; a = new char[m + 2]; //考虑下标为0的元素和字符串结束标记 b = new char[n + 2]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for(int i = 0; i < nx + 2; i++) //将x和y中的字符写入一维数组a和b中a[i + 1] = x[i]; for(int i = 0; i < ny + 2; i++) b[i + 1] = y[i]; c = new int[MaxLen][MaxLen]; //MaxLen为某个常量值 s = new int[MaxLen][MaxLen]; memset(c, 0, sizeof(c)); //对二维数组c和s中元素进行初始化 memset(s, 0, sizeof(s)); } int LCSLength(); //求最优解值(最长公共子序列长度) void CLCS() //构造最优解(最长公共子序列) { CLCS(m, n); //调用私有成员函数CLCS(int,int) } private: void CLCS(int i, int j); int (*c)[MaxLen], (*s)[MaxLen]; int m, n;

操作系统磁盘调度算法

操作系统课程设计任务书 题目: 磁盘调度算法 院系: 专业: 班级: 姓名: 学号: 指导教师: 设计时间:2018.1.1-2018.1.5 指导教师评语

目录 1、需求分析?4 1.1课题描述 (4) 1.2课题目的 (4) 1.3理论依据?7 2、概要设计?8 2.1设计方法 ............................................................................................... 82.2技术?8 2.3运行环境?8 3、详细设计?9 3.1流程图 (11) 3.2程序主要代码? 13 14 4、运行结果及分析? 4.1运行结果? 15 4.2结果详细分析?6 1 16 5、总结和心得? 7 1 6、参考文献? 2 7、附录:程序源代码? 3

1、需求分析 1.1课题描述 这次课程设计我研究的题目是:磁盘调度算法。具体包括三种算法分别是:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(电梯调度算法)(SCAN)。 1.2课题目的 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS,最短寻道时间优先SSTF,扫描SCAN算法的实现方法。 1.3理论依据 设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。常用的分配策略有先请求先分配、优先级高者先分配等策略。在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。操作系统中,对磁盘的访问要求来自多方面,常常需要排队。这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。 平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即:L=(M1+M2+……+Mi+……+MN)/N

实验二、A*搜索算法

实验二:A*算法 一、实验目的 了解启发式搜索算法的基本思想,掌握A*算法的基本原理和步骤。学会对于算法的正确应用,解决实际生活中的问题。学会区分与盲目搜索算法的不同之处。 二、实验环境 PC机一台,VC++6.0 三、实验原理 A*搜索算法,俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC(Non-Player-ControlledCharacter)的移动计算,或线上游戏的BOT(ROBOT)的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。 A*算法是一种启发式搜索算法,启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 A*算法的公式为:f(n)=g(n)+h(n),g(n)表示从起点到任意顶点n的实际距离,h(n)表示任意顶点n到目标顶点的估算距离。这个公式遵循以下特性: 如果h(n)为0,只需求出g(n),即求出起点到任意顶点n的最短路径,则转化为单源最短路径问题,即Dijkstra算法 如果h(n)<=“n到目标的实际距离”,则一定可以求出最优解。而且h(n)越小,需要计算的节点越多,算法效率越低。 对于函数h(n),估算距离常用的方法有: 曼哈顿距离:定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里德空间的固定直角坐标系上两点所形成的线段对轴

产生的投影的距离总和。例如在平面上,坐标(x1,y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:|x1 - x2| + |y1 - y2|。 欧氏距离:是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。例如在平面上,坐标(x1,y1)的点P1与坐标(x2, y2)的点P2的欧氏距离为: sqrt((x1-x2)^2+(y1-y2)^2 )。 切比雪夫距离:是两个向量之间各分量差值的最大值。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的切比雪夫距离为:max(|x1 - x2| , |y1 - y2|)。 A*算法最为核心的部分,就在于它的一个估值函数的设计上: f(n)=g(n)+h(n) 其中f(n)是每个可能试探点的估值,它有两部分组成: 一部分,为g(n),它表示从起始搜索点到当前点的代价(通常用某结点在搜索树中的深度来表示)。 另一部分,即h(n),它表示启发式搜索中最为重要的一部分,即当前结点到目标结点的估值, h(n)设计的好坏,直接影响着具有此种启发式函数的启发式算法的是否能称为A*算法。 一种具有f(n)=g(n)+h(n)策略的启发式算法能成为A*算法的充分条件是: 1、搜索树上存在着从起始点到终了点的最优路径。 2、问题域是有限的。 3、所有结点的子结点的搜索代价值>0。 4、h(n)=

操作系统实验报告—磁盘调度算法

操作系统实验报告实验3 磁盘调度算法 报告日期:2016-6-17 姓名: 学号: 班级: 任课教师:

实验3 磁盘调度算法 一、实验内容 模拟电梯调度算法,实现对磁盘的驱动调度。 二、实验目的 磁盘是一种高速、大量旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。 三、实验原理 模拟电梯调度算法,对磁盘调度。 磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。 假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列(不少于15个)放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。 四、实验过程 1.画出算法流程图。

2.源代码 #include #include #include int *Init(int arr[]) { int i = 0; srand((unsigned int)time(0)); for (i = 0; i < 15; i++) { arr[i] = rand() % 200 + 1; printf("%d ", arr[i]); } printf("\n"); return arr; } void two_part(int arr[]) { int i = 0; int j = 0;

相关文档
最新文档