中考数学反比例函数综合题及答案解析

中考数学反比例函数综合题及答案解析
中考数学反比例函数综合题及答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比

例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,

∴k=6,C(﹣2,﹣3),

即k的值是6,C点的坐标是(﹣2,﹣3);

(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,

∵点A(2,3),k=6,

∴AN=2,

∵△APO的面积为2,

∴,

即,得OP=2,

∴点P(0,2),

设过点A(2,3),P(0,2)的直线解析式为y=kx+b,

,得,

∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

当y=0时,0=0.5x+2,得x=﹣4,

∴点D的坐标为(﹣4,0),

设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,

则,得,

∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,

∴点D到直线AC的直线得距离为:= .

【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C

在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.

2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.

(1)求k的值;

(2)求经过A、C两点的直线的解析式;

(3)连接OA、OC,求△OAC的面积.

【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,

∴A的坐标是(2,3),

代入y= 得3= ,

解得:k=6

(2)解:OD=2+2=4,

在y= 中令x=4,解得y= .

则C的坐标是(4,).

设AC的解析式是y=mx+n,

根据题意得:,

解得:,

则直线AC的解析式是y=﹣ x+

(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB?AB= ×2×3=3;

直角△ODC中,OD=4,CD= ,则S△OCD= OD?CD= ×4× =3.

在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)?BD= (3+ )×2= .

则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=

【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.

3.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .

(1)求反比例函数y= 和直线y=kx+b的解析式;

(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;

(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

【答案】(1)解:∵A(5,0),

∴OA=5.

∵,

∴,解得OC=2,

∴C(0,﹣2),

∴BD=OC=2,

∵B(0,3),BD∥x轴,

∴D(﹣2,3),

∴m=﹣2×3=﹣6,

∴,

设直线AC关系式为y=kx+b,

∵过A(5,0),C(0,﹣2),

∴,解得,

∴;

(2)解:∵B(0,3),C(0,﹣2),

∴BC=5=OA,

在△OAC和△BCD中

∴△OAC≌△BCD(SAS),

∴AC=CD,

∴∠OAC=∠BCD,

∴∠BCD+∠BCA=∠OAC+∠BCA=90°,

∴AC⊥CD;

(3)解:∠BMC=45°.

如图,连接AD,

∵AE=OC,BD=OC,AE=BD,

∴BD∥x轴,

∴四边形AEBD为平行四边形,

∴AD∥BM,

∴∠BMC=∠DAC,

∵△OAC≌△BCD,

∴AC=CD,

∵AC⊥CD,

∴△ACD为等腰直角三角形,

∴∠BMC=∠DAC=45°.

【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.

4.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).

(1)求反比例函数与一次函数的表达式;

(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数

y= 的图象有且只有一个交点,求a的值;

(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.

【答案】(1)解:∵A、B在反比例函数的图象上,

∴2×3n=(5n+2)×1=m,

∴n=2,m=12,

∴A(2,6),B(12,1),

∵一次函数y=kx+b的图象经过A、B两点,

∴,

解得,

∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.

(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,

由,消去y得到x2+(2a﹣14)x+24=0,

由题意,△=0,(21a﹣14)2﹣4×24=0,

解得a=7±2 .

(3)(0,6)或(0,8)

【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),

由题意,PE=|m﹣7|.

∵S△AEB=S△BEP﹣S△AEP=5,

∴ ×|m﹣7|×(12﹣2)=5.

∴|m﹣7|=1.

∴m1=6,m2=8.

∴点E的坐标为(0,6)或(0,8).

故答案为(0,6)或(0,8).

【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.

5.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,

y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).

(1)求反比例函数y= 的解析式;

(2)求点P2和点P3的坐标;

(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).

【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,

则B1与P1关于y轴对称,

∵B1(﹣1,1),

∴P1(1,1).

则k=1×1=1,即反比例函数解析式为y=

(2)解:连接P2B2、P3B3,分别交y轴于点E、F,

又点P1的坐标为(1,1),

∴OA1=2,

设点P2的坐标为(a,a+2),

代入y=得a=-1,

故点P2的坐标为(-1,+1),

则A1E=A2E=2-2,OA2=OA1+A1A2=2,

设点P3的坐标为(b,b+2),

代入y=(>0)可得b=-,

故点P3的坐标为(-,+)

(3)1;(-,+)

【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…

∴△P n B n O的面积为1,

由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),

故答案为:1、(﹣, +).

【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;

(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;

(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.

6.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象

上,A、B的横坐标分别为a、b.

(1)若AB∥x轴,求△OAB的面积;

(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;

(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.

【答案】(1)解:由题意知,点A(a,),B(b,﹣),

∵AB∥x轴,

∴,

∴a=﹣b;

∴AB=a﹣b=2a,

∴S△OAB= ?2a? =3

(2)解:由(1)知,点A(a,),B(b,﹣),

∴OA2=a2+()2, OB2=b2+(﹣)2,

∵△OAB是以AB为底边的等腰三角形,

∴OA=OB,

∴OA2=OB2,

∴a2+()2=b2+(﹣)2,

∴a2﹣b2=()2﹣()2,

∴(a+b)(a﹣b)=( + )(﹣)= ,

∵a>0,b<0,

∴ab<0,a﹣b≠0,

∵a+b≠0,

∴1= ,

∴ab=3(舍)或ab=﹣3,

即:ab的值为﹣3;

(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,

∵a≥3,AC=2,

∴直线CD在y轴右侧且平行于y轴,

∴直线CD一定与函数y1= (x>0)的图象有交点,

∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,

∴C(a﹣2,),

∴D(a﹣2, +2),

设直线CD与函数y1= (x>0)相交于点F,

∴F(a﹣2,),

∴FC= ﹣ = ,

∴2﹣FC=2﹣ = ,

∵a≥3,

∴a﹣2>0,a﹣3≥0,

∴≥0,

∴2﹣FC≥0,

∴FC≤2,

∴点F在线段CD上,

即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.

【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出

直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.

7.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.

(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O的半径是,

①求出⊙O上的所有梦之点的坐标;

②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

【答案】(1)解:∵P(2,b)是梦之点,∴b=2

∴P(2,2)

将P(2,2)代入中得n=4

∴反比例函数解析式是

(2)解:①设⊙O上梦之点坐标是(,)∴∴

=1或 =-1

∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)

②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)

由已知MN∥l或MN⊥l

∴直线MN为y=-x+b或y=x+b

当MN为y=-x+b时,m=b-3

由图可知,当直线MN平移至与⊙O相切时,

且切点在第四象限时,b取得最小值,

此时MN记为,

其中为切点,为直线与y轴的交点

∵△O 为等要直角三角形,

∴O =

∴O =2

∴b的最小值是-2,

∴m的最小值是-5

当直线MN平移至与⊙O相切时,且切点在第二象限时,

b取得最大值,此时MN记为,

其中为切点,为直线与y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.

∴m的取值范围为-5≤m≤-1.

当直线MN为y=x+b时,

同理可得,m的取值范围为1≤m≤5,

综上所述,m的取值范围为-5≤m≤-1或1≤m≤5

【解析】【分析】(1)由“ 梦之点”的定义可得出b的值,就可得出点P的坐标,再将点P的坐标代入函数解析式,求出n的值,即可得出反比例函数的解析式。

(2)①设⊙O上梦之点坐标是(a,a )根据已知圆的半径,利用勾股定理建立关于a的方程,求出方程的解,就可得出⊙O上的所有梦之点的坐标;② 由(1)知,异于点P 的梦之点Q的坐标为(-2,-2),由已知直线MN∥l或MN⊥l,就可得出直线MN的解析式为y=-x+b或y=x+b。分两种情况讨论:当MN为y=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第二象限时,b的最大值为2,m的最大值为-1,就可得出m的取值范围,当直线MN为y=x+b时,同理可得出m的取值范围。

8.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.

(1)求m的值和反比例函数的表达式;

(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;

(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),

∴m=2×1+6=8,

∴A(1,8),

∵反比例函数经过点A(1,8),

∴k=8,

∴反比例函数的解析式为y= .

(2)解:不等式2x+6﹣<0的解集为0<x<1.

(3)解:由题意,点M,N的坐标为M(,n),N(,n),

∵0<n<6,

∴<0,

∴﹣>0

∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,

∴n=3时,△BMN的面积最大,最大值为.

【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;

(2)由图象直接求得;

(3)构建二次函数,利用二次函数的最值即可解决问题.

9.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),

∵F为AB的中点,∴F(6,2),

又∵点F在反比例函数(k>0)的图象上,∴k=12,

∴该函数的解析式为y= (x>0)

(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),

∴,

=

=

=

= ,

∴当k=12时,S有最大值.S最大=3

【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.

10.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A

(2,﹣3)和点B(n,2).

(1)求直线与双曲线的表达式;

(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.

【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.

∴双曲线的表达式为y=﹣.

∵点B(n,2)在双曲线y=﹣上,

∴点B的坐标为(﹣3,2).

∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),

解得,

∴直线的表达式为y=﹣x﹣1

(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣

1).

【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.

11.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).

(1)点(2,1)的变换点坐标为________;

(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;

(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.

【答案】(1)(1,﹣2)

(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),

代入y= 可得﹣a= ,解得a= ;

当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),

代入y= 可得2= ,解得a= ,不符合题意;

综上可知a的值为;

(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b

得:,解得,

∴直线l的解析式为y=﹣ x+3.

当x=y时,x=﹣ x+3,解得x=2.

点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),

点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),

当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,

当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,

即y= x﹣3,其中,x<2.

所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.

如图所示:

由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②

讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:

①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;

②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;

③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;

④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;

⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;

⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.

【解析】【解答】解:(1)∵2≥﹣1,

∴点(2,1)的变换点坐标为(1,﹣2),

故答案为:(1,﹣2);

【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.

12.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反

比例函数y= 的图象经过D点.

(1)证明四边形ABCD为菱形;

(2)求此反比例函数的解析式;

(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.

【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),

∴OA=4,OB=3,OC=2,

∴AB= =5,BC=5,

∴AB=BC,

∵D为B点关于AC的对称点,

∴AB=AD,CB=CD,

∴AB=AD=CD=CB,

∴四边形ABCD为菱形

(2)解:∵四边形ABCD为菱形,

∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,

∴4= ,

∴k=20,

∴反比例函数的解析式为:y=

(3)解:∵四边形ABMN是平行四边形,

∴AN∥BM,AN=BM,

∴AN是BM经过平移得到的,

∴首先BM向右平移了3个单位长度,

∴N点的横坐标为3,

代入y= ,

得y= ,

∴M点的纵坐标为:﹣4= ,

∴M点的坐标为:(0,)

【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.

13.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2 ).

(1)直接写求∠BAO的度数;

(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?

(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.

【答案】(1)解:∵A(?2,0),B(0,),

∴OA=2,OB=,

在Rt△AOB中,tan∠BAO=,

∴∠BAO=60°

(2)解:S1=S2;

理由:∵∠BAO=60°,∠AOB=90°,

∴∠ABO=30°,

∴OA'=OA= AB,△AOA'是等边三角形,

∴OA'=AA'=AO=A'B,

∵∠B'A'O=60°,∠A'OA=60°,

∴B'A'∥AO,

根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中B A′边上的高相等,

∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),

即S1=S2

(3)证明:S1=S2不发生变化;

理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,

∵△A'B'O是由△ABO绕点O旋转得到,

∴BO=OB',AO=OA',

∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,

∴∠AON=∠A'OM,

在△AON和△A'OM中,,

∴△AON≌△A'OM(AAS),

相关主题
相关文档
最新文档