基于MATLAB实现二维delaunay三角剖分

基于MATLAB实现二维delaunay三角剖分
基于MATLAB实现二维delaunay三角剖分

34

基于MATLAB 实现二维delaunay 三角剖分

刘锋涛 凡友华

(哈尔滨工业大学深圳研究生院 深圳 518055)

【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边

形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪

些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。

【关键词】delaunay 三角剖分;MATLAB

网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。

Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。

然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。

1 MATLAB 中的函数

1.1 delaunay 函数

delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下:

=delaunay(,) or,

=delaunay(,,)TRI x y TRI x y options

其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个3m ×的矩阵,矩阵中每一行表示DT 网格中一个三角形网格的三个顶点。

1.2 meshgird 函数

为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下:

[,] = meshgrid(,)X Y x y

其输入为矩形的x、y方向上的范围,输出为两个向量,分别表示x和y方向上满足一定间距的点的坐标。

1.3 inpolygon函数

inpolygon函数的作用是判断一个点是否存在于一个多边形内。它的用法是,

[] = inpolygon(,,,)

IN ON X Y xv yv

其输入值X和Y分别表示点集中每个点的x和y坐标值,而xv和yv则分别表示多边形定点的x和y坐标值。若点集中某一点在多边形内则其返回值IN为1,若不在则IN为0,若某一点在多边形的边界上则ON为1,若不在边界上则ON为0。

1.4 基于MATLAB的简单DT方法

在MATLAB中,基于delaunay函数、meshgrid函数和inpolygon函数完成DT网格划分的步骤是:

(1)定义一个多边形,并求出多边形顶点最大的x、y坐标值。

(2)以最大的x、y坐标值作为x和y方向上的长度构造一个矩形。

(3)利用meshgrid函数在构造的矩形区域内构造出一个点集,其密度可以根据需要进行加密。

(4)利用inpolygon函数判断点和多边形的位置关系,求出位于多边形内和边界上的点。(5)再利用delaunay函数将在多边形内和边界上的点进行三角形划分,之后,可以利用trimesh函数将图形绘制出,并可以得出三角形的顶点坐标和编号。

2 一个简单的例子

任意定义一个凸多边形,如图1。按照2.4节中的步骤,对其进行网格划分,划分结果见图2。部分主要的程序见附录。

图1 定义的多边形图2 delaunay网格划分结果从图2中,可以看出凸多边形内部的三角形划分结果比较理想,但是边界处出现了很薄的三角形单元,并且内部的网格划分的密度一致。然而,对于一些对网格质量要求不高的具体问题还是可以忍受的。

3 讨论

此种方法主要是基于Matlab中现有的函数命令来实现DT网格划分的,因此对于那些不熟悉计算机图形学基础知识的工程技术人员而言,很容易掌握并自己编程实现。这也是使

35

用该方法的主要目的。然而,在此方法中还存在着几个问题:

(1)此种方法只能用于凸多边形的DT划分;

(2)网格划分结果不能实现在同一个区域内不同网格密度的划分;

(3)边界处网格划分的结果不理想,有很薄的三角形单元出现。

若对以上三个要求的不高,则此种方法可以发挥其简单易用的优势,使DT网格划分技

术更加容易掌握。

参考文献

[1] K. Ho-Le. Finite element mesh generation method: A review and classification. Computer Aided

Design, 1988, 20(1): 27~38

[2] 胡恩球, 张新访, 向文, 周济. 有限元网格生成方法发展综述. 计算机辅助设计与图形学学报. 1997,

9(4): 378~383

[3] 关振群, 宋超, 顾元宪, 隋晓峰. 有限元网格生成方法研究的新进展. 计算机辅助设计与图形学学报.

2003, 15(1): 1~14 ――――――――――――――――――――――――――――――――――――――――――――――《工程地质计算机应用》征稿启事

《工程地质计算机应用》杂志自2008年由河海大学科学研究院负

责编辑出版发行,现已发行三期(总第51期),感谢各位作者和各家

单位的支持,希望大家一如既往的关注本杂志,踊跃投稿。

投稿信箱如下:

电子邮箱1: geocom05@https://www.360docs.net/doc/937417254.html,

电子邮箱2: hetc@https://www.360docs.net/doc/937417254.html,

电子邮箱3: wjhfish@https://www.360docs.net/doc/937417254.html,

《工程地质计算机应用》编辑部 36

基于MATLAB的GMSK调制与解调课设报告

基于Matlab的GMSK调制与解调 1.课程设计目的 (1)加深对GMSK基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)通过SIMULINK对BT=0.3的GMSK调制系统进行仿真。 2.课程设计要求 (1)观察基带信号和解调信号波形。 (2)观察已调信号频谱图。 (3)分析调制性能和BT参数的关系。 3.相关知识 3.1GMSK调制 调制原理图如图2.2,图中滤波器是高斯低通滤波器,它的输出直接对VCO 进行调制,以保持已调包络恒定和相位连续。 非归零数字序 高斯低通滤 波器频率调制器 (VCO) GMSK已 调信号 图3.1GMSK调制原理图 为了使输出频谱密集,前段滤波器必须具有以下待性: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。

GMSK 信号数据 3.2GMSK 解调 GMSK 本是MSK 的一种,而MSK 又是是FSK 的一种,因此,GMSK 检波也可以采用FSK 检波器,即包络检波及同步检波。而GMSK 还可以采用时延检波,但每种检波器的误码率不同。 GMSK 非相干解调原理图如图2.3,图中是采用FM 鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK 数据的解调输出。 图3.2GMSK 解调原理图 4.课程设计分析 4.1信号发生模块 因为GMSK 信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 图4.1GMSK 信号产生器 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为61表示随机数种子为61;sample time 为1/1000表示抽样时间即每个符号的持续时为0.001s。当仿真时间固定时,可以通过改变sample time 参数来改变码元个数。例如仿真时间为10s,若sample time 为1/1000,则码元个数为10000。 带通滤 波器限幅器判决器鉴频器GMSK 信号 输出

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

利用MATLAB绘制二维函数图形

《MATLAB语言》课程论文 利用MATLAB绘制二维函数图形 姓名:海燕 学号:12010245375 专业:通信工程 班级:通信一班 指导老师:汤全武 学院:物理电气信息学院 成日期:2011年12月5 利用MATLAB绘制二维函数图形 (海燕 12010245375 2010级通信1班) [摘要]大学高等数学中涉及许多复杂的函数求导绘图极值及其应用的问题,例如二维绘图,对其手工

绘图因为根据函数的表达式的难易程度而不易绘制,而MATLAB语言正是处理这类的很好工具,既能简易的写出表达式,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。本文将探讨利用matlab来解决高等数学中的二维图形问题,并对其中的初等函数、极坐标、进行实例分析,对于这些很难用手工绘制的图形,利用matlab则很轻易地解决。[关键词]高等数学一元函数二元函数 MATLAB语言图形绘制 一、问题的提出 MATLAB 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是最有活力的软件。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。中学数学中常见到的是二维平面图形,由于概念抽象,学生不好理解,致使学生对学习失去信心,导致学习兴趣转移。在传统的教学中,教师在黑板上应用教具做图,不能保证所做图形的准确性,曲线的光滑度不理想,教学过程显得枯燥无味,教学质量难以保证。Matlab是集数值计算、符号计算和图形可视化三大基本功能于一体的大型软件,广泛应用于科学研究、工程计算、动态仿真等领域。Matlab是一种集成了计算功能、符号运算、数据可视化等强大功能的数学工具软件。其代码的编写过程与数学推导过程的格式很接近,所以使编程更为直观和方便,应用于教学就更加容实现Matlab软件尤 其在简单的绘图中有较强的编辑图形界面功能,在中学的数学教学中的抽象函数变得直观 形象、容易实现,同时也激发学生的学习兴趣,学生通过数形结合,更好地理解题意高等数学是一门十分抽象的学科,对于一些抽象的函数,我们可以借助于几何图形来理解,但这类图形的绘制往往很复杂,仅凭手工绘制也难以达到精确的效果,这时如果使用Matlab来解决所遇到的图形问题,则能达到事半功倍的效果。在高等数学领域中有关图形方面的应用,无论是初等函数图形、还是极坐标图形、统计图,对于Matlab而言都是完全可以胜任的。 下面结合实例从几个方面来阐述matlab在高等数学二维图形中的应用。 二、用matlab绘制一元函数图像 1.平面曲线的表示形式 对于平面曲线,常见的有三种表示形式,即以直角坐标方程 ] , [ ), (b a x x f y∈ =,以参数方程 ] , [ ), ( ), (b a t t y y t x x∈ = =,和以极坐标] , [ ), (b a r r∈ =? ?表示等三种形式。 2.曲线绘图的MATLAB命令 MATLAB中主要用plot,fplot二种命令绘制不同的曲线。 可以用help plot, help fplot查阅有关这些命令的详细信息 问题1 作出函数 x y x y cos , sin= =的图形,并观测它们的周期性。先作函数x y sin =在

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

三角函数公式全解

三角函数公式全解 The Standardization Office was revised on the afternoon of December 13, 2020

三角函数定义及其三角函数公式大全 一:三角函数公式大全 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα= secα/cscα cosα/sinα=cotα= cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=- ta nα cot(-α)=- cotα sin(π/2-α)= cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 两角和与差的三角函数公式万能公式

sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3α tan3α=——————

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

基于matlab的通信信道及眼图的仿真 通信原理课程设计

通信原理课程设计 基于matlab的通信信道及眼图的仿真 作者: 摘要 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。因此我们对瑞利信道、莱斯信道进行了仿真并针对服从瑞利分布的多径信道进行模拟仿真。由于眼图是实验室中常用的一种评价基带传输系统的一种定性而方便的方法,“眼睛”的张开程度可以作为基带传输系统性能的一种度量,它不但反映串扰的大小,而且也可以反映信道噪声的影响。为此,我们在matlab上进行了仿真,加深对眼图的理解。 关键词:瑞利信道莱斯信道多径效应眼图 一、瑞利信道 在移动通信系统中,发射端和接收端都可能处于不停的运动状态之中,这种相对运动将产生多普勒频移。在多径信道中,发射端发出的信号通过多条路径到达接收端,这些路径具有不同的延迟和接收强度,它们之间的相互作用就形成了衰落。MATLAB中的多径瑞利衰落信道模块可以用于上述条件下的信道仿真。 多径瑞利衰落信道模块用于多径瑞利衰落信道的基带仿真,该模块的输入信号为复信号,可以为离散信号或基于帧结构的列向量信号。无线系统中接收机与发射机之间的相对运动将引起信号频率的多普勒频移,多普勒频移值由下式决定: 其中v是发射端与接收端的相对速度,θ是相对速度与二者连线的夹角,λ是信号的波长。

Fd的值可以在该模块的多普勒平移项中设置。由于多径信道反映了信号在多条路径中的传输,传输的信号经过不同的路径到达接收端,因此产生了不同的时间延迟。当信号沿着不同路径传输并相互干扰时,就会产生多径衰落现象。在模块的参数设置表中,Delay vector(延迟向量)项中,可以为每条传输路径设置不同的延迟。如果激活模块中的Normalize gain vector to 0 dB overall gain,则表示将所有路径接收信号之和定为0分贝。信号通过的路径的数量和Delay vector(延迟向量)或Gain vector(增益向量)的长度对应。Sample time(采样时间)项为采样周期。离散的Initial seed(初始化种子)参数用于设置随机数的产生。 1.1、Multipath Rayleigh Fading Channel(多径瑞利衰落信道)模块的主要参数 参数名称参数值 Doppler frequency(Hz) 40/60/80 Sample time 1e-6 Delay vector(s) [0 1e-6] Gain vector(dB) [0 -6] Initial seed 12345 使能 Normalize gain vector to 0 dB overall gain Bernoulli Random Binary Generator(伯努利二进制随机数产生器)的主要参数 参数名称参数值 Probability of a zero0.5 Initial seed54321

三角函数公式全解

三角函数定义及其三角函数公式大全 一:三角函数公式大全 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα= secα/cscα cosα/sinα=cotα= cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosαsin(π-α)=sinαcos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα

cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanαtan(π+α)=tanαcot(π+α)=cotα 两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1- tanα ·tanβ tanα- 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

三角函数公式及证明

三角函数公式及证明 ( 编辑整理 2013.5.3) 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标 αsin =y ; (由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (2 0πα<<)) 2.正切: α α αcos sin tan = 基本定理 1.勾股定理: 1cos sin 22=+αα 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2 =b 2 +c 2 -2bc A cos bc a c b A 2cos 2 22-+=? 3.诱导公试: απ ±k 2

cot tan cos sin ?? 奇变偶不变,符号看相线 4.正余弦和差公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± 推导结论 1. 基本结论 ααα2sin 1)cos (sin 2+=+ α α2 2cos 1 1tan = + 2. 正切和差公式: β αβ αβαβαβ αβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin() tan(μμ±= ??? ? ??±=±±=± 3.二倍角公式(包含万能公式): θ θθθθθθθθ2 22tan 1tan 2cos sin cos sin 2cos sin 22sin +=??? ??+== θθ θθθθθθθθθ2222222 2 2 2 tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=??? ? ??+-=-=-=-= θ θ θθθ2tan 1tan 22cos 2sin 2tan -= = θ θ θθ222 tan 1tan 22cos 1sin +=-= 22cos 1cos 2θθ+= 4.半角公式:(符号的选择由2θ 所在的象限确定)

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

matlab二维平面图形的绘制

1、基本图形函数 函数polt是针对向量或矩阵的列来绘制曲线的,其命令格式:(1)plot(x)当x是一向量时,以其元素为纵坐标,其序号为横坐标。 (2)plot(x,y) (3)plot(x,y1,x,y2,...)绘制多条曲线 例 >> x=0:pi/10:2*pi; >> y1=sin(x); >> y2=cos(x); >> plot(x,y1,x,y2)

参数选项 y黄 m紫 c青 r红 g绿 b蓝 w白 k黑-实线 :点线 -.点划线 --虚线 .点 o圆 x叉号 +加号 *星号 v下三角 ^上三角 >大于号 <小于号 s正方形 d菱形 h六角形 p五角星 例 >> plot(x,y1,'r+-',x,y2,'k*:')

2、图形修饰 图形修饰函数: grid on(/off) 添加或取消网格 xlabel('string')标记横坐标 ylabel('string')标记横坐标 title('string')添加标题 text(x,y,'string')在图形的任意位置增加文本信息gtext('string')利用鼠标添加文本信息 axis([xmin xmax ymin ymax])设置坐标轴的最小最大值例

>> x=0:pi/10:2*pi; >> y1=sin(x); >> y2=cos(x); >> plot(x,y1,x,y2) >> grid on >> xlabel('Independent Variable X') >> ylabel('Dedependent Variable Y1&Y2') >> title('sine and cosine curve') >> text(1.5,0.3,'cos(x)') >> gtext('sin(x)')

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉 MATLAB语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该 a n t nT s 基带传输a n h t nT s n n抽样判决 H ( ) 图 3-1基带系统的分析模型 抑制码间干扰。设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过 n 基带传输系统后的输出码元为a n h t nT s。其中 n h(t )1H ()e j t d(3-1 ) 2 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: ,k 0 h( kT s)(3-2) 0,k为其他整数 频域应满足: T s, T s(3-3) H ( ) 0,其他

H ( ) T s T s T s 图 3-2 理想基带传输特性 此时频带利用率为 2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现, 而且时域波形的拖尾衰减太慢, 因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 2 i H 2 2 , (3-4) H H ( ) H T s i T s T s T s T s 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性 H ( ) 时是适宜的。 1 sin T s ( ) , (1 ) (1 ) 2 T s T s T s H ( ) 1, (1 ) 0 (3-5) T s 0, (1 ) T s 这里 称为滚降系数, 1。 所对应的其冲激响应为: sin t cos( t T s ) h(t ) T s (3-6) t 1 4 2t 2 T s 2 T s 此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下, 所能达到的最 高频率利用率。换言之,若输入码元速率 R s ' 1/ T s ,则该基带传输系统输出码元会产生码

高中三角函数公式大全及经典习题解答

高中三角函数公式大全及经典习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

用心辅导中心 高二数学 三角函数 知识点梳理: ⒈L 弧长=αR=nπR 180 S 扇=21L R=2 1R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2 =a 2 +b 2 -2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=2 1a a h ?=2 1ab C sin =2 1bc A sin =2 1ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr =))()((c p b p a p p --- (其中)(2 1c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y =θ θ cos sin =θθsec sin ? ② θθθ θθcsc cos sin cos ?=== y x ctg ③θθθtg r y ?== cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++= +b a b a (其中辅助角?与点(a,b ) 在同一象限,且a b tg =?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω)

三角函数公式大全及推导过程

一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan(-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2 π-α)= sinα sin (2π+α)= cosα cos(2 π+α)= -sinα

sin ( 23π-α)= -cosα cos(2 3π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαsin sin cos cos )cos(?+?=- β αβαβαtan tan 1tan tan )tan(?-+=+ βαβαβαtan tan 1tan tan )tan(?+-= - 四、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式: )sin(cos sin 22?++=+x b a x b x a (其中a b =?tan ) 其中:角?的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z) 六、其它公式: 1、正弦定理: R C c B b A a 2sin sin sin ===(R 为ABC ?外接圆半径) 2、余弦定理 A bc c b a cos 2222?-+=

相关文档
最新文档