离散信号的频谱分析实验报告

离散信号的频谱分析实验报告
离散信号的频谱分析实验报告

东北大学

实验题目:离散信号的频谱分析姓名:______

班级:自动化班__

学号:____

日期:2015.11.02____

离散信号的频谱分析实验报告

一、实验目的

1 掌握采样频率的概念

2 掌握信号频谱分析方法

3 掌握在计算机中绘制信号频谱图的方法

二、实验内容

1、产生以下时间序列信号,并画出相应时域序列图:

①采样频率为1000Hz,信号频率为30Hz的正弦信号y1(n)。

②采样频率为1000Hz,信号频率为120Hz的正弦信号y2(n)。

③采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号y3(n)。

2、分别对信号y1(n), y2(n)和y3(n)进行FFT变换,画出其频谱图。

3、自带耳麦,采用goldwave等软件录制一段语音,内容为“数字信号处理”,文件按*.wav格式存储,设置采样频率为11025Hz。

4、对采集到的语音信号,进行FFT变换,画出其频谱图,并分析出自己语音的频谱范围。

三、实验结果及分析

1,采样频率为1000Hz,信号频率为30Hz的正弦信号频谱图

2,采样频率为1000Hz,信号频率为120Hz的正弦信号频谱图

3,采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号图

4,对采样频率为1000Hz,信号频率为30Hz的正弦信号进行FFT变换的频谱图

5,对采样频率为1000Hz,信号频率为120Hz的正弦信号进行FFT变换的频谱图

6,对采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号

进行FFT变换的频谱图

7,对采集到的语音信号(录制的自己声音,内容为“数字信号处理”),进行FFT变换的频谱图。

四、MATABLE程序代码

fs=1000;%采样频率为1000Hz

N=1024;

n=0:N-1;

t=n/fs;

f1=30;f2=120;

x1=sin(2*pi*f1*t);x2=sin(2*pi*f2*t);x3=sin(2*pi*f1*t)+sin(2*pi*f2*t)+2*randn(1,le ngth(t));

figure(1);

plot(t,x1);title('origenal1');

grid;figure(2);

plot(t,x2);title('origenal2');

grid;figure(3);

plot(t,x3);title('origenal3');

grid;y=fft(x1,N);%傅里叶变换

mag=abs(y);

f=(0:length(y)-1)'*fs/length(y);

figure(4);

plot(f(1:N/2),mag(1:N/2));%绘制频谱图title('with noise1');

grid;y=fft(x2,N);%傅里叶变换

mag=abs(y);

f=(0:length(y)-1)'*fs/length(y);

figure(5);

plot(f(1:N/2),mag(1:N/2));%绘制频谱图title('with noise2');

grid;y=fft(x3,N);%傅里叶变换

mag=abs(y);

f=(0:length(y)-1)'*fs/length(y);

figure(6);

plot(f(1:N/2),mag(1:N/2));%绘制频谱图title('with noise3');

grid;

fs=11025;

x1=audioread('D:\new.wav');

sound(x1,11025);

y1=fft(x1,4096);

figure(1)

subplot(321);

plot(x1);

title('原始信号'); xlabel('time n');

ylabel('fuzhi n'); subplot(322);

plot(y1);

title('原始信号频谱');

应用FFT对信号进行频谱分析实验报告

实验 应用FFT 对信号进行频谱分析 一、实验目的 1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法及其程序的编写。 2、熟悉应用FFT 对典型信号进行频谱分析的方法。 3、了解应用FFT 进行新红啊频谱分析过程中可呢个出现的问题,以便在实际中正确应用FFT 。 二、实验原理 一个连续信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞Ω=? (2-1) 如果对信号进行理想采样,可以得到离散傅里叶变换: ()()j n X e x n z ω +∞ --∞=∑ (2-2) 在各种信号序列中,有限长序列在数字信号处理中占有很重要的。无限长的序列往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT ),这一序列可以很好的反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅里叶变换为: 1 0()[()]()N kn N n X k DFT x n x n W -===∑ (2-3) DFT 是对序列傅里叶变换的灯具采样,因此可以用于序列的频谱分析。在利用DFT 进行频谱分析的时候可能有三种误差: (1)混叠现象 序列的频谱是采样信号频谱的周期延拓,周期是2/T π,因此当采样频率不满足奈奎斯特定理,即采样频率1/s f T =小于两倍的信号频率时,经过采样就会发生频谱混叠。这导致采样后的信号序列不能真实的反映原信号的频谱。 (2)泄漏现象 泄漏是不能和混叠完全分开的,因为泄漏导致频谱的扩展,从而造成混淆。为了减小混淆的影响,可以选择适当的窗函数使频谱的扩散减到最小。 (3)栅栏效应 因为DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续的函数。这样就产生了栅栏效应。减小栅栏效应的一个方法是在源序列的末端补一些零值,从而变动DFT 的点数。 三、实验内容和结果 1、观察高斯序列的时域和频域特性 (1)固定高斯序列()a x n 中的参数p=8,当q 为2,4,8时其时域和幅频特性分别如图 2.1,图2.2所示:

用MATLAB分析离散信号的频谱与信号的采样

实验六 用MATLAB 分析离散信号的频谱与信号的采样 一、 实验目的 1、了解离散时间信号频谱的分析方法; 2、了解相关函数的调用格式及作用; 3、掌握用MATLAB 分析信号的采样过程与原理。 二、涉及的MATLAB 函数 1、fft 函数:可用来计算离散周期信号频谱 X[m] = fft(x) x :是离散周期信号0~N -1 一个周期的序列值 X[m] 是离散周期信号的频谱 函数fft 还可用来计算离散非周期信号频谱、连续周期信号和连续非周期信号的频谱。 2、rectpuls 函数:表示矩形脉冲信号 y=rectpuls(t,width) 产生宽度为0.4,幅度为1,以零点对称的矩形波1P (t) 三、实验内容 1、用MATLAB 实现下图所示周期矩形序列的频谱 x[k]的频谱函数为:X[m]= ) ( sin )] 12([ sin N m M N m ππ+ k

%Program 6_1计算离散周期矩形序列的频谱 N=32; M=4; %定义周期矩形序列的参数x=[ones(1,M+1),zeros(1,N-2*M-1),ones(1,M)]; %产生周期矩形序列 X=fft(x); %计算DFS系数 m=0:N-1; stem(m,real(X)); %画出频谱X的实部 title('X[m]的实部');xlabel('m') figure; stem(m,imag(X)); %画出频谱X的虚部title('X[m]的虚部');xlabel('m'); xr=ifft(X); figure; stem(m,real(xr)); xlabel('k'); title('重建的x[k]'); 仿真的结果如下:

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

离散信号的产生和频谱分析(matlab)-西工大

离散信号的产生和频谱分析 实验目的: 仿真掌握采样定理 学会用FFT 进行数字谱分析 掌握FFT 进行数字谱分析的计算机编程实现方法 培养学生综合分析、解决问题的能力、加深对课堂内容的理解 实验要求: 掌握采样定理和数字谱分析方法、编制FFT 程序;完成正弦信号、线性条调频信号等模拟水声信号的数字谱分析; 实验内容: 单频脉冲(CWP )为) 2ex p()( )(0t f j T t rect t s π=。式中,) ( T t rect 是矩形包络,T 是脉冲持续时间,0f 是中心频率。 矩形包络线性调频脉冲信号(LFM )为 )] 2 1 (2ex p[)( )(2 0Mt t f j T t rect t s + =π。式中,M 是线性调频指数。瞬时频率 Mt f +0是时间的线性函数,频率调制宽度为MT B =。 设参数为kHz f 200 =,ms T 50=,kHz B 10=,采样频率kHz f s 100=。 1.编程产生单频脉冲、矩形包络线性调频脉冲。 2.编程实现这些信号的谱分析。 3.编程实现快速傅立叶变换的逆变换。 实验步骤: 1.编程产生单频脉冲、矩形包络线性调频脉冲。 2.应用快速傅立叶变换(FFT )求这两种信号的频谱,分析离散谱位置、归一化频率、实际频率的关系。 调用函数Y=fft(x) or Y=fft(x,N) or Y=fft(x,N,dim)。 3.对于步骤2的结果,应用快速傅立叶变换的逆变换(IFFT )求两种信号的时域波形,并与已给的单频脉冲、矩形包络线性调频脉冲和伪随机脉冲信号波形进行对照。 调用函数x=ifft(Y) or x=ifft(Y,N) or x=ifft(Y ,N,dim)。 4.对于步骤2的结果,进行频谱移位调整。将FFT 变换的结果Y (频谱数据)进行移位调整,使其符合频谱常观表示方法,调整后,频谱的直流成分(即频率为0处的值)移到频谱的中间位置。分析离散谱位置、归一化频率、实际频率的关系。 移位调整调用函数Z=fftshift(Y)。频率间隔为Fs/N ,频率范围为Fs/N*[-N/2:N/2-1]。 实验结果:

频域分析实验报告

频域分析实验报告 班级: 学号: 姓名:

一、实验内容: 1利用计算机作出开环系统的波特图; 2、观察记录控制系统的开环频率特性; 3、控制系统的开环频率特性分析。 二、仿真原理: 对数频率特性图(波特图): 对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下: (1)bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。 (2)当带输出变量[mag,pha,w]或[mag,pha]引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20×log10(mag) 二、实验验证 1、用Matlab作Bode图。要求:画出对应Bode图。 (1)G(S)=25/S2+4s+25 (7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9);

图 1 图 2 (1)G(S)=25/S2+4s+25 可以看成是一个比例环节和一个振荡环节组成,所以k=1,T1=0.04,因为v=0,所以在转折频率之前都为20lgk,因为k=1所以斜率为0,经过转折频率,分段直线斜率的变化量为-40db/dec。

(7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9); 可以看成是一个二阶微分环节和一个积分环节和一个振荡环节组成,化常数为1后,v=1,t1=1,t2=1/3,所以我们可以看到,在起始阶段是-20*vdb/dec,所以一开始斜率为-20db/dec。当经过1/3的转折频率之后分段直线的改变量为40db/dec,当经过1的转折频率之后分段直线的改变量为-40db/dec。故图像如图所示。 第二题: 典型二阶系统Gs=Wn2/s2+2ζWns+Wn2,试绘制取不同值时的Bode图。取Wn=8,ζ=0.1,0.2,0.3,,0.5,0.6; 图 3 如图所示。

离散信号MATLAB频谱分析程序

离散信号MATLAB频谱分析程序 % FFT变换,获得采样数据基本信息,时域图,频域图 % 这里的向量都用行向量,假设被测变量是速度,单位为m/s clear; close all; load data.txt %通过仪器测量的原始数据,存储为data.txt中,附件中有一个模版(该信号极不规则) A=data; %将测量数据赋给A,此时A为N×2的数组 x=A(:,1); %将A中的第一列赋值给x,形成时间序列 x=x'; %将列向量变成行向量 y=A(:,2); %将A中的第二列赋值给y,形成被测量序列 y=y'; %将列向量变成行向量 %显示数据基本信息 fprintf('\n数据基本信息:\n') fprintf(' 采样点数= %7.0f \n',length(x)) %输出采样数据个数 fprintf(' 采样时间= %7.3f s\n',max(x)-min(x)) %输出采样耗时 fprintf(' 采样频率= %7.1f Hz\n',length(x)/(max(x)-min(x))) %输出采样频率 fprintf(' 最小速度= %7.3f m/s\n',min(y)) %输出本次采样被测量最小值fprintf(' 平均速度= %7.3f m/s\n',mean(y)) %输出本次采样被测量平均值fprintf(' 速度中值= %7.3f m/s\n',median(y)) %输出本次采样被测量中值fprintf(' 最大速度= %7.3f m/s\n',max(y)) %输出本次采样被测量最大值fprintf(' 标准方差= %7.3f \n',std(y)) %输出本次采样数据标准差fprintf(' 协方差= %7.3f \n',cov(y)) %输出本次采样数据协方差fprintf(' 自相关系数= %7.3f \n\n',corrcoef(y)) %输出本次采样数据自相关系数%显示原始数据曲线图(时域) subplot(2,1,1); plot(x,y) %显示原始数据曲线图 axis([min(x) max(x) 1.1*floor(min(y)) 1.1*ceil(max(y))]) %优化坐标,可有可无xlabel('时间(s)'); ylabel('被测变量y'); title('原始信号(时域)'); grid on; %傅立叶变换 y=y-mean(y); %消去直流分量,使频谱更能体现有效信息Fs=2000; %得到原始数据data.txt时,仪器的采样频率。其实就是 length(x)/(max(x)-min(x)); N=10000; %data.txt中的被测量个数,即采样个数。其实就是length(y); z=fft(y);

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

信号与系统实验报告实验三 连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3

由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。在研究系统的频率响应时,更多的是把它表示成极坐标形式: ) ()()(ω?ωωj e j H j H = 3.4 上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ω?称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。)(ωj H 和)(ω?都是频率ω的函数。 对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ω?,如果作用于系统的信号为t j e t x 0)(ω=,则其响应信号为 t j e j H t y 0)()(0ωω= t j j e e j H 00)(0)(ωω?ω=))((000)(ω?ωω+=t j e j H 3.5 若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为 ))(sin(|)(|)sin()()(00000ω?ωωωω+==t j H t j H t y 3.6 可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ω?移相。 由于)(ωj H 和)(ω?都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。 2 LTI 系统的群延时 从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。群延时(Group delay )的概念能够较好地反

实验一离散信号的频谱分析报告

实验一离散信号的频谱分析报告 班级 姓名 学号

实验一离散信号的频谱分析报告 1 掌握采样频率的概念 2 掌握信号频谱分析方法; 3 掌握在计算机中绘制信号频谱图的方法。 ①采样频率为1000Hz,信号频率为30Hz的正弦信号y1(n) 对其进行FFT变换 ②采样频率为1000Hz,信号频率为120Hz的正弦信号y2(n)

对其进行FFT变换 ③采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号y3(n)。 对其进行FFT变换

语音信号波形

附录程序: fs=1000;%设定采样频率 N=1024; n=0:N-1; t=n/fs; f0=30;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(3,2,1); plot(t,x);%作正弦信号的时域波形xlabel('t'); ylabel('y'); title('正弦信号30HZ时域波形'); grid; %进行FFT变换并做频谱图

y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1); subplot(3,2,2); plot(f,mag);%做频谱图 axis([0,100,0,500]); xlabel('频率(Hz)'); ylabel('幅值'); title('正弦信号30HZ幅频谱图N=1024'); grid; %120HZ f1=120; x=sin(2*pi*f1*t); figure(1); subplot(3,2,3); plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y'); title('正弦信号120HZ时域波形'); grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换

用FFT对信号作频谱分析实验报告

实验一报告、用FFT 对信号作频谱分析 一、实验目的 学习用FFT 对连续信号和时域离散信号进行频谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、实验内容 1.对以下序列进行频谱分析: ()() ()()4231038470n 4033 470n x n R n n n x n n n n n x n n n =+≤≤?? =-≤≤???-≤≤?? =-≤≤??? 其它其它 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。分别打印其幅频特性曲线,并进行对比,分析和讨论。 2.对以下周期序列进行频谱分析: ()()45cos 4 cos cos 4 8 x n n x n n n π π π ==+ 选择FFT 的变换区间N 为8和16两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线,并进行对比、分析和讨论。 3.对模拟信号进行频谱分析: ()8cos8cos16cos20x t t t t πππ=++ 选择采样频率64s F Hz =,对变换区间N=16,32,64 三种情况进行频谱分析。分别 打印其幅频特性,并进行分析和讨论。

三、实验程序 1.对非周期序列进行频谱分析代码: close all;clear all; x1n=[ones(1,4)]; M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb]; x3n=[xb,xa]; X1k8=fft(x1n,8);X1k16=fft(x1n,16); X2k8=fft(x2n,8);X2k16=fft(x2n,16); X3k8=fft(x3n,8);X3k16=fft(x3n,16); subplot(3,2,1);mstem=(X1k8);title('(1a)8点DFT[x_1(n)]'); subplot(3,2,2);mstem=(X1k16);title('(1b)16点DFT[x_1(n)]'); subplot(3,2,3);mstem=(X2k8);title('(2a)8点DFT[x_2(n)]'); subplot(3,2,4);mstem=(X2k16);title('(2b)16点DFT[x_2(n)]'); subplot(3,2,5);mstem=(X3k8);title('(3a)8点DFT[x_3(n)]'); subplot(3,2,6);mstem=(X3k16);title('(3b)16点DFT[x_3(n)]'); 2.对周期序列进行频谱分析代码: N=8;n=0:N-1; x4n=cos(pi*n/4); x5n=cos(pi*n/4)+cos(pi*n/8); X4k8=fft(x4n); X5k8=fft(x5n); N=16;n=0:N-1; x4n=cos(pi*n/4); x5n=cos(pi*n/4)+cos(pi*n/8); X4k16=fft(x4n); X5k16=fft(x5n); figure(2) subplot(2,2,1);mstem(X4k8);title('(4a)8点 DFT[x_4(n)]'); subplot(2,2,2);mstem(X4k16);title('(4b)16点DFT[x_4(n)]'); subplot(2,2,3);mstem(X5k8);title('(5a)8点DFT[x_5(n)]'); subplot(2,2,4);mstem(X5k16);title('(5a)16点DFT[x_5(n)]') 3.模拟周期信号谱分析 figure(3) Fs=64;T=1/Fs; N=16;n=0:N-1; x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); X6k16=fft(x6nT); X6k16=fftshift(X6k16);

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

FFT频谱分析实验报告

实验二:用FFT作谱分析 一、实验目的 (1) 进一步加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的基本性质)。 (2) 熟悉FFT算法原理和FFT子程序的应用。 (3) 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。 二、实验原理

三、实验内容 (1) 对2 中所给出的信号逐个进行谱分析。解:(1) n=0:3; xn1=[1 1 1 1]; XK18=fft(xn1,8); XK116=fft(xn1,16); n1=0:7; n2=0:15; subplot(131); stem(n,xn1); xlabel('n'); ylabel('xn1'); subplot(132); stem(n1,abs(XK18)); xlabel('n1'); ylabel('XK18'); title('xn的8点'); subplot(133); stem(n2,abs(XK116)); xlabel('n2'); ylabel('XK116'); title('xn的16点');

(2) n1=0:7; n2=0:15; xn2=[1 2 3 4 4 3 2 1]; XK28=fft(xn2,8); XK216=fft(xn2,16); subplot(131); stem(n1,xn2); xlabel('n1'); ylabel('xn2'); subplot(132); stem(n1,abs(XK28)); xlabel('n1'); ylabel('XK28'); title('xn2的8点'); subplot(133); stem(n2,abs(XK216)); xlabel('n2'); ylabel('XK216'); title('xn2的16点'); (3) n1=0:7; n2=0:15; xn3=[4 3 2 1 1 2 3 4]; XK38=fft(xn3,8);

应用MATLAB对信号进行频谱分析

数字信号处理课程设计报告书 2011年7 月 1日 课题名称 应用MATLAB 对信号进行频谱分析 姓 名 张炜玮 学 号 20086377 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 ※※※※※※※※※ ※※ ※※ ※※ ※※ ※※※※※ ※※ 2008级数字信号处理课程设计

应用MATLAB对信号进行频谱分析 20086377 张炜玮 一、设计目的 用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t);

相关文档
最新文档