压差、流量与水力工况平衡

压差、流量与水力工况平衡
压差、流量与水力工况平衡

压差、流量与水力工况平衡

1、平衡阀

平衡阀正确地理解应为水力工况平衡用阀。从这一观念出发一切用于水力工况平衡的阀门如调节阀、减压阀、自力式流量控制阀、自力式压差控制阀都应看成水力工况平衡用阀。

2、压差、流量和水力工况平衡

一般地说供热、空调的管网都是闭路循环的管网,其水力工况是指系统各点的压力,各管段的流量、压差。由公式△P=SG2(△P——压差或称阻力损失、S ——管段或系统的阻力系数、G——管段或系统的流量)可知,流量和压力是相关参数,流量变化必然导致压力的变化;S值不变的系统,压差的变化必然起因于流量的改变。因此说没有一种不影响压力的流量控制阀,也没有一种不影响流量的压力控制阀。

水力工况平衡是指流量的合理分配。在供热和空调管网中,水是热载体介质,水流量的合理分配是热力工况平衡的基础。设计者在进行水力工况计算时在各分支流量为设计值的假想情况下进行的。但在实际运行中,由于管材及最高流速形成的限制,这样势必造成近端阻力系数不能达到设计理想状态,形成近端流量过大,远端流量不足的失调现象。另一方面,为保证空调末端装臵的压差,设计者在选择水泵扬程时,是按系统的最远不利环路获得设计流量来选定。但是这会使其余所有末端装臵处差压过高,从而造成流量分配不均匀。因此,要达到合理的流量分配,实现系统功能的最佳效果,单靠设计(计算)来实现水力平衡几乎是不可能的。要解决流量与压力的问题,采用平衡阀来合理分配流量,消除流量过大或流量过小的失衡现象(消除流量过大,意味着控制阀在中等及小负荷时,不会以接近关闭的位臵运行,这样就不会产生不稳定的控制及室温波动。消除流量过小意味着全部末端装臵在任何运行工况下能提供出它们的设计功力),达到系统所需的水力工况平衡,是一个简单而实惠的选择。其基本原理就是采用平衡阀来消除有利环路的剩余压差,以便使系统所有环路均达到设计流量。由我公司2005年竣工的四川省青少年体育活动中心(综合训练馆)中央空调系统在运行过程中出现的问题与处理,就是一个典型利用平衡阀的压差控制来实现动态流量平衡继而实现水力工况平衡范例。

(四川省青少年体育活动中心(综合训练馆),建筑面积2.6万余平米,暖通空调之水系统是一个含有多个子系统的大型变流量水力系统,共分4个供、回水系统,向14个训练馆及夹层提供冷、热源。额定制冷量4834kw、制热量3140kw 设计额定流量330m3/h,水泵扬程40m)

四川省青少年活动中心综合训练馆(2005年2月)投入使用以后,空调系统的运行效果不是很好,主要反映在制冷、制热效果不均衡,各楼层、练习馆温差大。特别是2006年6~8月遇到多年未见的热浪,制冷效果更显得不平衡。处于系统末端的武术馆其组合式空调器供回水压力差为8KPa(正常情况不应小于20KPa),其表冷段温度为14℃~17℃之间,有段时间甚至升到24℃左右,也就是说表冷段循环未起作用,其盘管内的水近乎于“死水”状态,造成在开机状态下馆内温度仍高达37℃。2006年8月12日冷冻循环水泵出现过载现象,轴承磨损严重,其中一台冷冻泵电机绕组被击穿(水泵厂家的结论是大马拉小车造成的)。

为解决以上问题,我们与“中心”设备管理处及相关设备厂家一道,对系统作了一次全面的检查,基本上排除了空调水系统中相关设备及管路的原因,焦点集中在了“压差”控制和“流量”的分配上,也就是水力工况平衡问题。

3、用平衡原理解析训练馆水力工况失衡现象:

3.1末端流量不足,实际水压达不到设计水压,导致末端过不去水。

实际上是由于近端支线阻力小、流量大,造成远端流量小,水泵工作点偏移在大流量、小扬程、低效率的工作点。是典型的水力工况失衡现象。

3.2 运行阻力小于计算扬程,造成水泵实际扬程小于铭牌扬程,使水泵处于“大马拉小车”状态。

水泵实际扬程小于铭牌扬程,使水泵处于“大马拉小车”状态,这种现象大多还是水力工况平衡问题。由于水力工况设计是一个设计水压,运行水力工况是水泵的工作曲线与外网特性曲线交点形成的(见下图)。在暖通输配系统中,设计计算的原则是按最不利环路及设备厂家提供的参数考虑最大阻力,计算扬程。而实际上,许多厂家资料给出的末端设备阻力参数往往大于实际值,使得运行阻力小于计算扬程。

3.3 远近流量分配的不合理,使得轴功率过载。

对于外网特性曲线△P=SG2,由于并联的近端支路S值会小于设计值,造成总S值远小于设计值,当循环水泵处在小扬程大流量工况下时,必然造成水泵在大轴功率,低效率点运行。严重时可能出现轴功率大于电机铭牌功率,电机超额定电流,直至烧电机事故发生。

通过对上述现象的解析,我们注意到:暖通空调系统的目的是保持目标区域适宜的温度。由于空调系统末端设备的负荷是随着季节以及昼夜转换的变化而变化的,因此各末端空调设备的流量也要求随之变化。为保证空调系统的舒适节能性,即保证空调系统目标区域的适宜温度,最根本的途径就是选择最佳的方法来根据目标区域的温度来调节流量,同时避免在调节过程中的相互干扰。通过分析,我们会同设备厂家一道对原设计系统中的手动平衡阀进行全面检查,并对设计系统各支路的流量分配进行了逐一的流量测试,最后发现主要问题是末端的资用压头不能满足需求,导致末端流量不足。也就是说,在变流量系统中,单靠手动平衡阀按照设计计算的比例平衡分配水量,使各支路同时按比例增减来实现系统流量的合理分配将受到很大的局限。比如综合训练馆各馆的使用时间、所处的环境位臵等,造成负荷的变化并不是等比例的。因此,我们认为要从根本上解决这一问题应从压差控制来实现动态流量平衡。这就是文章标题所提到的“压差、流量与水力工况平衡”,而自力式压差控制阀为实现这一目标提供了保障。

4、自力式压差控制阀

4.1自力式压差控制阀工作原理

当网路的供水压力P

1增大时,被控回路的供水压力P

2

瞬时增大,随之感压

膜的受力平衡被打破,阀瓣向关闭方向移动,阀的阻力增大,P

2

又恢复到原来的

大小,即P

2-P

3

不变,反之亦然。当网路的回水压力P

3

增大时,随之感压膜的受

力平衡被打破,阀瓣向开肩方向移动,阀的阻力减小,P

2增大,P

2-

P

3

恢复不变,

反之亦然。当被控环路内部的阻力发生改变,比如某一支路关断,环路的总阻力

增大,在这个瞬间P

2增大,P

2

-P

3

增大,随之感压膜的受力平衡被打破,阀瓣向

关闭方向移动,阀的阻力增大,P

2又恢复到原来的大小,即P

2

-P

3

不变,可见,

无论是网路压力出现波动,还是被控环路内部的阻力发生变化,均可确保被控环路的压差恒定。

4.2 采用自力式压差控制阀的效果

(1)消耗系统的富裕压头,自动调整压差:

当靠近冷冻站的系统资用压头大于用户需用压头时,必然导致该用户支路的流量过大。自力式压差控制阀的作用就是消耗富裕压头(富裕压头=资用压头-需用压头),调整压差,使各分支达到合理流量。

(2)自力式压差控制阀起到隔绝系统间流量变化互相干扰作用。

四川省青少年体育活动中心综合训练馆是由多个竞技项目训练馆、活动中心等构成,各馆所处的环境位臵、使用时间的长短、建筑物内冷源变化的影响以及传热导体的不同等导致末端负荷变化较大,造成各系统间流量变化的干扰作用明显。自力式压差控制阀能根据末端负荷的变化,自动调节管网的水平衡失调问题,避免了小温差,大流量运行。

4.3自力式压差控制阀在变流量系统中的动态控制

自力式压差控制阀是一种无需外来能源,依靠输送管网介质差压变化进行自动调节流量,可接被控管的实际需要,一次性设定流量。阀门可在水压作用下,自动消除管线的富余压力及压力波动所引起的流量偏差,消除阀后压力的异常变化。无需考虑分支管线间流量调节和相互干扰,使流量分配工作变成直观的一次性操作,降低了流量调节工作量。从而实现管网流量自动平衡。

5、结论

随着人们生活品质要求、节能意识的不断提高以及空调系统的大型化,变流量水力系统在暖通空调工程中占据越来越重要的位臵。变流量系统在运行过程中各分支环路的流量是随着外界环境负荷的变化而变化的,因此对系统的水力平衡和调节提出了很高的要求。通过采用自力式压差控制阀来解决四川青少年体育活动中心综合训练馆暖通空调变流量水力系统的动态水力平衡和调节问题,使我们更进一步了解了平衡阀的作用和压差控制技术在实际工程中的应用。要保证空调系统的舒适节能性,即保证空调系统目标区域的适宜温度,最根本的途径就是选择最佳的方法来根据目标区域的温度来调节流量,同时避免在调节过程中的相互干扰。平衡阀之压差控制技术的应用为实现这一途径提供了技术保障,占据了越来越重要的位臵。

何利

四川省工业设备安装公司

二〇〇九年八月

流量与管径压力流速之间关系计算公式

流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q???——断面水流量(m3/s) C???——Chezy糙率系数(m1/2/s) A???——断面面积(m2) R???——水力半径(m) S???——水力坡度(m/m) 根据需要也可以变换为其它表示方法:

Darcy-Weisbach公式 由于 这里: h f??——沿程水头损失(mm3/s) f ???——Darcy-Weisbach水头损失系数(无量纲) l????——管道长度(m) d????——管道内径(mm) v ????——管道流速(m/s) g ????——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件

管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征 区 适用条件水力公式、摩阻系数符号意义 水力光滑 区>10 雷诺数 h:管道沿程水头损 失 v:平均流速 紊流过渡 区10<<500 (1) (2)

管道流量计算汇总

请教:已知管道直径D,管道压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管有压力P,可管流量为零。管流量不是由管压力决定,而是由管沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q――流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的径和压力流量的关系 似呼题目表达的意思是:压力损失与管道径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管壁粗糙度;L――管长;Q――流量;d――管径 在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量? 管道压力0.3Mp、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度330、管道口径200、缺小单位,管道长度330米?管道径200为毫米?其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5--1米/秒左右,则每小时的流量为:0.2×0.2×0.785×1(米/秒,设定值)×3600=113(立方/小时) 管道每米的压力降可按下式计算:

管道流量、压力计算

问题:假设一高位水池往低处的水池供水,供水距离为20米,供水管路为80毫米,供水坡度为20度,如何计算出水端的压力和流量 局部损失忽略,按长管计算: 80mm管比阻s=10.3n^2/d^5.33=10.3*0.012^2/0.080^5.33= 1042 作用水头H=Lsin20=20*sin20= 6.84 m 管道长度L=20m 管道流量Q =[H/(sL)]^(1/2)=[6.84/(1042*20)]^(1/2)=0.0181m^3/s=65.2 m^3/h 流速V=4Q/(3.1416d^2)=4*0.0181/(3.1416*0.08^2)= 3.60 m/s 管道出口动压Pd=ρV^2/2=1000*3.6^2/2 = 6480Pa 压力损失主要是两个方面,一个是管道输送过程的沿程水头损失,一个是经过阀门,弯头的局部水头损失。沿程水头损失是由管道的材质,流速,长度这些决定的,局部的一般按沿程10%考虑,具体计算可以看水力学的书。 管道比阻: A = 10.3n^2/D^5.33 式中:n——管内壁糙率,普通黑碳钢可取n=0.012 ;D——管内径,m。道比阻。 对于DN100的普通黑碳钢导热油管道,DN100管,内径D = 99mm =0.099 m 管道比阻: A = 10.3*0.012^2/0.099^5.33 = 334.6 (s^2/m^6) 或 A = 0.001736/0.099^5.3 = 365.3 (s^2/m^6)

管道压力损失怎么计算 其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力: 1 、 局部阻力是由管道附件 ( 弯头, 三通, 阀等 ) 形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通 过查手册得出, 动压和流速的平方成正比。 2 、 沿程阻力是比摩阻乘以管道长度, 比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误 差也大。如要弄清它,应学 “ 流体力学 ” ,如难以学懂它,你也可用刘光启著的 “ 化 工工艺算图手册

流量与管径、压力、流速的关系

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。水泵输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

管道流量计算公式

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

23段管路、大压降水平输气管道的流量计算公式(修改)

第三节 短距离、大压降水平输气管计算公式 对于短距离、压降很大的输气管,例如:干线截断阀两侧的放空管(在门站、首战和末站里面经常会有放空管),放空时,流速很高,则动能所占比例很大,不能忽略微分方程中的项,否则,可能会引起较大的计算误差,这时候就必须要考虑动能。 2 2 22 dP v dx dv D λ ρ -=+ 两侧同时除以v 2/2 2 222dP dx dv v D v λρ-=+ 同样根据气体状态方程和连续性方程得到 1 zRT P ρ = ,M zR T v A P = 代入上式得 2 2 2 112Q Q z z P P L P P zRTdP AP dx d P P P M zRT D λ ?? ?? ??- = + ? ? ??? ?? ?? ??? 积分: () 22 2 2 2112ln 2 Q z z Q P P A L M zRT D P P λ-?? =+- ? ??? 整理得 M = 水平管方程M = 如果令2ln 0Q z P P =的话,稍作整理就可以得到水平管道的输量的计 算公式,这一项就是考虑了由于动能的变化对管道输量产生的影响。相应的我们也可以得到在标准状态下的体积流量。

考虑动能项的体积流量: Q C =这就是短距离、大压降放空管线的体积流量的计算公式。如果在管线上开一个空,来计算放空的流量的话,我们就可以用这个公式来进行计算。 与不考虑dv 2/2推导地公式相比,公式中多一项2ln Q z P P ,因而在 P Q 、P z 和其它参数相同时,考虑dv 2/2后引起数量下降。(考虑这项之后分母增加了,整个数值就会降低,这时候所引起的输量就会下降) 例题1.长距离输气管:L=100km ,D=1m ,λ=0.01,P Q =60×105Pa ,P z =30×105Pa 1000L D λ = 2ln 1.39Q z P P =,占前一项的1.39‰ 例题 2.有一条短放空管线:L=100m ,D=0.5m ,λ=0.01,P Q =60×105Pa ,P z =3×105Pa 1000.01 20.5 L D λ ==,2ln 6Q z P P =,若忽略2ln Q z P P ,误差很大。所以针对段放 空管线我们必须要采用后面计算出来的公式。

管道流量计算

请教:已知管道直径 D,管道内压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道内压力P,还不能求管道中流体的流速和流量。你设想管道末端有一 阀门,并关闭的管内有压力 P,可管内流量为零。管内流量不是由管内压力决定,而是由管 内沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求 管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻 s=0.001736/dA5.3 或用 s=10.3n2/d^5.33 计算,或查有关表格; 2、确定管道两端的作用水头差H=P/( p g)), H以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量 Q : Q = (H/sL)A(1/2) 4、流速 V=4Q/(3.1416dA2) 式中:Q ----- 流量,以mA3/s为单位;H ------- 管道起端与末端的水头差,以 mA为单位;L ---- 管道起端至末端的长度,以m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C V (RJ)=C V [PR/( p gL)] 流量:Q=CA V (RJ)= V [FgSL)]p 式中:C――管道的谢才系数;L ――管道长度;P――管道两端的压力差;R 半径;p --- 液体密度;g ---- 重力加速度;S --- 管道的摩阻。

管道的内径和压力流量的关系 似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题, 则正确的答案应该是:压力损失与流量的平方成正比,与内径5.33方成反比,即流 量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3* nT * L* Q A2/d A5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管内壁粗糙度;L ――管长;Q――流量; d ――管内径 在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量?管道压力0.3Mp、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度330、管道口径200、缺小单位,管道长度330米?管道内径200为毫米? 其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其内壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5 -- 1米/秒左右,则每小时 的流量为:0.2 X 0.2 X 0.785 X 1秋米设定值)X 360013=(立方/小时) 管道每米的压力降可按下式计算: △P MPa/m)= 0.0000707 X V 人2 -小八1 计算 式中V为平均流速(m/s),d为管道内径(m)

标况流量和工况流量之间的关系

标况流量和工况流量之间的关系 标况和工况之间的不同是什么呢?如何计算气体状态?标况流量与工况流量又该如何转换呢? 工况:实际工作状态下的流量,单位:m3/h 标况:温度20℃、一个大气压(101.325kPa)下的流量,单位:Nm3/h 注意:通常所指的标况是温度为0℃(273.15开尔文)和压强为101.325千帕(1标准大气压,760毫米汞柱)的情况,区别于我国工业气体标况的规定。 两种状态下的单位都是一样的,只是对应的流量不同而已。另外不同国家所指的标态也不一样。 根据理想气体状态方程 其方程为pV=nRT。 这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数。 PV/T=nR为常数, 所以P1×V1/T1=P2×V2/T2 设标况下体积流量为V0, 温度T0=273+20=293k,压力P0=101.325Kpa=0.101325Mpa,工况下体积流量为V,温度T(摄氏度),压力P(表压力,Mpa),忽略压缩因子的变化有V*(P+0.101325)/(T+273)=V0*P0/T0

V=V0?0.101325?(T+273) 293?(P+0.101325) 注意:一般天然气都是中低压输送,低压入户,都是带有压力的,属于工况。 天然气的计量按标准状态(严格的说是准标准状态,我们叫它常态)来计量的,一般贸易计量按20℃,1个大气压力(0.1013MPa)状态下的体积计量,比标准状态下的体积稍大一些,对卖方有利(因为本来是乘以273,按照20℃的话就是乘以273+20,所以变大了)。 在国际标准中的标准状态是0℃,1个标准大气压力。 对于气体来说不同的压力,其体积会差很大(气体很易压缩),当然体积流量会差很大,同径条件下不同工况下的流速自然也会差很大,比方同直径蒸汽管线对于10bar和3.5bar时最大流量是不同的。 工艺计算时用工况或用标况取决于你查的图表、用的常数,两种状态的计算都是可能出现的。 比方在定义压缩机参数时,我们常用标况下的参数来给厂家提条件,同时我们也提供温度大气压力等参数供做工况下的校正,这么做的好处是我们可以用同一个状态来表明参数,就如同泵的性能曲线都是用清水来说的,没人会说汽油的性能曲线是什么,原油的性能曲线又是什么。 在很多计算中用的都是工况,比方计算流速时。 气体的标准状态 气体的标准状态分三种:

水流量与压强差的准确计算公式

水流量与压强差的准确 计算公式 -CAL-FENGHAI.-(YICAI)-Company One1

水流量与压强差的准确计算公式 最佳答案 对于有压管流,水流量与压强差的准确计算公式和计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=d^ 或用s=d^计算(n为管内壁糙率,d为管内径,m),或查有关表格; 2、确定管道两端的作用水头差ΔH=ΔP/(ρg),),H 以m为单位;ΔP为管道两端的压强差(不是某一断面的压强),ΔP以Pa为单位,ρ——水的密度, ρ=1000kg/m^3;g=kg 3、计算流量Q: Q = (ΔH/sL)^(1/2) 4、流速V=4Q/^2) 式中: Q——流量,以m^3/s为单位; H——管道起端与末端的水头差,以m 为单位;L——管道起端至末端的长度,以 m为单位。^表示乘方运算,d^2 表示管径的平方;d^表示管径的方。是圆周率取至小数点后第4位。 或者先求管道断面平均流速,再求流量: 管道流速:V=C√(RJ)= C√(RΔP/L) 确定 流量: Q=^2/4)V 式中:V——管道断面平均流速;C——谢才系数,C=R^(1/6)/n,n管道糙率;R——水力半径;对于圆管R=d/4,d为管内径;J——水力坡降,即单位长度的水头损失,当管道水平布置时,也就是单位长度的压力损失,J=ΔP/L;ΔP——长为L 的管道上的压力损失;L——管道长度。 总公式:Q=√(ΔP/9800)x (d^)x3600 m^3/h 多晶炉:d=40,压差=4x10^5,L=200m 流量^3/h 单晶炉: d=94,压差=^5,L=200m 流量^3/h 如果流量为15 m^3/h 侧要求L=100,d= mm 侧要求L=200,d=60.7 mm 如果流量为 m^3/h 侧要求L=200,d=68 mm 2

3、无压和有压管道设计流量及管径计算

无压和有压管道设计流量计算及管径计算 一、管道设计流量计算 1、输水管设计流量。由取水水源至配水管网的输水管设计流量Q,一般按配水管网最大需水量进行设计,管网设计时还应加上输水管的漏失水量。输水管的漏失水量应根据管道的选用材质、接口形式、系统布置以及管道长度加以确定。若无资料统计,漏失水量一般按最大用水量的5%~15%考虑。 2、配水管网设计流量。考虑下列三种工况: 1)正常流量。配水管网设计正常流量应按管网内各用水处最大 流量计算。必要时可加上管网的漏失水量,漏失水量取值方 法同输水管。 2)配水管网若设计为环状管网,设计完成后,应按最不利管段 发生事故时工况进行校核,校核水量Q SK可按最大用水量的 70%计算。 Q SK=0.7Q(l/s) 3)消防流量。城镇供水管道还应考虑消防流量,此时应在正常 设计流量上加上消防流量。消防流量可按《建筑设计防火规 范》(GB50016-2010)的规定选用。 二、无压和有压管道的管径计算 管道设计流速应控制在经济流速0.9~1.5m/s范围内,超出此范围时应经技术经济比较确定。经济流速选择可参考以下经验值: 100mm<D<400mm时,V=0.6~0.9m/s; D≥400mm时,V=0.9~1.4 m/s。 管道容许的最大流速,一般为2.5~3.0 m/s。 1、对非满流输水管(无压流)的管径选择,应根据管道埋设坡度(纵坡)和容许的流速确定。 根据经济流速计算所得的管径为非市场销售标准管径时,应将其标准化。标准管径选用的界限可参考表-1。

表-1 标准管径选用的界限 单位:mm 2、管道为满流或压力流时,计算管径的确定,可按下列公式计 算: D=πυd Q 4 式中:D —管道内径(m ),金属管的标称直径为内径,塑料 管的标称直径为外径(含壁厚); Q d —输水管计算流量(m 3 /s ); v — 管道经济流速(m/s ),根据选用管材及当地的 敷管单价和动力价格,通过计算确定,不同管径 的经济流速也不相同,大直径管道的经济流速大 于小直径管道。 管径标准化。输配水系统各管段直径应经技术经济比较确定,并可按沿程水头损失不变的原则,将同一管段设计成略大于和略小于计算管径的市场销售标准管径两段,按下式计算大管径设计长度占全管段设计长度的比例: χ=b b b b D D D D ------2 12 式中:χ—大管径设计长度占全管段设计长度的比例; D —计算管径(mm ); D 1 —略大于计算管径的市场销售标准管径(mm ); D 2—略小于计算管径的市场销售标准管径(mm );

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。 谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。 另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管

压力与流量计算公式

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 压力与流量计算公式: 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中:FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时 式中:Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时

管道流量计算

己知管道压缩空气压强为6个大气压,管口直径为20MM,如何算出流量? 解:解这个题目有个假设,(1)流动阻力损失不计,(2)即压缩空气流至管口时,压力能全部转换为动能,即: (v×v)ρ/2=P即:P=0.5ρV2 ρ---密度1.2 V2---速度平方P--静压(作用于物体表面) P=6个大气压=0.6MPa=600000Pa(按工程大气压,1个工程大气压=0.1MPa),ρ压缩空气的密度,按ρ≈1.2千克/立方米,代入上式得: v=1000米/秒 因是压缩空气管道,工作压力P=0.6MPa,则管子可选用低压流体输送用焊接钢管,DN20的钢管外径为D=26.9mm,钢管壁厚S=2.8mm,得钢管内径为d=21.3mm; 根据流量公式L=Av=(π/4)×0.0213×0.0213×1000=0.3563l立方米/秒=1282.78立方米/小时 计算原理是这样的,工程上搞设计时,可直接查用压缩空气管道计算表即可。 一气柜五万柜检修时,DN50管,充氮时,3000立方米每小时,氮气为中压氮(13公斤) 管道流通截面积A等于流量Q除以(平均)速度V,你的问题中没提供流速、流量值(仅提供了压力值),因此天然气管径、截面没法算出,但可以给你列出算式见后。 另外,0.5公斤压力也是俗称,准确的说法应该是每平方厘米0.5千克力(公斤力),即0.5kgf/cm2,此单位已淘汰,但习惯上仍在用,应该用兆帕MPa或千帕kPa等压力(压强)单位,0.5kgf/cm2大约等于0.05MPa,或50kPa。此外,虽然压力与流量有相关性,但两者是两个概念,相同的压力差下,由于管路阻力的不同,流量、流速也不同。 A=Q/V; A=πd2/4。计算时要注意单位换算别搞错。 Q=A V A---mm2,=10-6m2 V---m/s,=3600m/h Q=0.0036AV (m3/h) A=Q/(0.0036V) (m3/h) A=πd2/4 d=2(A/π)1/2 d=2(A/π)1/2 d=(1/.03)(Q/Vπ)1/2

管道流量计算公式资料讲解

蒸汽管道设计表ssccsy 蒸汽管道设计表。流量(kg/hour)管道口径Pipe Size(mm)DN_蒸汽压力(bar)蒸汽流速(m/s)饱和蒸汽管道流量选型表(流速30米/秒)(流量:公斤/小时)压力BAR.管道口径(mm)备注:1Pa=100bar. 油管的选取小样~ 油管的选取油管的选取。问题:液压系统中液压泵的额定压力位6.3mpa,输出流量为40l/min,怎么确定油管规格。压力管路为15通径,管子外径22,管子接头M27X2。3.回油管路.1~3m/s同样根据公式计算,回油管路在17~29mm,往标准上靠的话,可以选20通径或者25通径,如果安装空间允许当然选大的好,25通径的管子外径为34,接头螺纹M42X2如果选20通径的话,管子外径28,螺纹M33X2以上说的都是国标,你也可以往美标等上靠,基本上差不多。压缩空气管径、流量及相关晴天多云 如:标准状态下流量为5430Nm3/h,换算成0.85MPa下流量为5430/8.5=639m3/h, 取流速为15m/s, 可以求得管径为123,取整为DN125的管径。 自吸泵的扬程、距离和功率的关系_百度知道李12子 自吸泵的扬程、距离和功率的关系_百度知道自吸泵的扬程、距离和功率的关系悬赏分:10 - 提问时间2010-6-16 22: 58.我需要一台汽油机水泵,自吸式,要求水平运输水150米左右,垂直运输2米,请问一台扬程为32米,功率为2.8马力,流量为25吨/h的水泵能满足要求吗? 管道气体流量的计算公式。浅墨微澜 管道气体流量的计算公式。1、管道气体流量的计算是指气体的标准状态流量或是指指定工况下的气体流量。未经温度压力工况修正的气体流量的公式为:流速*截面面积经过温度压力工况修正的气体流量的公式为:流速*截面面积*(压力*10+1)*(T+20)/(T+t)压力:气体在载流截面处的压力,MPa; T:绝对温度,273.15 t:气体在载流截面处的实际温度2、Q=Dn*Dn*V*(P1+1bar)/353Q为标况流量; 关于消防设计几点问题辉煌华宇 "并注明消火栓给水管道设计流速不宜超过2.5m/s,而厦门消防部门规定室外消防给水管道流速不能大于1.2m/s,笔者对此规定有不同的看法。消防部门的依据是市政部门所提供的市政管道流速为1.2m/s,故在选择室外消防给水管的流速也不大于l.2m/s,但笔者认为管道流速应与市政管道压力有关,只要市政给水管道压力足够大,室外消防管道流速又满足规范不宜大于2.5m/s的要求,既能满足消防流量的设计要求。 反渗透膜的化学清洗- 大将军王电厂化学的日...老姚同志 反渗透膜的化学清洗- 大将军王电厂化学的日志- 网易博客反渗透膜的化学清洗。停止清洗泵的运行,让膜元件完全浸泡在清洗液中。在对大型系统清洗之前,建议从待清洗的系统内取出1支膜元件,进行单个膜元件清洗效果试验,确认清洗效果后再实施整套系统的清洗。此处反向清洗是指在膜组件的浓排端泵入清洗液,在膜外侧进行组件内循环,使清洗液流经膜表面,以适当的流速在膜表面形成一定的冲刷力,将系统内和膜表面的污染物清除排出。 [转载]锅炉选择(201--300)(2010-07-06 13:...锅炉主操作 [转载]锅炉选择(201--300)(2010-07-06 13:01:54)转载原文原文地址:锅炉选择(201--300)作者:掌心201. 燃油丧失流动能力时的温度称( D ),它的高低与石蜡含量有关。B、锅炉传热温度的限制;245. 当过剩空气系数不变时,负荷变化锅炉效率也随之变化,在经济负荷以下时,锅炉负荷增加,效率(C )。256. 随着锅炉参数的提高,锅炉水冷壁吸热作用(A)变化。273. 锅炉水处理可分为锅炉外水处理和( C )水处理。 泵后阀门(水锤) 的讨论给排水On Line -服务...简单如我 有些情况下水锤的发生远在止回阀的数公里以外,"止回阀调整法"就显得无所适从;iI

标况与工况换算公式

工况流量和标况流量的换算公式 0℃、一个大气压(101.325kPa)下的工况称为标况。 在选择一些系数的时候一定要注意,注意转换。根据状态方程进行转换。 标况和工况应该就是温度和压力的不同。 理论上的一些参数基本是标况状态的参数;而工厂运行记录的参数基本是工况状态下的参数。 ? 气体状态方程:PV=nRT 工况与标况换算:P1*V1/T1=P2*V2/T2 对于气体来说不同的压力,其体积会差很大(气体很易压缩),当然体积流量会差很大,同径条件下不同工况下的流速自然也会差很大,比方同直径蒸汽管线对于10bar和3.5bar时最大流量是不同的。 工艺计算时用工况或用标况取决于你查的图表、用的常数,两种状态的计算都是可能出现的。 比方在定义压缩机参数时,我们常用标况下的参数来给厂家提条件,同时我们也提供温度大气压力等参数供做工况下的校正,这么做的好处是我们可以用同一个状态来表明参数,就如同泵的性能曲线都是用清水来说的,没人会说汽油的性能曲线是什么,原油的性能曲线又是什么。 在很多计算中用的都是工况,比方计算流速时。 2、

工况流量=标况流量*标况压力/(273+标况温度(℃))*(273+工况温度(℃))/工况压力 3、1标准大气压=760毫米汞柱=76厘米汞柱=1.013×105帕斯卡=10.336米水柱。 4、克拉伯龙方程式 克拉伯龙方程式通常用下式表示:PV=nRT……① P表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。所有气体R值均相同。如果压强、温度和体积都采用国际单位(SI),R=8.314帕·米3/摩尔·K。如果压强为大气压,体积为升,则R=0.0814大气压·升/摩尔·K。R 为常数 理想气体状态方程:pV=nRT 已知标准状况下,1mol理想气体的体积约为22.4L 把p=101325Pa,T=273.15K,n=1mol,V=22.4L代进去 得到R约为8314 帕·升/摩尔·K 玻尔兹曼常数的定义就是k=R/Na 因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式: pv=mRT/M……②和pM=ρRT……③ 以A、B两种气体来进行讨论。 (1)在相同T、P、V时: 根据①式:nA=nB(即阿佛加德罗定律)

烟气行业颗粒物流量工况与标况换算计算公式

工况烟气与标况烟气换算公式: 101325 273273Xsw -1C'Cw s a s P B t +?+??=)(Cw —实际烟气状况下颗粒物断面浓度平均值,3 /mg m ; C ’—标准状态下颗粒物断面浓度平均值,3/mg m ; Ts —测定断面平均烟温,℃;a B —测定期间的大气压,Pa s P —测定断面烟气静压,Pa; Xsw —测定断面烟气平均含湿量,%。

标况到折算的换算公式: σ αα?=C'C C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,3/mg m ;C’—标准状态下颗粒物或气态污染物实测平均浓度,3 /mg m ;α—在测点实测的过量空气系数; s α—有关排放标准中规定的过量空气系数。标准过量空气系数的换算公式: 2 s 2121Xo -=α2Xo —有关排放标准中规定的基准氧含量。

排放率换算公式: -6 10Qsn c'G ??=G —颗粒物或气态污染物排放率,kg/h; C’—标准状态下颗粒物或气态污染物实测平均浓度,3 /mg m ;Qsn —标准状态下干排烟气量,h m /3。标况烟气流量: ∑-=n 1 Qsn Q n Q —标准状态下干烟气排放总量;Qsn —标准状态下干排烟气量,h m /3。 工况流量与标况流量换算公式:

)1(101325273273Xsw Ps Ba t Qs Qsn s -?+?+?=Qsn —标准状态下干烟气流量,h m /3; Ba —大气压力,Pa; Ps —烟气静压,Pa; s t —烟温,℃; Xsw —烟气中含湿量,%。湿烟气流量: Vs F 3600Qs ? ?=Qs —工况下湿烟气流量,h m /3; F —测定断面的面积,2m 。烟气流速的计算: Vp Kv Vs ?=

工况流量转标况流量公式详述

工况流量转标况流量公 式详述 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

工况标况气体换算公式 1.气体的标况流量和工况流量的换算关系,实际就是按质量守恒定律来算的,就是标况和工况的气体压力和温度不同,可以通过查气体密度变化表知道各自状态时的密度,工况体积流量与标况体积流量之比与其密度之比成反比如下式: 工况体积流量/标况体积流量=标况体积密度/工况体积密度 (工业气体标准状况:温度20度,压力0.101325MPa) 2.工况标况气体换算公式: (P1×V1)÷T1=(P2×V2)÷T2 P1:标况压力,以标准大气压取值=101.325KPa V1:标况流量, T1:标况温度,取值273.15 P2:工况压力,表压+P现(实际现场大气压,中间变量,每次输送前输入电脑) V2:工况流量,取自流量计,因流量计输出是以立方每小时为单位的,程序里计算是每秒计算一次,故流量计输出除以3600即为V1。 T2:工况温度,273.15+热电阻温度 推导出:V1=(P2×V2×T1)÷T2×(1÷P1) V1=【(表压+P现)×V2×273.15】÷(273.15+热电阻温度)×(1÷101.325) 能耗计算: K=【∑(Q辅×△P辅)÷N+∑(Q主×△P主)÷N】÷(Gs×L) Q辅:辅管标况流量 △P辅:辅管压差 N:输送时间,秒.根据输送量随机取值 Q主:主管标况流量 △P主:主管压差 Gs:输送量,T/h L:管道当量长度 将总输送量分成几个点,分别取值K值,比如总数量为1000KG,则分别计算200KG、400KG、600KG、800KG、1000KG、1200KG、1400KG等7个不同K值。

相关文档
最新文档