火山岩储层含气性预测

火山岩储层含气性预测
火山岩储层含气性预测

火山岩储层预测的地震反演方法[1]

2009年12月大庆石油地质与开发Dec.,2009第28卷第6期PetroleumGeologyandOilfieldDevelopmentinDaqingV。I.28Nn6 DOI:10.3969/J.ISSN.1000—3754.2009.06.065 火山岩储层预测的地震反演方法 姜传金1'2冯肖宇2 (1.大庆石油学院地球科学学院,黑龙江大庆163318;2.大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712) 摘要:火山岩是油气的高产储层,但其岩性、岩相横向变化快,非均质性强,成层性差,复杂的地质、地震条件使得寻找火山岩有效储层成为勘探难题。选取合适的叠后地震反演处理技术,能够有效地预测火山岩有效储层分布范围,从而提高解释人员对火山岩有效储层和致密层的分辨能力。实践证踢,测井一地震联合密度反演是定量预测火山岩有效储层空间分布的有效手段,拟波阻抗换算法和高斯配置办模拟法相结合的密度反演有助于提高地震资料识别油气储层的精度。 关键词:徐家围子断陷;火山岩;火山岩有效储层;波阻抗反演;密度反演 中图分类号:1'631文献标识码:A文章编号:1000-3754(2009)06-0304-04 SEISMICINVERSIONAPPROACHONVOLCANIC ROCKRESERVOIRPREDICTIoN JIANGChuan-jinl”-FENGXiao—yu2 (1.GeoscienceCollege,DaqingPetroleumInstitute,Daqing163318,China;2.ExplorationandDevelopmentResearchInstitute.DaqingOi娅ldCompanyLtd,Daqing163712,China) Abstract:Therealehighproductivitylayersofhydrocarboninvolcanicrockreservoir.However,itisdifficulttodiscoverpayzonesinvolcanicrockreservoirbecauseofrapidlylateralvariationoflithologyandlithofacies,strongheterogeneity,poorbeddedproperty,aswellascomplexgeologicandseismicconditions.Asuitablepoststackseis—micinversionprocessingtechniquecanbeusedtoeffectivelypredictthedistributionrangeofpayzonesinvolcanicrockreservoir,asaresult,thediscriminationofinterpretersonpayzonesandtightlayersofvolcanicrockreservoircanbeincreasedgreatly.Practiceshowsthatlogging—seismiccombineddensityinversionisaneffectivemethodfor rockreservoir.Besides-densityinversionmeth—quantitativepredictionofspacedistributionofpayzonesofvolcanic odcombinedwithpseudo.waveimpedanceconversionandGaussiancollocationsimulationcanhelptoincreasetherecognitionaccuracyofpaybedswithseismicdata. Keywords:XujiaweiziFaultDepression;volcanicrock;effectivereservoir;waveimpedanceinversion;densityinversion 收稿日期:20094)7.31 基金项目:教育部重点实验室基金项目(2008DTKF010)。 作者简介:姜传金,男,1963年生,高级工程师,在读博士,从事油气勘探地质和地震资料综合解释研究。 E—mail:jiangchj@petrochina-com,cn 万方数据

深层地震

第17卷 第4期 地 球 物 理 学 进 展 Vol.17 No.4 2002年12月(564~574) PROGRESS IN GEOPHYSICS Dec.2002 深层地震勘探的地震波传播理论研究前景 田春志1 刘 洪2 (大庆石油学院1,安达151400;中国科学院地质与地球物理研究所2,北京100101) [摘 要] 深层地震勘探为地震波传播理论研究提出了新的挑战和机遇.深层地震勘探的主要难点是上覆层的影响甚大,使后续的处理有隔靴挠痒之感,必须应用波场延拓消除上覆层影响.深层波速的高速性和横向不均匀性决定了大角散射和弹性波处理方法的重要性.本文具体评述了深层地震勘探的主要方法对策,深入探讨了波场延拓的李群方法和弹性反演的某些问题,目的在于为深化深层地震勘探提供新的研究手段和方法. [关键词] 深层地震勘探;波场延拓;李群方法;弹性反演 [中图分类号] P618 [文献标识码] A [文章编号] 1004 2903(2002)04 0564 11 0 引 言 深层天然气是今后天然气勘探的重要领域[1],是实现并完成天然气储量任务的重要保障,深层天然气勘探技术的深入研究对松辽盆地油气勘探与开发具有重要的现实意义.深层特殊岩性储层的形成是松辽盆地由裂谷盆地向凹陷盆地发展过程中形成的产物,因地质年代相对久远,地层岩性多变,加之多期不同的构造运动的叠合,使特殊岩性储层的构造格局十分复杂,其中登娄库组储层具有高地温场、强成岩作用、弱反射系数的特征,侏罗系具有多期火山活动,多种类型储层,构造起伏剧烈,反射连续性差的特点,在利用目前地震资料进行地质解释研究时,往往存在着构造解释多解性强,构造、岩性圈闭识别精度低的问题,针对深层的构造复杂,砂砾岩、火山岩储层具强非均匀特征,地震波能量弱、分辨能力低、信噪比低特点,在地震资料的采集、处理、解释等方面仍有许多理论问题尚需深入研究. 针对地震波能量弱,可以考虑扩大面元叠加[2].但由于走时曲线非双曲线性质[3],直接叠加会损失信号.一种可能的考虑是,通过剩余动校正,将非双曲线校正为双曲线再叠加,但剩余动校正不能校正焦散走时曲线,剩余动校正扩大面元叠加有可能损失复杂构造引起的绕射波,从而影响复杂构造断点的成像.信噪比低特点,需要考虑消除规则干扰和随机噪声的方法.规则干扰包括面波、多次波[4].随机噪声主要表现为野值、高斯型随机噪声、非高斯型随机噪声.随机噪声的消除办法,主要靠叠加.束叠加是一个重要探索方向[5],由此引发对边缘小波、曲线小波的探索[6,7].分辨能力低主要考虑粘弹性损耗对波形的补偿问题,还需要考虑速度频散造成的迭加损失分辨率问题[8,9].为了考虑强非均匀储层特征的刻画,需要考虑非水平地层剥蚀不整合面的散射,这需要考虑对称轴非垂直的横向各向同性介质的反射和透射[10 12].为了考虑强非均匀储层特征的刻画,还需要考虑近源沉积造成的相带快速变化,即地震波的振幅有较强的横向变化. [收稿日期] 2002 05 20; [修回日期] 2002 09 30. [基金项目] 中国科学院知识创新工程重大项目(KZCXI y01),国家自然科学基金和大庆石油管理局项目(49894190)资助. [作者简介] 田春志,1963年3月生,男,黑龙江省庆安县人,1985年长春地质学院获学士学位,现为大庆石油学院博士研究生,从事油气勘探开发研究.

地震储层预测技术

地震储层预测技术 3.地震储层预测技术 地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资料为参考,波阻抗反演和属性分析为主要技术来进行的,因此,波阻抗反演的效果和属性参数的运用成为储层预测的关键。 3.1 波阻抗反演 基于自激自收的地震褶积模型,声波阻抗己成为储层预测的关键参数。近年来波阻抗反演技术发展十分迅速,各种商业化波阻抗反演软件己有几‘十种,但目前国内比较流行的反演软件也就10种左右,如Jason反演,ISRS反演等。叠后波阻抗反演可以分为递推直接反演和迭代约束反演两大类,以迭代反演为主流发展方向。在生产中也用得较为普遍。迭代波阻抗反演的关键技术组成有地震子波提取、地质模型建立和反演的优化算法等,而模型的建立和优化算法往往依赖于资料的品质和地质特征,对于不同的地震地质条件可能有不同的最佳反演优化算法。目前应用于波阻抗反演的主要算法有全局优化反演技术,随机逆反演,稀疏脉冲谱技术等。近年来发展了模拟退火和遗传算法,在特定的地质和地震数据下效果非常明显。

尽管有了测井资料的约束和地质资料的参考,但是波阻抗反演的多解性还是非常普遍,这是由于测井资料的辐射半径过小和介质横向变化所造成的。解决预测精度和多解性问题需要有多学科综合应用的知识。特别是将层序地层学理论和波阻抗反演联合起来将会大大提高预测质量,这也是今后声波阻抗反演的一个主要方向。 与叠后声波阻抗形成对比的是叠前弹性波阻抗反演。Connolly(l999)基于Zoepprittz公式和声波阻抗的原理,建立了弹性波阻抗反演技术,其处理模式与AVO类似,均在叠前CMP道集上完成。Whitcombe等(2002)对弹性波阻抗进行了修正,提出了扩展弹性波阻抗的概念,在此基础上建立了流体识别与预测因子,对于油气储层的预测和流体性质有很好的描述。王保丽等从Gray公式出发,通过弹性波阻抗反演原理,直接从地震数据中提取拉梅常数等弹性参数,更适合于流体预测。马劲风研究了广义弹性波阻抗反演理论与算法。王仰华等则提出了射线波阻抗的概念,在实现上更加容易。与常规波阻抗反演相此,弹性波阻抗能更确切地反映出地层岩性的变化,消除了由于叠加过程中的平均效应而损失的岩性信息,更适合于储层描述和油气预测,近年来的应用趋势有所上升。 3.2地震属性分析 地震属性技术是储层预测的重要手段。目前,包括时间、振幅、频率、相位和吸收衰减等方面的地震属性已多达60多种。加上几何方面、统计

薄互层储层预测方法

第43卷第1期2004年1月 石 油 物 探 GEOPHYSICAL PROSPECTIN G FOR PETROL EUM Vol.43,No.1 Jan.,2004 文章编号:100021441(2004)0120033204 薄互层储层预测方法 陈守田1,2,孟宪禄2 (1.石油大学盆地与油藏研究中心,北京102249;2.大庆石油管理局物探公司,黑龙江大庆 163357) 摘要:针对松辽盆地葡萄花油层三角洲沉积薄互层储层的特点,研究不同微相的砂岩与测井特征、地震属性的关系,探讨利用沉积微相、波形特征定性预测砂岩储层发育带的技术。利用地震属性预测技术定量预测储层厚度结果表明,本区整个油层砂岩总厚度与地震属性有很高的相关度,厚砂层的预测符合率较高。 关键词:储层预测;薄互层;沉积微相;地震属性;相关度;波形特征 中图分类号:P631.4 文献标识码:A 松辽盆地中白垩统姚一段沉积时期,盆地古地势平坦,形成的沉积层角度非常低平。随着湖盆整体抬升,湖盆快速收缩,河流—三角洲快速推进,沿长垣向南及东西两侧的三肇凹陷和古龙凹陷分流,由大庆至肇州一带姚一段沉积厚度由60m减薄至不足20m,形成面积巨大的扇型三角洲储集砂体[1]。研究区位于三肇凹陷的卫星地区,处在葡萄花油层河流—三角洲沉积体三角洲平原向三角洲前缘过渡的相带区,主要针对该沉积体系的葡萄花油层开展储层预测研究工作。各井取心显示,葡萄花油层内部含钙质比较普遍。钙质生成于浅水湖湾、封闭沼泽长期蒸发浓缩的环境及枯水期的河道,是三角洲浅水环境中沉积常见矿物。含钙层泥岩形成于封闭的浅水中,含钙层砂岩形成于河道砂体沉积过程的枯水期或干旱期。中、下部泥岩颜色多为灰绿色、棕灰色夹紫红色薄层,中部紫红色多于下部,代表了由三角洲外前缘至三角洲内前缘湖退反旋回沉积过程,沉积环境水体浅,暴露时间增加,泥岩红色和浅色增多。钙质在泥岩层、砂岩层和过渡岩层普遍发育。 1 高钙质薄互层岩石电性、物理特征分析 区内探井在多数葡萄花油层有不同程度取心,为分析研究提供了详细的资料。我们采用描述详尽、资料全面的取心资料井作为“标准井”,如卫10井和卫11井,利用岩心描述、自然电位和双侧向测井曲线,分析沉积结构和岩石成分,建立岩石与电性、地球物理特征关系。 整体上看,油层表现较低的声波时差值,有别于油层顶底湖相泥岩,其原因就是油层的泥岩不纯,普遍含砂含钙质。 钙质胶结层在声波时差曲线上为低值“尖峰”(高速层,一般速度3800~4000m/s),在电阻率曲线上对立高电阻“尖峰”(大于15Ω?m),在SP 曲线上为低值异常。钙质砂岩具有低孔渗特点。 河道粉砂岩层在自然电位曲线上为较高幅度异常,幅度在8.5mV以上,通常呈钟形;电阻率曲线为高值,一般大于10Ω?m,形态有箱形、梯形和斜坡形,一般厚度3~5m;在声波时差曲线上高于平均值,低于纯泥岩层。钙质层和含钙层存在于河道砂层的顶底或者中间。 席状砂边滩砂层,一般厚度1~2m,在自然电位和电阻率曲线上呈刺刀状,因含钙泥较多,达30%~50%,分选差,孔隙低,声波时差与过渡岩性一致,整个油层中具有低声波时差和高阻值的特点。钙质胶结表现为较低的时差值。 过渡岩性是葡萄花油层的主力储层,电阻率中等偏低,为3~5Ω?m,个别高含砂层电阻率较高,但自然电位呈低幅度异常,厚度不一,1~5m均可见到。 2 砂岩储层预测的难点 2.1 葡萄花油层岩性组成 葡萄花油层是由不同速度、密度的钙质粉砂岩、过渡岩性、粉砂岩和泥岩组成,具有不同的波阻抗值,各岩性的速度大小见表1。 一个地震波形包含的属性信息是与之相对应 收稿日期:20030102;改回日期:20030405 作者简介:陈守田(1968—),男,高级工程师,博士,主要从事地震资料解释及石油地质综合研究工作。

火山岩岩石学分析储层特征研究-毕业论文

1.1 研究目的和意义 随着油气资源需求的增加,碎屑岩和碳酸盐岩油藏不断消耗,油气勘探的难度越来越大。在油气勘探从简单的构造型向复杂隐蔽型油气藏转变的过程中,火山岩在油气成藏中所发挥的重要作用,越来越受到了油气勘探界的广泛重视,已成为国际上油气勘探和油气储量增长的新领域[1]。 火山岩作为油气储层近年来越来越受到石油地质学界的关注. 2006年,在三塘湖盆地卡拉岗组火山岩储层中首次发现商业油气流,这不仅拓宽了吐哈油气勘探领域,而且还提升了整个盆地的勘探潜力。但是火山岩储层研究是目前国内公认的一个研究难点,对吐哈油田储层研究工作也是一个很大的挑战[2]。为深入了解马朗凹陷卡拉岗组火山岩储层特征,开展岩性特征、岩相特征,成岩作用特征、储集空间类型及类型特征、储集物性及影响储层物性的因素的精细研究。建立火山岩储层岩性识别图版、分岩性储层物性解释模型和储层分类评价标准, 为三塘湖盆地中基性火山岩储层评价及勘探方向优选提供地质依据. 1.2 国内外研究现状 1.2.1 火山岩储集层的分布 含工业油气流的火山岩油气藏主要分布于火山活动带及断陷盆地。它们沿基底断裂呈裂隙式或中心式喷发,而且多期喷发的火山岩互相叠加连片,常常具有较大厚度和分布面积。环太平洋含油气构造带中,火山岩层是一个重要的油气储集层(表1-1)[3]。日本北部沿海的新泻、山形和秋田油气区中,许多油气田产于新近纪“绿色凝灰岩”建造中。这个“绿色凝灰岩”是由凝灰岩、凝灰质砂岩、安山岩、安山集块岩、安山凝灰角砾岩等组成,沿日本岛弧内带晚新近纪地槽型盆地分布。

表1-1太平洋活动带及其边缘沉积盆地中的火山岩储集层[3] 1.2.2火山岩储集层的岩石类型 前苏联C.B.克卢博夫综合分析世界各国含油气盆地的火山岩储集层,将其岩石类型归纳为三大类[4]: (1)熔岩和熔岩角砾岩 熔岩按其化学成分可划分为玄武岩(SiO2<52%),安山岩(SiO2为57%?62%), 英安岩(SiO2为65.0%?68.5%),流纹岩(SiO2>78%);熔岩角砾岩指熔岩角砾被相同成分的熔岩所胶结的岩石。 (2)火山碎屑岩 按其碎屑大小可划分为凝灰集块岩、火山角砾岩、凝灰砾岩、砂屑凝灰岩和粉砂屑凝灰岩。 (3)火山碎屑一沉积混合型岩石 这是火山碎屑经过搬运与正常沉积物同时沉积的岩石。按其火山组分的含量可划分为:沉积火山碎屑岩(火山组分50%?90%)和火山碎屑沉积岩(火山组分10%?50%)。根据碎屑大小相应地划分为砾岩、砂岩和粉砂结构岩石。这种储集岩常与前两种储集岩伴生。 1.2.3火山岩命名及岩系划分 火山岩岩性识别的主要方法有地质、测井和地震等。 地质识别火山岩岩性的方法主要是通过岩心观察、镜下薄片鉴定和实验室主量元素分析来确定,该方法可以全面细致描述火山岩颜色、结构、构造及地球化学特征,但其局限性在于必须观察并分析岩心或岩石样品,在一些没有采集样品的地区此方法受到了限制。 利用测井资料识别岩性的方法有常规测井交会图法[5-7]、主成份分析法[8]、神经 网络法[9]、横波信息交会识别法[10]和岩石强度参数交会识别法[11]等,这些方法主要依据岩石矿物组合的物理特征进行岩性识别。除了一些常规测井方法,还有一系列新技术,如斯伦贝谢近年来开发的FMI成像测井和ECS( Elemental Capture Spectroscop )元素俘获测井。FMI成像测井通过获得全井电阻率变化来形成电阻

储层预测技术详解

4.1 LPM 储层预测技术 LPM 是斯伦贝谢公司GeoFrame 地震解释系统中最新推出的储层预测软件,利用地震属性体来指导储层参数(如砂岩厚度)在平面的展布,以此来实现储层参数的准确预测。 LPM 预测储层砂体可分两步进行:首先,它是将提取的地震属性特征参数与井孔处的砂岩厚度、有效厚度进行数据分析,将对储层预测起关键作用的地震属性特征参数优选出来,根据线性相关程度的大小,建立线性或非线性方程。线性方程的建立主要采用多元线性回归方法;非线性方程的建立主要采用神经网络方法;其次,根据建立的方程,利用网格化的地震属性体来指导储层参数(如砂岩厚度)在平面的成图。 设因变量y 与自变量x 1, x 2 ,…,x m 有线性关系,那么建立y 的m元线性回归模型: ξβββ++++=m m x x y 110 (4.1) 其中β0,β1,…,βm 为回归系数;ξ是遵从正态分布N(0,σ2)的随机误差。 在实际问题中,对y 与x 1, x 2 ,…,x m 作n 次观测,即x 1t , x 2t ,…,x mt ,即有: t mt m t t x x y ξβββ++++= 110 (4.2) 建立多元回归方程的基本方法是: (1)由观测值确定回归系数β0,β1,…,βm 的估计b 0,b 1, …,b m 得到y t 对x 1t ,x 2t ,…,x mt ;的线性回归方程: t mt m t t e x x y ++++=βββ 110 (4.3) 其中t y 表示t y 的估计;t e 是误差估计或称为残差。 (2)对回归效果进行统计检验。 (3)利用回归方程进行预报。 回归系数的最小二乘法估计 根据最小二乘法,要选择这样的回归系数b 0,b 1, …,b m 使 ∑∑∑===----=-==n t n t mt m t t t t n t t x b x b b y y y e Q 11211012 )()( (4.4) 达到极小。为此,将Q 分别对b 0,b 1, …,b m 求偏导数,并令 0=??b Q ,经化简整理可以得到b 0,b 1, …,b m ,必须满足下列正规方程组: ??? ????=+++=+++=+++my m mm m m y m m y m m S b S b S b S S b S b S b S S b S b S b S 22112222212111212111 (4.5)

储层精细预测技术在周青庄油田的应用

第28卷第6期石油学报V01.28No.62007年11月ACTAPETROI.EISINICANov.2007文章编号:0253-2697(2007)06—0092—05 储层精细预测技术在周青庄油田的应用 苏明军“2王西文2刘彩燕2易定红2袁克峰3 (1中国石油大学资源与信息学院北京102249}2.中国石油勘探开发研究院西北分院甘肃兰州730020 3中国石油国际海外研究中心北京100083) 摘要:周青庄油田小断裂发育,构造复杂,油气分布受构造和储层变化的控制。利用等时地层对比技术和基于小液变换的地震相干体技术,研究了断裂分布;综合测井和地震数据进行沉积相反演和沉积相控制下的相控储层预测技术,研究了储层空问晨布。应用储层精细预测技术,对周青庄油田古近系霹油组的构造和储层砂体展布规律进行了分析和预测,提出了井位都署意见.钻井后获得了高产工业油流,扩大了含油面积,增加了石油地质储量。 关键词:周青庄油田;储层特征;小波变换技术;储层预测技术;沉积相反演 中图分类号:TEl33文献标识码;A AppIicationofhigh—precisionI.eservoirspredictiontechniques inZhouqingzhuangoilfield suMin函u小。wangxiwenlljIJcaiyan2YlDinghon92YuanKe{en矿 u.&h∞z。fRe蚰“州口nai%,。r榭t{。nnrhM。kgy,chc越U戚键r“时nf P。t阳zc“矾,BP曲ingt02249.chi越; 2Normuw“Bmn曲,PP£M曲inaE_r声Zo旭£i。H。”dD日w如户mP"£RP5洲^JⅪ5£if“抛,Ld般加“730020,(冼iM;3CNPcInfPrM£坤”n£R靠Fdr曲(■n拈r,BP玎ing100083,(Mtn。) Abstract:Zhouqingzhua“golificldwascharacterizedbynumerous10calfauItsandcomplicatedstructure.Thcspatialdistr|butionofhydmcarbonaccumulationwaspredominatedbythestructurcand lateraI variation3ofreservoIrformations.Anewsetofhlgh_preci—sjo腓5ervojrpredjctjontechnjque㈣sap脚iedj力tbe州andgasp丑yz㈣ofthisoⅢjeld。ThePre拼ctiontechnlquesincJudetherec ognltiontechniqueoffaultsystembasedonintegrationoftmstratigraphiccofreIationand3DscmiccoherencecubeprocessedbywavelettransforrIlation,thesedimentaryfaclesrecognitiontechnIqueby讯tegratlonofwelIlogandseismicattnbutes。andthchighvi—tality3Dreservo打attributesouTllningbasedonhighpreci5i。nreservoirprcdictioncontrolledbysedimentarynt}lo{acies.Thestructur—alfeaturesand3Ddlstributionsofsandbedatt“butesofthePaIeogenegreservo打inZhouqi“gzhua“g0ilfieIdweredelineatedwithabovetechniques.AnewwelIplanni“gpmjectwasmade.Asaresuh,manynewwelIsa。quriedhigh—yie】dedo|lflow.Furthcrmore,pay跏eextensionwascon矗mled.andtheodreservesinpIaceincreasedby1.89miIlionLons. Keyw吖ds:Zhouqlngzhuangollflcld;reservoirproperty;wawlettransforrllationtechniqu。;reservc)irp婵dictiontechnique;secIimentary faclesinversion 周清庄油田位于黄骅坳陷歧口叫陷,横跨南、北大 港2个二级构造带,由南、北两部分组成。北部属于港西突起南翼,为断鼻构造;南部属于南大港构造带西北 斜坡的一部分。两者之间以鞍部相连。古近系髯油组是奉区主要目的层段之一,是一个多沉积体系叠置的扇三角洲前缘沉积综合体。由于研究区构造复杂,小断裂发育,储层横向变化大,油气分布受构造和储层变化的控制,制约了油田进一步开发,完钻井尚少。为此,采用了储层精细预测技术,对构造及储层空间展布规律进行研究。1储层精细预测技术研究流程 储层精细预测技术研究流程(图1)主要包括3个部分:①构造精细解释,确定构造形态及断层空间展布,为砂体的精细预测奠定基础;②精细小层对比及沉积相研究,正确认识砂体及其油层的分布规律,为储层反演奠定基础;③储层测井响应分析及相控储层反演,通过储层敏感曲线分析、曲线重构和相控反演,研究储层空间分布规律,为井位部署提供依据。 基盒项目:中国石油天然气集团公司科技攻关项日(kt均2—2—3)。岩性{fII气藏地震资料处理解释一体化研究”部分成果。 作者简介:苏明军,男,1970年2月牛,1991年毕业于中国石油大学(华东),现为中周石油勘探开发研究院西北分院高级工程师,中周石油大学(北京)在读博士研究生,主要从事沉积储集层研究。E咖ll:smjl310@126。。m万方数据

地震属性油气储层预测技术及其应用

第32卷第3期2010年9月湖北大学学报(自然科学版)Jo ur nal of H ubei U niversit y(Natura l Science)V ol.32 N o.3 Sep.,2010 收稿日期:2010 01 10 基金项目:国家自然科学基金(40972104)资助作者简介:郝骞(1982 ),男,博士生文章编号:1000 2375(2010)03 0339 05 地震属性油气储层预测技术及其应用 郝骞1,张晶晶2,李鑫1,毛婉慧1,张宇航1 (1.中国地质大学资源学院,湖北武汉430074;2.西安科技大学机械工程学院,陕西西安710054) 摘要:按沿层方式对苏北盆地溱潼凹陷泰州组砂岩储层提取了20余种属性,经过优化并在最佳时窗段内 通过井-震精细标定后可识别出三角洲前缘亚相沉积,指示出三角洲朵叶向凹陷深湖区的进积分布状况.对 松辽盆地长岭断陷内营城组火山岩储层,按层间平均等分顶底时窗厚度作为约束界面的方式提取了30余种 属性,从波阻抗及地震相的识别入手仔细区分火山岩储层地震属性平面展布特征,在已获工业油流的钻井指 示下确定地震属性异常变化区域,从而有针对性圈定火山岩体储层的平面分布范围. 关键词:地震属性;储层预测;砂岩储层;火山岩储层 中图分类号:P 618.13 文献标志码:A 伴随油气勘探开发难度日渐加大,隐蔽油气藏、岩性油气藏、裂缝油气藏及断块油气藏等已经成为勘探开发主体目标,对这类油气藏的非均质性、各向异性研究也越来越重要,地震数据携带丰富的地质储层信息,用地震技术预测油气储层已经成为当前主要的勘探手段和重要的实现方法,地震属性技术就是其中的一种.地震属性信息中包含着大量的地质信息,充分利用这些信息不仅能深入认识盆地构造特征、沉积体系分布及其时空演化规律,也可直接用于油气藏的储层性质及含油气性预测. 地震属性技术始于20世纪60年代末的亮点技术,它以反射波振幅和极性的变化作为识别油气藏的特殊属性方法[1].70年代地震属性分析技术即成为地震解释的良好工具,最初的属性仅包括振幅、频率和极性,其后快速发展为几十种.80年代中期出现多属性分析;90年代初引入的多维属性分析使属性分析技术进入了一个新阶段.现今地震属性技术已在多个方面取得了进展,其范围从计算单道瞬时同相轴属性到提取复杂多道分时窗地震同相轴属性乃至建立地震属性数据体,提取的地震属性也由最初的两种增加到几百种之多[2]. 1 地震属性分析原理及方法 地震采集的地球物理场资料是现今地下地层的构造、岩性、流体等特征的综合反映.这些特征隐藏在各种地球物理原始场之中,非常微弱,甚至于根本不能识别.必须依据地质信息的综合和分解理论,采用多种特殊手段,从原始场中提取出具有确定物理意义和明确地质意义的特征分量或参数.储层预测是在一定的地质研究基础上(三维构造精细解释、沉积微相、测井多井储层评价和油藏综合研究等),对追踪的层位开时窗并提取出一定的地震参数,由已知储层预测未知储层.地震属性分析的主要目的是准确提取地震数据中的各种属性,将定量的地震属性转化为储层特征,通过地震属性分析获取相关油藏的储集物性、含油气性等信息. 地震属性技术是由叠前或叠后地震数据经过数学变换导出的几何学、运动学、动力学或统计学特征的特殊测量值[3] ,它是地震资料中可描述、定量化的特征信息,并可与原始资料相同的比例显示出来,代表原始地震资料所包含的关于油气信息中最重要的一部分. 地震属性与所预测对象之间关系复杂,在不同地区不同储层对所预测对象如砂岩体、火山岩体敏感的

相关文档
最新文档