电子显微与扫描探针相关技术(5).

电子显微与扫描探针相关技术(5).
电子显微与扫描探针相关技术(5).

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

《扫描探针显微镜》讲义

《扫描探针显微镜》讲义 2007/11/13 丁喜冬 目次 一扫描探针显微镜(SPM)概述 二扫描力显微镜(SFM)概述 三SFM中的力及其检测技术 四几种常见的SPM 五商品化的SPM仪器的例子 六SPM的应用举例 参考文献: (1)白春礼、田芳、罗克著,扫描力显微术,科学出版社,2000 (2)白春礼编著,扫描隧道显微术及其应用,上海科学技术出版社,1992.10 (3)G..Binning,C.F.Quate,Ch.Gerber. Phys.Rev.Lett 56,930(1986) (4)J. K. H. Ho¨rber1 and M. J. Miles,Scanning Probe Evolution in Biology,Volume302, Science, 7.Nov 2003 (5)Werner A.Hofer, Adam S.Foster, Alexander L.Shluger, Theories of scanning probe microscopes at the atomic scale, Reviews of Modern Physics, V olume75, October 2003.

一扫描探针显微镜(SPM)概述 1、发展背景 1982年,国际商用机器公司(IBM)苏黎世实验室的宾尼(Binning)和罗雷尔(Rohrer)及其同事们研制成功了世界上第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunning Microscope, STM)。宾尼和罗雷尔因此而获得1986年的诺贝尔物理学奖。它的出现,使人类第一次能够实时的观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,被国际科技界公认为80年代十大科技成就之一。随后,STM仪器本身及其相关仪器获得了蓬勃发展,诞生了一系列在工作模式、组成模式及主要性能与STM相似的显微仪器,用来获取STM无法获取的各种信息。这些仪器目前统称为扫描探针显微镜(Scanning Probe Microscope, SPM)。这些仪器的共同特点是:采用尖锐的探针在样品表面扫描的方法来获取样品表面的一些性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同。这些仪器的发明,使人们跨入了原子和分子世界,成为人们认识微观世界的有力工具,在科技和工业方面已经、并且必将继续产生深刻的影响,在材料科学、微电子学、物理、化学、生物学等领域有着重大的意义和广阔的应用前景。 2、SPM的种类 扫描探针显微镜(SPM)家族中目前有近20个成员。由于其技术还在不断发展之中,所以其成员将继续增加。按照工作原理,大致可以分为:与隧道效应有关的显微镜、扫描力显微镜、扫描离子电导显微镜、扫描热显微镜等几类。与隧道效应有关的显微镜是基于量子隧道效应工作的。STM是SPM家族的第一个成员,也是与隧道效应有关的显微镜的典型代表。其成员还包括扫描噪声显微镜(SNM)、扫描隧道电位仪(STP)、弹道电子发射显微镜(BEEM)、光子扫描隧道显微镜(PSTM)等。扫描力显微镜(Scanning Force Microscope,SFM)通过检测探针与样品之间的相互作用力而成像,除了宾尼等人于1986年发明的原子力显微镜(Atomic Force Microscope,AFM)外,应用较广的还有:磁力显微镜(MFM)、静电力显微镜(EFM)、摩擦力显微镜(LFM)、化学力显微镜(CFM)等。 3、SPM的工作原理 扫描探针显微镜采用尖锐的探针在样品表面扫描的方法来获取样品表面的电、磁、声、光、热等物理的或化学的性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同,即各种扫描探针显微镜除了探针部分外,工作原理是基本一样的。 4、SPM的应用前景 SPM具有的原子和分子尺度上的探测材料性质的能力,因此,SPM无论在基础项目研究还是在技术领域的应用都具有独一无二的优势。目前,SPM已广泛应用于材料科学、物理、化学、生命科学等科研领域,取得了许多重要的研究成果,并推动着这些学科向前发展,出现了一系列新的交叉学科。另外,扫描探针显微镜的应用已不仅仅局限于基础研究方面,它已迅速向工业应用领域扩展。 图1-1 SPM的分类 图1-2 SPM的工作原理

扫描探针显微镜(scanning

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介: 该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。 ●分辨率 原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能 样品尺寸:最大可达直径12mm,厚度8mm 扫描范围:125X125μm,垂向1μm ●型号: Veeco NanoScope MultiMode扫描探针显微镜 本次培训着重介绍该设备常用模式:Contact Mode AFM 二、AFM独特的优点归纳如下: (l)具有原子级的超高分辨率。理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。,从而可获得物质表面的原子晶格图像。 (2)可实时获得样品表面的实空间三维图像。既适用于具有周期性结

构的表面,又适用于非周期性表面结构的检测。 (3)可以观察到单个原子层的局部表面性质。直接检测表面缺陷、表面重构、表面吸附形态和位置。 (4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。 三、AFM的基本原理: AFM基于微探针与样品之间的原子力作用机制。以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。原子力变化的梯度约为10-13N/nm。原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

扫描电子显微技术

扫描电子显微技术 扫描电子显微镜[1-3](scanning electron microscope—SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。扫描电子显微技术主要的应用就是扫描电镜,本文主要介绍扫描电镜的结构、原理及应用。 Knoll等人于年曾进行过扫描电子显微镜简称的实验, 而普通透射电子显微镜(简称CEM)是由Ruska等人于1933年创制,故可以说SEM和CEM诞生于同一时期。但是, 此后电子显微镜的研究主要致力于提高分辨率上, 而因SEM在电子线路技术上问题很多, 故把改进仪器的精力集中在发展CEM上了。然而, 1949年开始发展的射线显微分析仪, 在其研制中引进了SEM的技术, 1960年扫描型X射线显微分析仪才能成为商品在市场上出售, 随着它们的普及, 在制造厂中制造SEM的基础技术得以充实起来。当时又赶上电子线路技术全面大发展的时期, 因而导致1966年英国和日本的SEM在工业上得到了成功的应用。 1 扫描电子显微镜的基本组成 图1 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。如图1。 (1)真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。真空泵用来在真空柱内产生真空。对于扫描电镜来说,通常要求真空度优于10-3~10-4Pa。任何真空度

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

扫描探针显微镜原理及其应用-精工

扫描探针显微镜原理及其应用

扫描探针显微镜的历史 General term of a type microscope, which performs surface form observation in minute domain by detecting the physics properties between probe and sample . STM (1981 invention 1987 utilization) AFM (1986 invention 1990 utilization) DFM (Dynamic Force Mode )FFM (Friction Force Microscope)MFM (Magnetic Force Microscope)VE-AFM (Viscoelasticity AFM)KFM (Surface potential)SNOM Probe Sample surface physical interaction

10 mm 10μm 10 nm 10 nm 10 mm X,Y resolution/m 10μm Z r e s o l u t i o n /m SEM Optical Microscope 10 pm SPM TEM 扫描探针显微镜与其他显微镜在分辨能力上的比较 0.2nm 800μm 15μm Reference :NIKKEI MICRDEVICES 86.11

High Resolution in 3D image Atomic Image (HOPG)STM(~2nm□) Magnet-Optical Disk MFM(10μm□) Lung cancer cell among culture solution DFM(100μm□) AFM Lithography by oxidization with elec. field Vector Scan(1μm□) ~ In Air ,High Vacuum ,Liquid ,Heat ,Cool ,Magnetic Field 扫描探针显微镜的优势 Observation?Analysis ?Processing Topography & Physical property Measurement in various environment Before After

扫描探针显微镜(SPM)原理简介及操作(修正版)

扫描探针显微镜(SPM)原理简介 庞文辉 2012.2.22 一、SPM定义 扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,包括多种成像模式,他们的共同特点是探针在样品表面扫描,同时针尖与样品间的相互作用力被记录。 SPM的两种基本形式: 1、扫描隧道显微镜(Scanning Probe Microscope,STM) 2、原子力显微镜(Atomic Force Microscope,AFM) AFM有两种主要模式: ●接触模式(contact mode) ●轻敲模式(tapping mode) SPM的其他形式: ●侧向摩擦力显微术(Lateral Force Microscopy) ●磁场力显微镜(Magnetic Force Microscope) ●静电力显微镜(Electric Force Microscope) ●表面电势显微镜(Surface Potential Microscope) ●导电原子力显微镜(Conductive Atomic Force Microscope) ●自动成像模式(ScanAsyst) ●相位成像模式(Phase Imaging) ●扭转共振模式(Torisonal Resonance Mode) ●压电响应模式(Piezo Respnance Mode) ●…… 二、STM原理及应用

基于量子力学中的隧穿效应,用一个半径很小的针尖探测被测样品表面,以金属针尖为一电极,被测固体表面为另一电极,当他们之间的距离小到1nm左右时,形成隧道结,电子可从一个电极通过量子隧穿效应穿过势垒到底另一个电极,形成隧穿电流。在极间加很小偏压,即有净隧穿电流出现。隧穿电流与两极的距离成指数关系,反馈原理是采用横流模式,当两极间距不同(电流不同),系统会调整Z轴的位置从而成高度像。 应用范围:导电样品 ●形貌像 ●扫描隧道谱(STS) 三、AFM原理及应用 AFM的反馈原理:探针在样品表面扫描,针尖顶部原子的电子云压迫样品表面原子的电子云时,会产生微弱的排斥力,如:范德华力、静电力等,力随样品表面形貌的变化而变化。同时针尖与样品表面的相互作用力被记录,通过激光光束探测针尖的位移,从而得到样品的形貌。 ●接触模式(contact mode) 反馈原理:针尖与样品距离比较近,靠悬臂梁的偏折量反馈,扫描过程中要 保持恒定的偏折量,当样品表面的高低变化时,悬臂的偏折量也会随之变 化,要保证恒定的偏折量,就要改变Z轴的位置从而成高度像。 ●轻敲模式(tapping mode) 反馈原理:扫描过程中悬臂以一定的频率和振幅在振动,轻敲模式靠振幅反 馈,扫描过程要保持恒定的振幅,当样品表面高低变化时,悬臂的振幅也会 随之变化,要保证恒定的振幅,就要改变Z轴的位置从而成高度像。 两者的优势和劣势: ●接触模式扫描速率快,适合做一些相对比较粗糙的样品,且对样品表面和针 尖的损伤都较大,成像质量不如轻敲模式。 ●轻敲模式的扫描速率相对较慢,适合测试比较平整的样品,对样品盒针尖的 损伤较小,图像质量好。

扫描探针与近场光学显微技术

扫描探针与近场显微技术
Karl Wang
上海迈培光电技术有限公司

技术背景
? 自从1982年Binning与Robher等人共同发明扫描 穿隧显微镜(scanning tunneling microscope, STM)之后,人类在探讨原子尺度上向前跨出了一 大步,对于材料表面现象的研究也能更加的深入 了解。在此之前,能直接看到原子尺寸的仪器只 有场离子显微镜(Field ion microscopy, FIM)与电 子显微镜(Electron microscope, EM)。 ? STM其原理主要是利用电子穿隧的效应来得到原 子影像,材料须具备导电性,应用上有所限制。

技术背景
? 1986年Binning等人利用探针的观念又发展出原子力 显微镜(Atomic force microscope, AFM) ,AFM不但 具有原子尺寸解析的能力,亦解决了STM在导体上的 限制,应用上更为方便。 ? 自扫描式穿隧显微镜问世以来,许多类型的探针显微 镜不断被开发出来。如:扫描式穿隧显微镜(STM), 近场光学显微镜(NSOM),磁力显微镜(MFM),化学 力显微镜(CFM),扫描式热电探针显微镜(SThM), 相位式探针显微镜(PDM),静电力显微镜(EFM),侧 向摩擦力显微镜(LFM),原子力显微镜(AFM)等。

SPM家族
**其中,AFM、SNOM/NSOM是最为常用的扫描探针显微镜。

原子力显微镜(AFM)
? AFM是以针尖与样品之间的属于原子级力场作用 力作为探测手段获取表面形貌的显微工具。 ? AFM可适用于各种的物品,如金属材料、高分子 聚合物、生物细胞等,并可以操作在大气、真空、 电性及液相等环境,进行不同物性分析,所以它 可以用于获得包括绝缘体在内的各种材料表面上 原子级的分辨率,其应用范围无疑比其它显微分 析技术更加广阔。

扫描探针显微技术

扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。 扫描探针显微镜是指一类通过微小探针在样品表面扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像的显微镜。它提供了表面的三维高空间分辨的图像。 扫描探针显微镜(SPM)主要包括扫描隧道显微镜(STM)和原子力显微镜(AFM)两种功能。完整的扫描探针显微镜由控制系统和显微镜系统组成。 扫描隧道显微镜的工作原理是利用电子隧道现象,将样品本身作为一具电极,另一个电极是一根非常尖锐的探针。把探针移近样品,并在两者之间加上电压,当探针和样品表面相距只有数十埃时,由于隧道效应在探针与样品表面之间就会产生隧穿电流,并保持不变。若表面有微小起伏,那怕只有原子大小的起伏,也将使穿电流发生成千上万倍的变化。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。扫描隧道显微镜一般用于导体和半导体表面的测定。 原子力显微镜主要包括接触模式、非接触模式和轻敲模式。一个对力非常敏感的微悬臂,其尖端有一个微小的探针,当探针轻微地接触、接近或轻敲样品表面时,由于探针尖端的原子与样品表面的原子之间产生极其微弱的相互作用力而使微悬臂弯曲,将微悬臂弯曲的形变信号转换成光电信号并进行放大,就可以得到原子之间力的微弱变化的信号。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。 SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。 其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就是说,SPM是真正看到了原子。 再次,SPM的使用环境宽松。电子显微镜等仪器对工作环境要求比较苛刻,样品必须安放在高真空条件下才能进行测试。而SPM既可以在真空中工作,又可以在大气中、低温、常温、高温,甚至在溶液中使用。因此SPM适用于各种工作环境下的科学实验。 SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。 SPM的价格相对于电子显微镜等大型仪器来讲是较低的。 同其它表面分析技术相比,SPM 有着诸多优势,不仅可以得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜,电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表面图像,还可对材料的各种不同性质进行研究。同时,SPM 正在向着更高的目标发展,即它不仅作为一种测量分析工具,而且还要成为一种加工工具,也将使人们有能力在极小的尺度上对物质进行改性、重组、再造.SPM 对人们认识世界和改造世界的能力将起着极大的促进作用。同时受制其定量化分析的不足,因此SPM 的计量化也是人们正在致力于研究的另一重要方向,这对于半导体工业和超精密加工技术来说有着非同一般的意义

最新电子显微技术--扫描电子显微镜

第五章电子显微技术 第一节扫描电子显微镜(SEM ) 、扫描电镜的结构和基本原理 图5-1 KYKY-1000B 扫描电镜外貌图 用下,样品中产生的电子信号,把信号转换成图像的仪器。 扫描电镜的结构分为电子光学系统,信号收集、图像显示和记录系统,真空系统。图 5-1 、图5-2 为扫描电镜外型图和主机构造示意图。 (一)光学系统 这部分主要由电子枪,电磁透镜,扫描线圈,样品室组成,电子枪提供一个稳定的电子源,形成电子束,一般使用钨丝阴极电子枪,用直径约为0.1mm的钨丝,弯成发夹形,形成半径约为100μm的V 型尖端,当灯丝电流通过时,灯丝被加热,达到工

图 5-2 扫描电镜主机结构 作温度后便发射电子, 在阴极和阳极间加有高压, 这些电子则向阳极加速运动, 形成电子束。 电子束在高压电场作用下, 被加速通过阳极轴心孔进入电磁透镜系统。 该系统由聚光镜和物 镜组成,其作用是依靠透镜的电磁场与运动电子相互作用使电子束聚焦将电子枪发射的电子 束约 10~50μm, 压缩成 5~20nm ,缩小约 1/10000。聚光镜可以改变入射到样品上电子束流的 大小,物镜决定电子束束斑的直径。电子光学系统中存在球差,色差,象散,影响最终图象 的质量。 球差的产生是远离光轴轨迹上运动的电子比近轴电子受到的聚焦作用更强。 克服的 方法是在电子光学的光轴中加三级固定光阑挡住发散的电子束,光阑通常采用厚度为 0﹒ 05mm 的钼片制作,物镜产生的象散器提供一个与物镜不均匀磁场相反的校正磁场,使物镜 最终形成一个对称磁场,产生一束细聚焦的电子束。 扫描系统主要包括扫描发生器, 扫描线圈和放大倍率变换器, 扫描发生器由 X 扫描发生 器和 Y 扫描发生器组成, 产生不同频率的锯齿波信号同步地送入镜筒中的扫描线圈和显示系 统 CRT 中的扫描线圈上。 镜筒的扫描线圈分上、 下双偏转扫描装置。 其作用是使电子束正好 落在物镜光阑孔中心, 并在样品上进行光栅扫描。 配置附件可对下扫描线圈加以控制, 开展 选区电子通道花样的工作。 扫描方式分点扫描、 线扫描、 面扫描和 Y 调制扫描。 扫描电镜图像的放大倍率是通过改 变电子束偏转角度来调节的。 放大倍数等于 CRT 面积与电子束在样品上扫描面积之比, 减小 样品上扫描面积,就可增加放大倍率。不同放大倍率在样品上扫描的面积见表 5— 1 。 表 5-1 不同放大倍率在样品上扫描面积 放大倍率 样品上面积 20 9.8 × 8mm 100 1.96 × 1.6mm 1000 0.196 × 0.16mm 10000 19.6 × 16μm

扫描电子显微镜技术原理及应用

扫描电子显微镜技术原理及应用 学院:材料学院 班级:111111 学号:111111 姓名:1111

扫描电子显微镜技术原理及应用 摘要:本文阐述了扫描电子显微镜的成像原理,介绍了其功能和特点,以及在材料分析之中的应用。 关键词:扫描电子显微镜;应用;材料分析 引言:扫描电子显微镜是很先进的一种电子光学仪器,它采用细聚焦高压电子束在材料样品表面扫描时激发产生的某些物理信号来调制成像,类似于电视摄影的显像方式,放大倍数远远超过普通光学显微镜,可达到几十万倍甚至更高。 一.扫描电子显微镜的成像原理 扫描电镜成像过程与电视成像过程有很多相似之处,扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的,只是在结构和部件上稍有差异而已。在电子扫描中,把电子束从左到右方向的扫描运动叫做行扫描或称作水平扫描,把电子束从上到下方向的扫描运动叫做帧扫描或称作垂直扫描。 SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。 由电子枪发射的高能电子束,经会聚透镜、物镜缩小和聚焦,在样品表面形成一个具有一定能量、强度、斑点直径的电子束。在扫描线圈的磁场作用下,入射电子束在样品表面上按照一定的空间和时间顺序做光栅式逐点扫描。由于入射电子与样品之间的相互作用,将从样品中激发出二次电子。由于二次电子收集极的作用,可将各个方向发射的二级电子汇集起来,再将加速极加速射到闪烁体上,转变成光信号,经过光导管到达光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大并将其输送至显像管的栅极,调制显像管的亮度。因而,在荧光屏上呈现一幅亮暗程度不同的、反映样品表面形貌的二次电子象。 二.扫描电子显微镜的应用 扫描电子显微镜的样品制备简单, 可以实现试样从低倍到高倍的定位分析,还能够根据观察需要进行空间转动,,以利于使用者对感兴趣的断裂部位进行连续、系统的观察分析,扫描电子显微断口图像因真实、清晰,,并富有立体感, 在金属断口和显微组织三维形态的观察研究方面获得了广泛地应用。 由于扫描电镜可用多种物理信号对材料样品进行综合分析, 并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点, 因此, 在科研、工业产品开发、质量管理及生产在

扫描探针显微镜的应用

扫描探针显微镜的应用 根据扫描探针显微镜的种类及特性,可以了解到它的应用范围十分广泛。可以研究材料表而的硬度、摩擦力、粘滞力、弹性等力学性能;研究原子与分子形貌,材料表面的形貌、粗糙度以及各种缺陷;可以测量材料的电、磁特性以及热传导性特性;可应用在生命科学方面,还可以进行纳米测量、纳米刻蚀与加工。1:在有机薄膜材料方面的应用 扫描随道显微镜与原子力显微镜都可以对样品的形貌进行表征,可以观察到有机薄膜分子的排列情况,但是扫描隧道显微镜需要样品制备在导电越底匕而有机薄膜自身并不导电,当薄膜比较厚时,会阻碍系统对隧道电流的探测。对于原子力显微镜则不存在这一限制,有机薄膜可以制备在比较平的云母或硅片上,而且同样可以获得较高分辨率的图像,图1中所示的是在银基底上制备的苝四甲酸二酐单分子膜的原子力形貌图,扫描时工作在非接触区域,采用的是调频模式,图像分辨率达到了分子级别。从分子尺寸的AFM形貌图上我们可以很清楚的观测到分子间距,依此判断出有机薄膜的致密性。在大范围(微米量级)从整体上观察薄膜均匀性时,原子力显微镜也比较方便。 图1 苝四甲酸二酐单分子膜的原子力形貌图,扫描范围30nmX30nm 由于有机薄膜的质地比较软,因此在用接触模式扫描时,会因侧向力过大对薄膜造成划伤,因此常常采用轻敲模式进行扫描。但是我们常常需要通过接触模式

下的力曲线测试,对有机薄膜自身的一些力学特性先有一定的了解,比如弹性、粘滞力等,因为这些有机薄膜自身固有的特性也会影响到扫描成像,之后在通过扫描过程中合理化相应的参数,获得高质量的图像。 2:DPN 纳米加工技术 Mirkin小组发明了一种成为“dip-pen”的纳米加工技术(图2),AFM针尖被当作“笔”,硫醇分子被当作“墨水”,而基底被当作“纸”,吸附在针尖上的硫醇分子借助于针尖和基底之间的水层被转移到基底上的特定区域。然而,这种DPN存在一个明显的缺点就是只能把有机分子“写”在基底上,而且保持所生成结构的长期稳定性是一个重要问题。 图 2 DPN 操作示意图(A)和 DPN 所形成的 ODT 阵列的侧向力图(B)

扫描电子显微镜技术参数

扫描电子显微镜技术参数 1. 扫描电镜主机 ★1.1 分辨率 二次电子探测器分辨率:<3.0 nm (30 KV);<8nm (3 KV ), 背散射电子探测器分辨率:<3.5nm(30kv )。 ★1.2 放大倍数: 最低倍率可达到1倍,最高倍率可达到1000,000。 1.3 真空系统 ★1.3.1 具有高低真空功能,高低真空自动转换; ★1.3.2 样品室真空度:高真空可达到5×10-4 Pa; 低真空范围不小于5-500Pa; 1.4 电子光学系统 1.4.1 电子枪:钨灯丝,具有自动加热及对中的功能; 1.4.2 聚光镜:具有自动可变焦功能; 1.4.3 加速电压:200V-30kV,10V步进可调; 1.4.4电子探针束流:最大束流不小于2uA,并连续可调。 ★1.4.5电子光学镜筒可全自动自动调节,可以精确控制束流和束斑尺寸; 1.5 样品室和样品台 ★1.5.1 样品台尺寸:装载直径≥200mm样品; ★1.5.2全自动五轴优中心台:具有全自动五轴马达驱动功能; 样品台移动范围:X=100 mm,Y=100mm,Z=100 mm 旋转:360度连续 倾斜:-30度到+90度 更换样品后抽真空时间:< 5分钟; 1.5.3 样品台具有报警与自动停止功能,具有样品位置感知功能。 1.6 探测器及成像系统 ★1.6.1具备高灵敏度YAG晶体二次电子探测器 具备可伸缩的YAG晶体背散射电子探测器 具备用于观察样品室情况的红外摄像机; ★1.6.2 成像模式:同时得到二次电子像,背散射电子像,两种图像混合像,也可四幅图像同时成像,BSE可分别成像,并和SE任意叠加混合; 1.6.3具备五种电子光学工作模式; ★1.6.4扫描速度:从20 ns至10 ms像素,可阶段或连续式的调整,可进行3维 电子束扫描,电子束沿X和Y轴倾斜扫描实时立体成像。 1.7电镜控制

用于微观几何形状测量的扫描探针显微技术

8传感器技术(J。urnal【,fTran副uc叮陆hnc山础)2003年第22卷第9期 用于微观几何形状测量的扫描探针显微技术 王晓东1,常城2,宋洪侠3 (1大连理工大学微系统研究中心,辽宁大连116024; 2哈尔滨工程大学自动化学院,黑龙江哈尔滨150∞l;3大连理工大学机械工程学院,辽宁大连116024) 摘要:随着微技术的发展,对微观结构的精确测量变得越来越重要。对能够用于微观几何形状测量的 扫描探针显微技术——扫描隧道显微术(盯M)、扣描光学近场显微术(sNoM)和原子力显微术(AFM)进 行了比较详细的分析和介绍。 关键词:扫描探针显微术;微观几何形状;传感器 中图分类号:TP212;TH盯4文献标识码:A文章编号:1000—9787(2003)09—0008一04 Scanningprobemicroscopyformicro-geometrymeasurement wANGxl静don91,c卜IANGchen92,SONG}{0ng.xia3 (1.R嚣Centerfol‘Micmsyst锄ndm,Dali粕UniⅧ两tyoflKh∞lo酊,I)ali蛐1160“,chim; 2.schofAut咖U蚰Erlgin.HarmnE唧T枷IIgUni岫硝ty,H盯bin150∞l,ClIina; 3.scllofMecllEngin.Dali锄UⅡive倦ilyof瞰Illlolo酣,叫i粕116024,chi呐) Abs岫ct:Withthed州dopmemd眦删techlok)gy,t}把measurememofth8ge。m唧dmIcH埘Tuctur器w;th hLghaccLlracybec。m麟rr衄e蛐drnoreimp。rtantS0me。ftk【eclllllquesof洲i“gpmbem;ⅢH∞pywhich areu剃formicro-ge。metrymeasur盯n朗taresL|rImla^zedand蛳aI”ed.1nclL血。19scall血ngtunneling叫一 croso叩y,5canningnear—ndd0pticalmicr。s∞pyandatomlcforce叫衄Hcopy. Keywords:scarlnlngprobe蚵c1娜y(SPM);micngeornetry;se蝴 0引言 利用精密测量仪器和微操作机构,人类已经走进了微观世界,并不懈地进行微技术的研究和开发。微技术的发展使得产品微小型化并集成各种功能成为可能,与此同时,不断的微小型化,使得对微观结构的精确测量变得越来越重要。近lO年来,表面物理学的基础研究使得扫描探针显微技术(SPM)得到发展,这种新型技术能够对微观几何形状及其它表面特性进行测量分析。扫描探针显微镜同光学和电子显微镜有着明显的区别,扫描探针显微镜使用很小的探针去“接触”被测量物体的表面,与物体表面极其接近,距离极小,具有原子量级的分辨力…。利用扫描探针显微技术可以在150~150“m2的范围内,可获得原子量级的测量准确度。 扫描探针显微术是一类显微术的总称,具体包括。P几种或更多的具体技术,这些技术在概念和具体技术上以扫描隧道显微术(scaIlningtunneling 收稿日期:2003一03—29micmscopy,STM)为基础【“。本文将具体对扫描隧道显微术、扫描光学近场显微镜(ScannIngnear-fieldopticalmicmscopy,sNoM)和原子力显微术(atomic如rcemicms∞py,AFM)等三种扫描探针显微技术进行具体介绍和分析。 l扫描隧道显微术(s1M) 图1所示为扫描探针显微技术的基本原理【3J。 圈1扫描探针豆徽拉术的原理 nglsc}娜_¨cm雄册or SPM  万方数据

扫描透射电子显微分析技术

第五章 扫描透射电子显微分析技术(STEM)

本章主要内容 5.1 STEM概述及发展史 51STEM 5.2 STEM构造及工作原理 5.3 STEM主要功能及应用 5.4 STEM最新进展及发展趋势 参考书:R.J.Keyse et al,Introduction to Scanning Transmission Electron Microscopy, 参考书:R J Keyse et al Introduction to Scanning Transmission Electron Microscopy BIOS Scientific Publishers Limited,1998。

51STEM STEM是指透射电子显微镜中有扫描附件者,尤其是指采发射电枪作成的扫描透射电镜扫描透射5.1 STEM 概述采用场发射电子枪作成的扫描透射电子显微镜。扫描透射电子显微分析是综合了扫描和普通透射电子分析的原理和特点而出现的一种新型分析方式STEM能够获得TEM所特点而出现的一种新型分析方式。STEM能够获得TEM所不能获得的一些关于样品的特殊信息。STEM技术要求较高,要非常高的真空度,并且电子学系统比TEM和SEM都要复要非常高真度,并子学系和都要复杂。 扫描透射电子显微镜是透射电子显微镜的一种发展。扫描透射电子显微镜是透射电子显微镜的种发展扫描线圈迫使电子探针在薄膜试样上扫描,与扫描电子显微镜不同之处在于探测器置于试样下方,探测器接受透射束散射束放在荧光 电子束流或弹性散射电子束流,经放大后,在荧光屏上显示与常规透射电子显微镜相对应的扫描透射电子显微镜的明场像和暗场像明场像和暗场像。

扫描探针显微镜

扫描探针显微镜 【摘要】 纳米测量是纳米科学的重要分支和基础学科。以扫描探针显微镜(STM)为代表的非光学纳米测量方法能够实现纳米甚至亚纳米的测量分辨率,是非常重要且实用的纳米级精密测量仪器,本篇文章对其进行详细介绍。 【关键字】扫描探针显微镜精密测量纳米尺度 【引言】 纳米科学是在纳米(10-9m)和原子(10-10m)的尺度上(1nm~100nm)研究物质的特性、物质相互作用及如何利用这些特性的多学科交叉的前沿科学与技术。随着科学的发展,它涉及到越来越广泛的内容,其中纳米测量技术是纳米科学的一个重要分支。例如:半导体工业中的高精度模版的制造和定位,高精度传感器的标定;在科学研究中的量子物理学、化学、分子生物学等都需要很高的测量精度。因此无论是对国民经济各部门还是军事应用领域等,纳米测量都有着巨大意义。 目前,能够进行纳米测量的方法主要有:非光系方法和光学方法两大类。前者包括:SPM 法,电容、电感测微法;后者则包括:X光干涉仪法、各种形式的激光干涉仪法和光学光栅等方法。以扫描探针显微镜(STM)为代表的非光学纳米测量方法能够实现纳米甚至亚纳米的测量分辨率,是非常重要且实用的纳米级精密测量仪器,本篇文章将对其进行详细介绍。【正文】 1.扫描探针显微镜简介 扫描探针显微镜是继光学显微镜和电子显微镜发展起来后的第三代显微镜。80年代初期,IBM公司苏黎世实验室的G.Binning 和H.Rohrer发明了扫描隧道显微镜,它的分辨率达到0.01纳米。STM的诞生,使人类第一次在实空间观测到了原子,并能够在超高真空超低温的状态下操纵原子。在STM的基础上,又发明了原子力显微镜、磁力显微镜、近场光学显微镜等等,这些显微镜都统称扫描探针显微镜。因为它们都是靠一根原子线度的极细针尖在被研究物质的表面上方扫描,检测采集针尖和样品间的不同物理量,以此得到样品表面的形貌图像和一些有关的电化学特性。如:扫描隧道显微镜检测的是隧道电流,原子力显微镜镜测试的是原子间相互作用力等等。

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成 为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统, 电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电 子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏 的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的 像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电 子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分 辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

相关文档
最新文档