浅谈牛顿定律与惯性系

浅谈牛顿定律与惯性系
浅谈牛顿定律与惯性系

牛顿(1642—1727),英国伟大的物理学家、数学家。生于林肯郡伍尔索普的一个农村家庭,恰与伽利略的去世是同年。他12岁进金格斯中学上学。那时他喜欢自己设计风筝、风车、日规等玩意。1668年获得硕士学位;1672年牛顿入选英国皇家学会会员;1689年当选为英国国会议员;1696年出任皇家造币厂厂长;1703年当选为皇家学会会长;1705年英国女王加封牛顿为艾萨克爵士。

牛顿是17世纪最伟大的科学巨匠。他的成就遍及物理学、数学、天体力学的各个领域。他在物理学中的最主要成就中就有综合并表述了经典力学的3个基本定律——惯性定律、力与加速度成正比的定律、作用力和反作用力定律。而这些定律正如一般定律一样是有一定适用范围的,这些定律的适用体系就被称作惯性系。

关于牛一律,有人认为,他是抄袭前人的成果其实不然。的确,伽利略已经提出了与这个定律相似的实验结果,但他并没没能把这个实验结果总结成定律,又因为牛顿出生时伽利略恰好去世,所以他也没有“抢注商标”的嫌疑,可以说他已经给伽利略这一代人足够的机会了,只是他们没能好好把握罢了。这个定律有什么作用呢?首先确定了力是改变物体运动状态的原因而不是维持物体运动的原因,这一点看似得来得十分容易,但却的确有很大的现实意义,它推翻了统治了几千年的亚里士多德学说,成为现代物理学的开端。而且,这条定律还确定了一切物体都具有惯性,惯性只与质量有关。

但既然物体的运动状态好似有物体所受到的力改变的,那么,力与物体的运动状态又有什么关系呢,牛顿经过试验和推理又发现了牛二律,即“ΣF=ma”并规定力的单位为kg?m/s2。这一定律明确的给定了力与加速度的关系,质量与加速度的关系,更重要的是他定了力的单为“kg?m/s2”,这样实力有了标准的度量,不再像以前一样用千克力的概念,不是很明确。明确了力与加速度的关系,很好的解释了一些现实中的现象,为后来物理学的发展起到了奠基的作用。但值得注意的是,这一条定律只在惯性系中成立,在非惯性系中是不成立的。在应用这条定理是要特别小心。

但在力的分析中会发现,有一些物体的受力情况很难判定,尤其是两个物体之间一个物体对另一个物体的作用已知的情况下,该物体的受力情况应该是如何的呢?牛顿第三定律就在这种情况下诞生了,“两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上”他大大的简化了受力分析的难度,给受力分析提供了一定的理论依据。

以上三条定律成为了动力学的基础,它们使运动学和力学不再是两个毫不相干的物理学分支,而是通过牛顿运动学定律这个桥梁为了统一的整体。这是物理学的一个有跨时代意义的伟大的成就。它是实验与推理的综合结果,体现了屋里写的思维魅力。

前面一直提到惯性系,他到底又是什么呢?惯性系就是受合外力为零或不受外力的一个体系,一般来说,可以把地球看作一个惯性系,但这其实是不完全正确的,地球受的合外力并不为零,如果把地球看作惯性系,那么有一些现象是不能解释的,如地球表面的河流,在北半球,右侧冲刷的厉害,南半球,左侧冲刷的厉害(这里的“右”侧和“左”侧,是指观测者面向河流流动方向的)”

在地理学中,我们学过,这是由于地转偏向力的作用,地转偏向力是如何来的呢,其实它是不存在的,也就是说,它就是在非惯性系中的“惯性力”

具体地说这种现象之所以发生,是因为物体具有惯性,力图保持其运动速率和方向。然而,地球上的水平方向都以经线和纬线为准,经线的方向就是南北方向,纬线的方向就是东西方向。但是由于地球的自转,作为南北和东西方向基准的经线和纬线,都随着地球自转而不断的改变着它们的空间的方向。于是,真正保持不变方向的物体的水平运动,用地球上的水平方向表示,倒是相对地发生了偏转。地球自转的方向是自西向东,在北半球是逆时针方向,即自右相左转动;在南半球是顺时针方向,即自左相右转动。因此,北半球的经线和纬线都向左偏转,以致那里的水平运动方向相对地发生右偏;南半球的经线和纬线都向右偏转,以致那里的水平运动发生左偏如图5。按惯性定律推论,如果物体改变它的速率和方向,那么,这种变化必定受到外力的作用。于是,人们设想有一个假想的力作用于水平运动物体,使它发生左右偏转。法国科学家奥利(1792-1843)最早研究并证明它的存在,故称这种视力为科里奥利力(或简称科氏力)。地理和气象学上则形象的称它为地转偏向力。F=2mVωsinθ

(m为物体质量,V是水平运动速度,ω为地球自转角速度,ωsinθ即傅科摆偏转速度)。地转偏向力的存在,对许多地理事物产生深远的影响:(1)地转偏向力影响大气环流。(2)在北半球,河流对右岸冲刷比左岸强烈,以致大河右岸通常较为陡峭,而左岸较为平缓。由于这个原因,北半球的河流一般总是从右面绕过障碍,一般在河流的右岸修深水港,南半球情形相反。(3)工程技术方面也不乏地转偏向力影响:如在北半球,机车右轮通常比左轮磨损得更快;发射火箭时,如不计算地转偏向力的影响,就不会有效的命中目标。

以上,从三个现象简要谈到了惯性力、惯性离心力、科里奥利力,它们只能在非惯性系中观测到,不是由物体之间相互作用而产生的,但是又的确存在,通过研究其中的规律,有利于我们对自然规律进一步加深认识,从而服务于人类。

以上事例中就已经体现出了如何解决非惯性系中物体受力分析的问题了,如何能使物体在非惯性系中的运动与力的关系继续可以使用牛顿经典力学中的定律呢,就要引入惯性力等概念,比如一个惯性系受到的合外力F那么就要把这个力使整个体系产生的加速度a与被研究物体的质量作积,并作为惯性力作用在物体上,其方向与体系的加速度方向相反,这样牛顿经典力学定律就成立了,惯性系是一个理想模型,但经过引入惯性力的概念后就可以把这个理想模型推广开了,它使牛顿定律有了实际的意义。

总之,牛顿定律与惯性系都是现代物理学中的重要概念,它们是物理学的基石。是人类在物理学中的伟大发现。

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题

高考物理牛顿运动定律的应用(一)解题方法和技巧及练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高中物理牛顿运动定律的应用模拟试题含解析

高中物理牛顿运动定律的应用模拟试题含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC长度L=10m,重力加速度g=10m/s2,sin37o=0.6,cos37o=0.8,求: (1)包裹P沿传送带下滑过程中的加速度大小和方向; (2)包裹P到达B时的速度大小; (3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象. 【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s (4) 2 2 2 200.4/ 80.4/ c a a m s v a m s ?< =? ≥ ? () () 如图所示: 【解析】 【分析】 先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。 【详解】

(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-= 代入数据得:2 10.4/a m s =-,方向:沿传送带向上; (2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220 L=2v v a - 代入数据得:1/v m s =; (3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-= 得2 20.4/a m s = 当包裹P 的速度达到传送带的速度所用时间为:12250.4 v t s s a = == 速度从零增加到等于传送带速度时通过的位移有:2245220.4 v x m m a = ==? 因为x

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿三大定律详细总结

一、牛顿第一定律(惯性定律): 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 1.理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM =2/严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 【例1】火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一个人向上跳起,发现仍落回到车上原处,这是因为 ( ) A.人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动 B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动 C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 【分析与解答】因为惯性的原因,火车在匀速运动中火车上的人与火车具有相同的水平速度,当人向上跳起后,仍然具有与火车相同的水平速度,人在腾空过程中,由于只受重力,水平方向速度不变,直到落地,选项D正确。 【说明】乘坐气球悬在空中,随着地球的自转,免费周游列国的事情是永远不会发生的,惯性无所不在,只是有时你感觉不到它的存在。 【答案】D 二、牛顿第二定律(实验定律) 1. 定律内容 物体的加速度a跟物体所受的合外力F 合成正比,跟物体的质量m成反比。 2. 公式:F ma 合 = 理解要点: ①因果性:F 合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a与F 合都是矢量,,方向严格相同;

(完整版)牛顿运动定律解题方法总结(教师版),推荐文档

牛顿运动定律解题方法总结(教师版) 1、正交分解法:把矢量(F ,a )分解在两个互相垂直的坐标轴上的方法。 例1、如图4-45所示,一自动电梯与水平面之间的夹角θ=30°,当电梯加 速向上运动时,人对梯面的压力是其重力的6/5,试求人与梯面之间的摩擦力是其重力的多少倍?解析:在动力学的两类基本问题中,本题应属于已知物体的运动状态求解 物体的受力情况。 人受力如图4-46所示,建立直角坐标系,将a 分解在x 轴和y 轴上, 由牛顿第二定律得:f =macosθ,N -mg =masinθ,N =6mg/5联立解得f =√3mg/5 说明:可见,当研究对象所受的力都是互相垂直时,通常采用分解加速度的方法,可以使解题过程更为简化。 2、整体法和隔离法:主要对连接体问题要用整体法和隔离法。 例2、如图4-47所示,固定在水平地面上的斜面倾角为θ,斜面上放一个带有支架的木块,木块与斜面间的动摩擦因数为μ,如果木块可以沿斜面加速下滑,则这一过程中,悬挂在支架上的小球悬线和竖直方向的夹角α为多大时小球可以相对于支架静止? 解析:要使小球可以相对于支架静止,说明二者具有相同的加速度。 视小球、木块为一整体,其具有的加速度为a ,由牛顿第二定律得: a =gsinθ-μgcosθ,对小球受力分析如图4-48所示,建立水平竖直方向坐标系,由牛顿第二定律得:Tsinα=macosθmg -Tcosα=masinα消去T ,得:tanα=acosθ/(g -asinα) 将a 代入得:tanα=(sinθ-μcosθ)/(cosθ+μsinθ) 3、瞬时分析法:主要求某个力突然变化时物体的加速度时用此法。 例3、质量为m 的箱子C ,顶部悬挂质量为m 的小球B ,小球B 的下方通过一轻弹簧与质量为m 的小球A 相连,箱子C 用轻绳OO ′悬于天花 板上处于平衡状态,如图4-49所示,现剪断OO ′,在轻绳被剪断的瞬 间,小球A 、B 和箱子C 的加速度分别是多少?B 、C 间绳子的拉力T 为多少? 解析:细绳剪断瞬间,拉力消失,A 、B 间弹簧弹力未变,B 、C 间绳子 拉力发生突变,所以A 仍受重力mg 和弹簧拉力F =mg 作用而平衡, 故a A =0。 剪断OO ′时,B 、C 间拉力也要突变,但B 、C 将同步下落,所以: a B =a C =3mg/2m =1.5g 。 对C 由牛顿第二定律得:T +mg =ma C ,∴T =0.5mg 。 4、程序法:按时间先后顺序对题目给出的物体运动过程(或不同状态)进行分析计算的解 题方法叫做程序法。 图4- 图4- 图4-图 4-图4-

【物理】物理牛顿运动定律的应用练习题

【物理】物理牛顿运动定律的应用练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求: (1)开始时B离小车右端的距离; (2)从A、B开始运动计时,经t=6s小车离原位置的距离。 【答案】(1)B离右端距离(2)小车在6s内向右走的总距离: 【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒 解得:, A离左端距离,运动到左端历时,在A运动至左端前,木板静止 ,, 解得 B离右端距离 (2)从开始到达共速历时,,, 解得 小车在前静止,在至之间以a向右加速: 小车向右走位移

牛顿第二定律的应用——解决动力学的两类基本问题

牛顿第二定律的应用 (解决动力学的两类基本问题) 知识要点: 1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。 2. 掌握应用牛顿运动定律解决问题的基本思路和方法。 重点、难点解析: (一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。 (二)牛顿第三定律 1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。 2. 理解作用力与反作用力的关系时,要注意以下几点: (1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。 (2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。) (3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。(平衡力的性质呢?) (三)牛顿第二定律 1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。 2、数学表达式:F合=ma 3、关于牛顿第二定律的理解: (1)同体性:F合=ma是对同一物体而言的 (2)矢量性:物体加速度方向与所受合外力方向一致 (3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系 牛顿第二定律的应用 (一)在共点力作用下物体的平衡 1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。 2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。 = = (其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题 1. 从受力情况确定运动情况 根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。 2. 从运动情况确定受力情况 根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。 3. 分析这两点问题的关键是抓住受力情况和运动情况的桥梁-——加速度。 4. 求解这两类问题的思路,可由下面的框图来表示。

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高中物理牛顿运动定律的应用解题技巧及练习题(1)

高中物理牛顿运动定律的应用解题技巧及练习题(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求: (1)m 、M 之间的动摩擦因数; (2)M 的质量及它与水平地面之间的动摩擦因数; (3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】 (1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有: 11mg ma μ= 由乙图知 214m /s a = 解得 10.4μ= (2)对M 由牛顿第二定律有 122()F mg M m g Ma μμ--+= 即 12122()()F mg M m g mg M m g F a M M M μμμμ--+--+= =+ 乙图知 11 4 M = 12()9 4 mg M m g M μμ--+=- 解得 M = 4 kg μ2=0. 1

(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左, 设m 运动t 1时间速度减为零,则 11 1s v t a = = 位移 2101111 2m 2 x v t a t =-= M 的加速度大小 2122()5m /s F mg M m g a M μμ--+= = 方向向左, M 的位移大小 2 2211 2.5m 2 x a t = = 此时M 的速度 2215m /s v a t == 由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落, 设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律 23F Mg Ma μ-= 可得 2325 m /s 4 a = 在t =2s 时m 与M 右端的距离 2321311 ()()8.125m 2 x v t t a t t =-+-=. 2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37o=0.6,cos37o=0.8,求:

牛顿第二定律总结

牛顿第二定律应用的典型问题 1. 力和运动的关系 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 故正确答案选C。 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。 ③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。

牛顿运动定律详细总结

高三一轮复习教案——许敬川 (本章课时安排:理论复习部分共三单元用6-8个课时,走向高考和小片习题处理课用4个课时 注:教案中例题和习题以学案形式印发给学生) 第三章牛顿运动定律 第一单元牛顿运动定律 第1课时牛顿第一定律牛顿第三定律 要点一、牛顿第一定律 1、伽利略的实验和推论: ①伽利略斜面实验:小球沿斜面由 滚下,再滚上另一斜面,如不计摩擦将滚到处,放低后一斜面,仍达到同一高度。若放平后一斜面,球将滚下去。 ②伽利略通过“理想实验”和“科学推理”,得出的结论是:一旦物体具有某一速度,如果它不受力,就将以这一速度 地运动下去。也即是:力不是 物体运动的原因,而恰恰是 物体运动状态的原因。 2、笛卡尔对伽利略观点的补充和完善:法国科学家笛卡尔指出:除非物体受到力的作用,物体将永远保持其 或运动状态,永远不会使自己沿 运动,而只保持在直线上运动。 3、对运动状态改变的理解: 当出现下列情形之一时,我们就说物体的运动状态改变了。①物体由静止变为 或由运动变为 ;②物体的速度大小或 发生变化。 牛顿物理学的基石――惯性定律 1、牛顿第一定律:一切物体总保持 或 ,除非作用在它上面的力迫使它改变这种状态为止,这就是牛顿第一定律,也叫惯性定律。 2、惯性:物体具有保持原来的 状态或 状态的性质,叫惯性。 强调:①牛顿第一定律是利用逻辑思维对事实进行分析的产物,不可能用实验直接验证。 ②一切物体都具有惯性,牛顿第一定律是惯性定律。 惯性与质量: 1、惯性表现为改变物体运动状态的难易程度,惯性大,物体运动状态不容易改变;惯性小,物体运动状态容易改变。 2、质量是物体惯性大小的唯一量度。质量大,惯性大,运动太太不易

高一物理牛顿运动定律的解题技巧

高一物理牛顿运动定律的解题技巧 Revised on November 25, 2020

牛顿运动定律的综合应用 一、临界问题 在运用牛顿运动定律解动力学问题时,常常讨论相互作用的物体是否会发生相对滑动,相互接触的物体是否会发生分离等等,这类问题就是临界问题。 解决临界问题的基本思路 1.分析临界状态 一般采用极端分析法,即把问题中的物理量推向极值,就会暴露出物理过程,常见的有A.发生相对滑动;B.绳子绷直;C.与接触面脱离。 所谓临界状态一般是即将要发生质变时的状态,也是未发生质变时的状态。此时物体所处的运动状态常见的有:A.平衡状态;B.匀变速运动;C.圆周运动等。 2.找出临界条件 (1)相对滑动与相对静止的临界条件是静摩擦力达最大值; (2)绳子松弛的临界条件是绳中拉力为零; (3)相互接触的两个物体将要脱离的临界条件是相互作用的弹力为零。 3.列出状态方程 将临界条件代到状态方程中,得出临界条件下的状态方程。 4.联立方程求解 有些临界问题单独临界条件下的状态方程不能解决问题,则需结合其他规律联立方程求解。 1、如图所示,质量为m=1kg的物块放在倾角为θ=37的斜面体上,斜面质量为 M=1kg,斜面与物块间的动摩擦因数为μ= ,地面光滑,现对斜 面体施一水平推力F,要使物体m相对斜面静止,试确定推力F 的取值范围。(g取10m/s2)

2、一斜面放在水平地面上,倾角为θ=53°,一个质量为 kg的小球用细绳吊在斜面顶端,如图所示.斜面静止时,球紧靠在斜面上,绳与斜面平行.不计斜面与水平面间的摩擦,当斜面以10 m/s2的加速度向右运动时,求细绳的拉力及斜面对小球的弹力。(g取10 m/s2) 3、如图所示,两个质量都为m的滑块A和B,紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面与水平面成θ角,所有接触面都光滑无摩擦,现用一个水平推力作用于滑块A,使A、B一起向右做加速运动。求: (1)要使A、B间不发生相对滑动,它们共同向右运动的最大加速度是多大 (2)要使A、B间不发生相对滑动,水平推力的大小应在什么 范围内 二、滑块-木板模型的动力学分析 1、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。变式1.若拉力F作用在A上呢如图2所示。 变式2.在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 3、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则( ) A.当拉力F<12N时,两物体均保持静止状态 B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动 C.两物体间从受力开始就有相对运动 D.两物体间始终没有相对运动

用牛顿运动定律解决问题(二)(精选练习)(解析版)

人教版物理必修1第四章《牛顿运动定律》 第七节用牛顿运动定律解决问题(二) 精选练习 一、夯实基础 1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是() A.物体一定保持静止B.物体一定做匀速直线运动 C.物体的加速度为零D.物体一定做匀加速直线运动 【答案】 C 【解析】平衡状态指的是匀速直线运动状态或静止状态,物体在共点力的作用下处于平衡状态时,可能 做匀速直线运动,也可能处于静止状态,A、B、D选项错误;物体处于平衡状态的条件是合力为零,加速 度为零,C选项正确. 2.(多选)下列事例中的物体处于平衡状态的是() A.“神舟”号飞船匀速落到地面的过程B.汽车在水平路面上启动或刹车的过程 C.汽车停在斜坡上D.竖直上抛的物体在到达最高点的那一瞬间 【答案】:AC 【解析】:物体处于平衡状态,从运动状态来说,即物体保持静止或做匀速直线运动.从受力情况来说,物 体所受合力为零.“神舟”号飞船匀速落到地面的过程中,飞船处于平衡状态,A正确;B项中汽车在水平路面上启动或刹车过程中,汽车的速度在增大或减小,其加速度不为零,其合力不为零,所以汽车不是处于 平衡状态;C项中汽车停在斜坡上,速度和加速度均为零,合力为零,保持静止状态不变,即汽车处于平衡 状态;D项中物体上升到最高点时,只是速度为零,而加速度为g,所以物体不是处于平衡状态. 3.(多选)电梯的顶部拴一弹簧秤,弹簧秤下端挂一重物,电梯静止时,电梯中的人观察到弹簧秤的示数为10 N.某时刻电梯中的人观察到弹簧秤的示数为12 N,取g=10 m/s2,则此时() A.电梯可能向上加速运动,加速度大小为 2 m/s2 B.电梯可能向上减速运动,加速度大小为 2 m/s2 C.电梯中的人一定处于超重状态 D.电梯中的人一定处于平衡状态 【答案】AC 【解析】弹簧秤的示数增大,根据牛顿第二定律得,F-mg=ma,解得加速度a=2 m/s2,方向向上,电

高一物理第四章牛顿运动定律学习知识点情况总结

高 一 物 理 第 四 章 《 牛 顿 运 动 定 律 》 总 结 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产 生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;

应用牛顿运动定律解题的方法和步骤

应用牛顿运动定律解题 的方法和步骤 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是 将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果 还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这m 图3-4-1

就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。一般情况下选取合力,如物体在斜面上 受到重力,一般不说它受到下滑力和垂直面的两个力。在—些特 殊情况下,物体其合力不能先确定,则可用两分力来代替它,如 图3-4-2横杆左端所接铰链对它的力方向不能明确之前,可用水 平和竖直方向上的两个分力来表示,最后再求出这两个分力的合 力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一对相互作用力处理。 (3)分析物体运动状态及其变化 ①运用牛顿定律解题主要是分析物体运动的加速度a ,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a 而求物体所受的力。 图3-4-2

高中物理:4.6应用牛顿第二定律解决问题

高中物理应用牛顿第二定律解决问题 (答题时间:30分钟) 1. 如图中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上的拉力F的大小为() A. F=mg B mg < F <(M+m)g C. F=(M+m)g D F >(M+m)g 2. 如图所示,在探究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间,两车的位移分别为x1、x2,则在实验误差允许的范围内,有() A. 当m1=m2、F1=2F2时,x1=2x2 B. 当m1=m2、F1=2F2时,x2=2x1 C. 当m1=2m2时,x1=2x2 D. 当m1=2m2、F1=F2时,x2=2x1 3. 如图所示,质量为1.2kg的金属块放在水平桌面上,在与水平方向成37°角斜向上、大小为 4.0N的拉力作用下,以10.0m/s的速度向右做匀速直线运动。已知sin37o=0.6, cos37o=0.8,g取10m/s2,求: (1)金属块与桌面间的动摩擦因数; (2)若从某时刻起将与水平方向成37°角斜向右上方的拉力F变成与水平方向成37°角斜向左下方的推力(如图)F1=8.0N,求在换成推力F1后的2s时间内金属块所经过的路程。

4. 在水平地面上有质量为4kg的物体,物体在水平拉力F作用下由静止开始运动,10s 后拉力减为F/3,该物体的速度-时间图象如下图所示,则水平拉力F=________N,物体与地面间的动摩擦因数μ=____________。 5. 如下图所示为某些同学根据实验数据画出的图象,下列说法中正确的是() A. 形成图甲的原因是平衡摩擦力时长木板倾角过大 B. 形成图乙的原因是平衡摩擦力时长木板倾角过小 C. 形成图丙的原因是平衡摩擦力时长木板倾角过大 D. 形成图丁的原因是平衡摩擦力时长木板倾角过小 6. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦,现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为() A. 物块先向左运动,再向右运动 B. 物块向右运动,速度逐渐增大,直到做匀速运动 C. 木板向右运动,速度逐渐变小,直到做匀速运动 D. 木板和物块的速度都逐渐变小,直到为零 7. 下图为蹦极运动的示意图,弹性绳的一端固定在O点,另一端和运动员相连,运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起,整个过程中忽略空气阻力,分析这一过程,下列表述正确的是()

高考物理牛顿运动定律的应用解题技巧及练习题含解析(1)

高考物理牛顿运动定律的应用解题技巧及练习题含解析(1) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,质量为1kg m =的物体置于倾角为37θ?=的固定且足够长的斜面上,对物体 施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2 10/,sin 370.6,cos370.8g m s ? ? ===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少? 【答案】(1)0.5 (2)30N 【解析】 【详解】 (1)由速度时间图象得:物体向上匀减速时加速度大小: 22110-5 m/s 10m/s 0.5 a = = 根据牛顿第二定律得: 1sin cos mg mg ma θμθ+= 代入数据解得: 0.5μ= (2)由速度时间图象得:物体向上匀加速时: 2220m /s v a t ?= =? 根据牛顿第二定律得: 2sin cos F mg mg ma θμθ--= 代入数据解得: 30N F = 2.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。已知A 、B 两物体与车面的动摩擦因数都是0.20,取g =10m/s 2,求:

(1)A 、B 两物体在车上都停止滑动时车的速度; (2)车的长度是多少? (3)从A 、B 开始运动计时,经8s 小车离原位置的距离. 【答案】(1)0.6m/s (2)6.8m (3)3.84m 【解析】 【详解】 解:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律有: ()()122m v v M m v -=+ 代入数据解得:v =0.6m/s ,方向向右. (2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系有: ()()22 212121 11 2222 mg L L mv mv M m v μ+=+- + 又L ≥L 1+L 2 代入数据解得L ≥6.8m ,即L 至少为6.8m (3)当B 向左减速到零时,A 向右减速,且两者加速度大小都为12a g μ==m/s 2 对小车受力分析可知,小车受到两个大小相等、方向相反的滑动摩擦力作用,故小车没有动 则B 向左减速到零的时间为2 11 1v t a = =s 此时A 的速度为1113A v v a t =-=m/s 当B 减速到零时与小车相对静止,此时A 继续向右减速,则B 与小车向右加速,设经过t s 达到共同速度v 对B 和小车,由牛顿第二定律有:()2mg m M a μ=+,解得:20.5a =m/s 2 则有:12A v v a t a t =-=,代入数据解得:t =1.2s 此时小车的速度为20.6v a t ==m/s ,位移为2 1210.362 x a t = =m 当三个物体都达到共同速度后,一起向右做匀速直线运动,则剩下的时间发生的位移为 ()28 3.48x v t =-=m 则小车在8s 内走过的总位移为12 3.84x x x =+=m 3..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型

相关文档
最新文档