§2热力学第一定律的建立

§2热力学第一定律的建立
§2热力学第一定律的建立

§2.2 热力学第一定律的建立

2.2.1 准备阶段

19世纪40年代以前,自然科学的发展为能量转化与守恒原理奠定了基础。主要从以下几个方面作了准备。

1.力学方面的准备

机械能守恒是能量守恒定律在机械运动中的一个特殊情况。早在力学初步形成时就已有了能量守恒思想的萌芽。例如,伽利略研究斜面问题和摆的运动,斯梯芬(Stevin,1548-1620)研究杠杆原理,惠更斯研究完全弹性碰撞等都涉及能量守恒问题。17世纪法国哲学家笛卡儿已经明确提出了运动不灭的思想。以后德国哲学家莱布尼兹(Leibniz,1646-1716)引进活力(Visviva)的概念,首先提出活力守恒原理,他认为用mv2度量的活力在力学过程中是守恒的,宇宙间的“活力”的总和是守恒的。D.伯努利(Daniel Bernoulli,1700-1782)的流体运动方程实际上就是流体运动中的机械能守恒定律。永动机不可能实现的历史教训,从反面提供了能量守恒的例证,成为导致建立能量守恒原理的重要线索。

至19世纪20年代,力学的理论著作强调“功”的概念,把它定义成力对距离的积分,并澄清了它和“活力”概念之间的数学关系,提供了一种机械“能”的度量,这为能量转换建立了定量基础。1835年哈密顿(W.R.Hamilton,1805-1865)发表了《论动力学的普遍方法》一文,提出了哈密顿原理。至此能量守恒定律及其应用已经成为力学中的基本内容。

2.化学、生物学方面的准备

法国的拉瓦锡(https://www.360docs.net/doc/948374489.html,voisier,1743—1794)和拉普拉斯(https://www.360docs.net/doc/948374489.html,place,1749-1827)曾经研究过一个重要的生理现象,他们证明豚鼠吃过食物后发出动物热与等量的食物直接经化学过程燃烧所发的热接近相等。德国化学家李比希(J.Liebig,1803—1873)的学生莫尔(F.Mohr,1806—1879)则进一步认为不同形式的“力”(即能量)都是机械“力”的表现,他写道:“除了54种化学元素外,自然界还有一种动因,叫做力。力在适当的条件下可以表现为运动、化学亲和力、凝聚、电、光、热和磁,从这些运动形式中的每一种可以得出一切其余形式。”他明确地表述了运动不同形式的统一性和相互转化的可能性。

3.热学方面的准备

伦福德伯爵(CountRumford,原名本杰明·汤普森(Benjamin Thompson,1753—1814)在18世纪末,做了一系列摩擦生热的实验攻击热质说。他仔细观察了大炮膛孔时的现象,1798年1月25日在皇家学会宣读他的文章1:

1W.F.Magie,A Source Book in Physics,McGrawHill,1935,p.151.

“最近我应约去慕尼黑兵工厂领导钻制大炮的工作。我发现,铜炮在钻了很短的一段时间后,就会产生大量的热;而被钻头从大炮上钻下来的铜屑更热(象我用实验所证实的,发现它们比沸水还要热)。”

伦福德分析这些热是由于摩擦产生的,他说:“……我们一定不能忘记……在这些实验中,由摩擦所生的热的来源似乎是无穷无尽的。”

伦福德的实验引起不小的反响。在他的影响下,有一位英国化学家戴维(Humphry Davy,1778—1829),曾在1799年发表了《论热、光及光的复合》一文,介绍了他所做的冰块摩擦实验,这个实验为热功相当性提供了有说服力的实例,激励更多的人去探讨这个问题。

4.电磁学方面的准备

19世纪二、三十年代,电磁学的基本规律陆续发现,人们自然对电与磁、电与热、电与化学等关系密切注视。法拉第(Michael Faraday,1791—1867)尤其强调各种“自然力”的统一和转化,他认为“自然力”的转变,是其不灭性的结果。“自然力”不能从无生有,一种“力”的产生是另一种“力”消耗的结果。法拉第的许多工作都涉及转化现象,如电磁感应、电化学和光的磁效应……等。他在1845年发表一篇讨论磁对光的作用的论文,表述了他对“力”的统一性和等价性的基本概念,他写道:

“物质的力所处的不同形式很明显有一个共同的起源,换句话说,是如此直接地联系着和互相依赖着,以至于可以互相转换,并在其行动中,力具有守恒性。”

“力”的转化这一概念使他做出重要的发现。

在电与热的关系上,1821年塞贝克(Seebeck)发现的温差电现象是“自然力”互相转化的又一重要例证。后面还将提到焦耳(J.P.Joule,1818—1889)在1840年研究了电流的热效应,发现i2R定律,这是能量转化的一个定量关系,对能量转化与守恒定律的建立有重要意义。

2.2.2 能量转化与守恒定律初步形成

19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。

埃瓦特(Peter Ewart,1767—1842)对煤的燃烧所产生的热量和由此提供的“机械动力”之间的关系作了研究,建立了定量联系。

丹麦工程师和物理学家柯尔丁(L.Colding,1815—1888)对热、功之间的关系也作过研究。他从事过摩擦生热的实验,1843年丹麦皇家科学院对他的论文签署了如下的批语2“柯尔丁的这篇论文的主要思想是由于摩擦、阻力、压力等造成的机械作用的损失,引起了物体内部的如热、电以及类似的动作,它们皆与损失的力成正比。”

俄国的赫斯(G.H.Hess,1802—1850)在更早就从化学的研究得到了能量转化与守恒的思想。他原是瑞士人,3岁时到俄国,当过医生,在彼得堡执教,他以热化学研究著称。

1836年赫斯向彼得堡科学院报告:“经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被证明,也可以不加思索就认为它是一条公理。”3

2转引自Я.М.Гелькфер,ИсторияиМетодoлoгияТермoдинамикииСтатистическоǔфизики,ВысшаяШкола,1981,p.136.

3转引自Y.Elkana,TheDiscoveryoftheConservationofEnergy,Harvard,1974,p.119.

在以后的岁月里赫斯鉴于上述原理的巨大意义,从各方面进行了实验验证,于1840年3月27日在一次科学院演讲中提出了一个普遍的表述:“当组成任何一种化学化合物时,往往会同时放出热量,这热量不取决于化合是直接进行还是经过几道反应间接进行。”以后他把这条定律广泛应用于他的热化学研究中。

赫斯的这一发现第一次反映了热力学第一定律的基本原理;热和功的总量与过程途径无关,只决定于体系的始末状态。体现了系统的内能的基本性质——与过程无关。赫斯的定律不仅反映守恒的思想,也包括了“力”的转变思想。至此,能量转化与守恒定律已初步形成。

其实法国工程师萨迪·卡诺(Sadi Carnot,1796—1832)早在1830年就已确立了功热相当的思想,他在笔记中写道:“热不是别的什么东西,而是动力,或者可以说,它是改变了形式的运动,它是(物体中粒子的)一种运动(的形式)。当物体的粒子的动力消失时,必定同时有热产生,其量与粒子消失的动力精确地成正比。相反地,如果热损失了,必定有动力产生。”

“因此人们可以得出一个普遍命题:在自然界中存在的动力,在量上是不变的。准确地说,它既不会创生也不会消灭;实际上,它只改变了它的形式。”

卡诺未作推导而基本上正确地给出了热功当量的数值:370千克米/千卡。由于卡诺过早地死去,他的弟弟虽看过他的遗稿,却不理解这一原理的意义,直到1878年,才公开发表了这部遗稿。这时,热力学第一定律早已建立了。

2.2.3 能量转化与守恒定律的确立

对能量转化与守恒定律作出明确叙述的,首先要提到三位科学家。他们是德国的迈尔(RobertMayer,1814—1878)、赫姆霍兹(Hermann von Helmholtz,1821—1894)和英国的焦耳。

1.迈尔的工作

迈尔是一位医生。在一次驶往印度尼西亚的航行中4,迈尔作为随船医生,在给生病的船员放血时,得到了重要启示,发现静脉血不象生活在温带国家中的人那样颜色暗淡,而是象动脉血那样新鲜。当地医生告诉他,这种现象在辽阔的热带地区是到处可见的。他还听到海员们说,暴风雨时海水比较热。这些现象引起了迈尔的沉思。他想到,食物中含有化学能,它象机械能一样可以转化为热。在热带高温情况下,机体只需要吸收食物中较少的热量,所以机体中食物的燃烧过程减弱了,因此静脉血中留下了较多的氧。他已认识到生物体内能量的输入和输出是平衡的。迈尔在1842年发表的题为《热的力学的几点说明》中,宣布了热和机械能的相当性和可转换性,他的推理如下5:

“力是原因:因此,我们可以全面运用这样一条原则来看待它们,即‘因等于果’。设因c有果e,则c=e;反之,设e为另一果f之因,则有e=f等等,c=e=f=…=c在一串因果之中,某一项或某一项的某一部分绝不会化为乌有,这从方程式的性质就可明显看出。这是所有原因的第一个特性,我们称之为不灭性。”

接着迈尔用反证法,证明守恒性(不灭性):

“如果给定的原因c产生了等于其自身的结果e,则此行为必将停止;c变为e;若在产生e后,c仍保留全部或一部分,则必有进一步的结果,相当于留下的原因c的全部结果

4大约在1840年。

5转引自HoltonandRoller,FoundationsofModernPhysicalScience,Addison-Wes- ley,1965,p.345.

将>e,于是就将与前提c=e矛盾。”“相应的,由于c变为e,e变为f等等,我们必须把这些不同的值看成是同一客体出现时所呈的不同形式。这种呈现不同形式的能力是所有原因的第二种基本特性。把这两种特性放在一起我们可以说,原因(在量上)是不灭的,而(在质上)是可转化的客体。”

迈尔的结论是:“因此力(即能量)是不灭的、可转化的、不可秤量的客体。”

迈尔这种推论方法显然过于笼统,难以令人信服,但他关于能量转化与守恒的叙述是最早的完整表达。

迈尔在1845年发表了第二篇论文:《有机运动及其与新陈代谢的联系》,该文更系统地阐明能量的转化与守恒的思想。他明确指出:“无不能生有,有不能变无”,“在死的和活的自然界中,这个力(按:即能量)永远处于循环转化的过程之中。任何地方,没有一个过程不是力的形式变化!”他主张:“热是一种力,它可以转变为机械效应。”论文中还具体地论述了热和功的联系,推出了气体定压比热和定容比热之差C p-C v等于定压膨胀功R的关系式。现在我们称C p-C v=R为迈尔公式。

接着迈尔又根据狄拉洛希(Delaroche)和贝拉尔德(Berard)以及杜隆(Dulong)气体比热的实验数据C p=0.267卡/克·度、C v=0.188卡/克·度计算出热功。

计算过程如下:

在定压下使1厘米3空气加热温升1度所需的热量为:Q p=mc pΔt=0.000347卡(取空气密度ρ=0.0013克/厘米3)。相应地,在定容下加热同量空气温升1度消耗的热Q v=0.000244卡。二者的热量差Q p-Q v=0.000103卡。另一方面,温度升高1度等压膨胀时体积增大为原体积的1/274倍;气体对外作的功,可以使1.033千克的水银柱升高1/274厘米。

即功=1.033×1

27400=3.78×10-5千克·米。于是迈尔得出热功当量为

J=A

Q p-Q v=3.78×10-5

1.03×10-7=367千克·米/千卡。

或3597焦耳/千卡,现在的精确值为4187焦耳/千卡。

迈尔还具体地考察了另外几种不同形式的力。他以起电机为例说明了“机械效应向电的转化。”他认为:“下落的力”(即重力势能)可以用“重量和(下落)高度的乘积来量度。”“与下落的力转变为运动或者运动转变为下落的力无关,这个力或机械效应始终是不变的常量。”

迈尔第一个在科学史中将热力学观点用于研究有机世界中的现象,他考察了有机物的生命活动过程中的物理化学转变,确信“生命力”理论是荒诞无稽的。他证明生命过程无所谓“生命力”,而是一种化学过程,是由于吸收了氧和食物,转化为热。这样迈尔就将植物和动物的生命活动,从唯物主义的立场,看成是能的各种形式的转变。

1848年迈尔发表了《天体力学》一书,书中解释陨石的发光是由于在大气中损失了动能。他还应用能量守恒原理解释了潮汐的涨落。迈尔虽然第一个完整地提出了能量转化与守恒原理,但是在他的著作发表的几年内,不仅没有得到人们的重视,反而受到了一些著名物理学家的反对。由于他的思想不合当时流行的观念,还受到人们的诽谤和讥笑,使他在精神上受到很大刺激,曾一度关进精神病院,倍受折磨。

2.赫姆霍兹的研究

从多方面论证能量转化与守恒定律的是德国的海曼·赫姆霍兹。他曾在著名的生理学家缪勒(Johannes Müller)的实验室里工作过多年,研究过“动物热。”他深信所有的生命现象都必得服从物理与化学规律。他早年在数学上有过良好的训练,同时又很熟悉力学的成就,

读过牛顿、达朗贝尔、拉格朗日等人的著作,对拉格朗日的分析力学有深刻印象。他的父亲是一位哲学教授,和著名哲学家费赫特(Fichte)是好朋友。海曼·赫姆霍兹接受了前辈的影响,成了康德哲学的信徒,把自然界大统一当作自己的信条。他认为如果自然界的“力”(即能量)是守恒的,则所有的“力”都应和机械“力”具有相同的量纲,并可还原为机械“力”。1847年,26岁的赫姆霍兹写成了著名论文《力的守恒》,充分论述了这一命题6。这篇论文是1847年7月23日在柏林物理学会会议上的报告,由于被认为是思辨性、缺乏实验研究成果的一般论文,没有在当时有国际声望的《物理学年鉴》上发表,而是以小册子的形式单独印行的。

但是历史证明,这篇论文在热力学的发展中占有重要地位,因为赫姆霍兹总结了许多人的工作,一举把能量概念从机械运动推广到了所有变化过程,并证明了普遍的能量守恒原理。这是一个十分有力的理论武器,从而可以更深入地理解自然界的统一性。

赫姆霍兹在这篇论文一开头就声称,他的“论文的主要内容是面对物理学家,”他的目的是“建立基本原理,并由基本原理出发引出各种推论,再与物理学不同分支的各种经验进行比较。”

在他的论述中有一明显的趋向,就是企图把一切自然过程都归结于中心力的作用。我们都知道,在只有中心力的作用下,能量守恒是正确的,但是这只是能量守恒原理的一个特例,把中心力看成是普遍能量守恒的条件就不正确了。

他的论文共分六节,前两节主要是回顾力学的发展,强调了活力守恒(即动能守恒),进而分析了“力”的守恒原理(即机械能守恒原理);第三节涉及守恒原理的各种应用;第四节题为“热的力当量性,”他明确地摒弃了热质说,把热看成粒子(分子或原子)运动能量的一种形式。第五节“电过程的力相当性”和第六节“磁和电磁现象的力相当性”讨论各种电磁现象和电化学过程,特别是电池中的热现象对能量转化关系进行了详细研究。文章最后提到能量概念也有可能应用于有机体的生命过程,他的论点和迈尔接近。不过,看来他当时并不知道迈尔的工作。

赫姆霍兹在结束语中写道:“通过上面的叙述已经证明了我们所讨论的定律没有和任何一个迄今所知的自然科学事实相矛盾,反而却引人注目地为大多数事实所证实。……这定律的完全验证,也许必须看成是物理学最近将来的主要课题之一。”

实际上,实验验证这一定律的工作早在赫姆霍兹论文之前就已经开始了。焦耳在这方面做出了巨大贡献。

3.焦耳的实验研究

焦耳是英国著名实验物理学家。1818年他出生于英国曼彻斯特市近郊,是富有的酿酒厂主的儿子。他从小在家由家庭教师教授,16岁起与其兄弟一起到著名化学家道尔顿(John Dalton,1766—1844)那里学习,这在焦耳的一生中起了关键的指导作用,使他对科学发生了浓厚的兴趣,后来他就在家里做起了各种实验,成为一名业余科学家。

这时正值电磁力和电磁感应现象发现不久,电机——当时叫磁电机(electric-magnetic engine)——刚刚出现,人们还不大了解电磁现象的内在规律,也缺乏对电路的深刻认识,只是感到磁电机非常新奇,有可能代替蒸汽机成为效率更高、管理方便的新动力,于是一股电气热潮席卷了欧洲,甚至波及美国。焦耳当时刚20岁,正处于敏感的年龄,家中又有很好的实验条件(估计他父亲厂里有蒸汽机),对革新动力设备很感兴趣,就投入到电气热潮之中,开始研究起磁电机来。

6①转引自Lindsay(ed.)ApplicationsofEnergyNineteenCentury,Dowden,1976.p.7.

从1838年到1842年的几年中,焦耳一共写了八篇有关电机的通讯和论文,以及一篇关于电池、三篇关于电磁铁的论文。他通过磁电机的各种试验注意到电机和电路中的发热现象,他认为这和机件运转中的摩擦现象一样,都是动力损失的根源。于是他就开始进行电流的热效应的研究。

1841年他在《哲学杂志》上发表文章《电的金属导体产生的热和电解时电池组中的热》,叙述了他的实验:为了确定金属导线的热功率,让导线穿过一根玻璃管,再将它密缠在管上,每圈之间留有空隙,线圈终端分开。然后将玻璃管放入盛水的容器中,通电后用温度计测量水产生的温度变化。实验时,他先用不同尺寸的导线,继而又改变电流的强度,结果判定“在一定时间内伏打电流通过金属导体产生的热与电流强度的平方及导体电阻的乘积成正比。”这就是著名的焦耳定律,又称i2R定律。

随后,他又以电解质做了大量实验,证明上述结论依然正确。

i2R定律的发现使焦耳对电路中电流的作用有了明确的认识。他仿照动物体中血液的循环,把电池比作心肺,把电流比作血液,指出:“电可以看成是携带、安排和转变化学热的一种重要媒介”,并且认为,在电池中“燃烧”一定量的化学“燃料”,在电路中(包括电池本身)就会发出相应大小的热,和这些燃料在氧气中点火直接燃烧所得应是一样多。请注意,这时焦耳已经用上了“转变化学热”一词,说明他已建立了能量转化的普遍概念,他对热、化学作用和电的等价性已有了明确的认识。

然而,这种等价性的最有力证据,莫过于热功当量的直接实验数据。正是由于探索磁电机中热的损耗,促使焦耳进行了大量的热功当量实验。1843年焦耳在《磁电的热效应和热的机械值》一文中叙述了他的目的,写道:

“我相信理所当然的是:磁电机的电力与其它来源产生的电流一样,在整个电路中具有同样的热性质。当然,如果我们认为热不是物质,而是一种振动状态,就似乎没有理由认为它不能由一种简单的机械性质的作用所引起,例如象线圈在永久磁铁的两极间旋转的那种作用。与此同时,也必须承认,迄今尚未有实验能对这个非常有趣的问题作出判决,因为所有这些实验都只限于电路的局部,这就留下了疑问,究竟热是生成的,还是从感应出磁电流的线圈里转移出来的?如果热是线圈里转移出来的,线圈本身就要变冷。……所以,我决定致力于清除磁电热的不确定性。”

焦耳把磁电机放在作为量热器的水桶里,旋转磁电机,并将线圈的电流引到电流计中进行测量,同时测量水桶的水温变化。实验表明,磁电机线圈产生的热也与电流的平方成正比。

焦耳又把磁电机作为负载接入电路,电路中另接一电池,以观察磁电机内部热的生成,这时,磁电机仍放在作为量热器的水桶里,焦耳继续写道:“我将轮子转向一方,就可使磁电机与电流反向而接,转向另一方,可以借磁电机增大电流。前一情况,仪器具有磁电机的所有特性,后一情况适得其反,它消耗了机械力。”

比较磁电机正反接入电路的实验,焦耳得出结论:“我们从磁电得到了一种媒介,用它可以凭借简单的机械方法,破坏热或产生热。”

至此,焦耳已经从磁电机这个具体问题的研究中领悟到了一个具有普遍意义的规律,这就是热和机械功可以互相转化,在转化过程中一定有当量关系。他写道7:“在证明了热可以用磁电机生成,用磁的感应力可以随意增减由于化学变化产生的热之后,探求热和得到的或失去的机械功之间是否存在一个恒定的比值,就成了十分有趣的课题。为此目的,只需要重复以前的一些实验并同时确定转动仪器所需的机械力。”

焦耳在磁电机线圈的转轴上绕两条细线,相距约27.4米处置两个定滑轮,跨过滑轮挂有砝码,砝码约几磅重(1磅=0.45359千克),可随意调整。线圈浸在量热器的水中,从温度计的读数变化可算出热量,从砝码的重量及下落的距离可算出机械功。在1843年的论文

7①The Scientific Papers of J.P.Joule,vol.1,Tayler,1884,p.149.

中,焦耳根据13组实验数据取平均值得如下结果:

“能使1磅的水温度升温华氏一度的热量等于(可转化为)把838磅重物提升1英尺的机械功。”

838磅·英尺相当于1135焦耳,这里得到的热功当量838磅·英尺/英热单位等于4.511焦耳/卡(现代公认值为4.187焦耳/卡)。

焦耳并没有忘记测定热功当量的实际意义,就在这篇论文中他指出,最重要的实际意义有两点:(1)可用于研究蒸汽机的出力;(2)可用于研究磁电机作为经济的动力的可行性。可见,焦耳研究这个问题始终没有离开他原先的目标。

焦耳还用多孔塞置于水的通道中,测量水通过多孔塞后的温升,得到热功当量为770磅·英尺/英热单位(4.145焦耳/卡)。这是焦耳得到的与现代热功当量值最接近的数值。

图2-1桨叶搅拌实验

1845年,焦耳报道他在量热器中安装一带桨叶的转轮,如图2-1,经滑轮吊两重物下滑,桨轮旋转,不断搅动水使水升温,测得热功当量为890磅·英尺/英热单位,相当于4.782焦耳/卡。

图2-2空气压缩实验

同年,焦耳写了论文《空气的稀释和浓缩所引起的温度变化》,记述了如下实验:把一个带有容器R的压气机C放在作为量热器的水桶A中,如图2-2。压气机把经过干燥器G 和蛇形管W的空气压缩到容器R中,然后测量空气在压缩后的温升,从温升可算出热量。气压从一个大气压变为22个大气压,压缩过程视为绝热过程,可计算压气机作的功。由此得到热功当量为823及795磅·英尺/英热单位。然后,经蛇形管释放压缩空气(图2-3),量热器温度下降,又可算出热功当量为820、814、760磅·英尺/英热单位,从空气的压缩和膨胀得到的平均值为798磅·英尺/英热单位,相当于4.312焦耳/卡。

图2-3空气稀释实验

1849年6月,焦耳作了一个《热功当量》的总结报告,全面整理了他几年来用桨叶搅拌法和铸铁摩擦法测热功当量的实验,给出如下结果

(单位均以磅·英尺/英热单位表示)8:

空气中的当量值真空中的当量值平均水773.640 772.692 772.692

汞773.762 772.814 774.083

汞776.303 775.352 774.083

铸铁776.997 776.045 774.987

铸铁774.888 773.930 774.987 焦耳的实验结果处理得相当严密,在计算中甚至考虑到将重量还原为真空中的值。对上述结果,焦耳作了分析,认为铸铁摩擦时会有微粒磨损,要消耗一定的功以克服其内聚力,因此所得结果可能偏大。汞和铸铁在实验中不可避免会有振动,产生微弱的声音,也会使结果偏大。

在这三种材料中,以水的比热最大,所以比较起来,应该是用水作实验最准确。因此,在他的论文结束时,取772作为最后结果,这相当于4.154焦耳/卡。对此,他概括出两点:“第一,由物体,不论是固体或液体,摩擦产生的热量总是正比于消耗的力之量;

第二,使一磅水(在真空中称量,用于55°-60°)的温度升高1℉,所需消耗的机械力相当于772磅下落1英尺。”

焦耳从1843年以磁电机为对象开始测量热功当量,直到1878年最后一次发表实验结果,先后做实验不下四百余次,采用了原理不同的各种方法,他以日益精确的数据,为热和功的相当性提供了可靠的证据,使能量转化与守恒定律确立在牢固的实验基础之上。

4.全面的表述

能量转化与守恒定律是自然界基本规律之一。恩格斯对这一规律的发现给予崇高的评价,把它和达尔文进化论及细胞学说并列为三大自然发现。能量转化与守恒定律这个全面的

8①The Scientific Papers of J.P.Joule,vol.2,Taylor,1884,p.328

名称就是恩格斯首先提出来的。完整的数学形式则是德国的克劳修斯(Rudoff Julius Emanuel Clausius,1822—1888)在1850年首先提出的,他全面分析了热量Q、功W和气体状态的某一特定函数u之间的联系,考虑一无限小过程,列出全微分方程:dQ=du+AdW,他写道:“气体在一个关于温度和体积所发生的变化中所取得的热量Q,可以划分为两部分,其中之一为u,它包括添加的自由热和做内功所耗去的热(如果有内功发生的话),u的性质和总热量一样,是v和t的一个函数值,因而根据其间发生变化的气体初态和终态就已经完全确定;另一部分则包括做外功所消耗的热,它除了和那两个极限状态有关外,还依赖于中间变化的全过程。”

这里的u后来人们称作内能,A是功热当量,W是外功。克劳修斯虽然没有用到能量一词,但实际上已经为热力学奠定了基石。

W·汤姆生(William Thomson,即开尔文,Lord Kelvin,1824—1907)在1851年更明确地把函数u称为物体所需要的机械能(mechanical energy),他把上式看成热功相当性的表示式,这样就全面阐明了能、功和热量之间的关系。

1852年,W·汤姆生进一步用动态能和静态能来表示运动的能量和潜在的能量。1853年兰金(W.J.M.Rankine,1820—1872)将其改为实际能和势能,他这样表述能量转化与守恒定律:“宇宙中所有能量,实际能和势能,它们的总和恒定不变。”

1867年在W.汤姆生和泰特(Tait)的《自然哲学论文》中将上述实际能改为动能,一直沿用至今。

我们可以用一张联络图来表示能量转化和守恒定律的建立过程,如图2-4所示。

第二章热力学第一定律

第二章热力学第一定律 思考题 1设有一电炉丝浸于水中,接上电源,通过电流一段时间。如果按下列几种情况作为系统,试问 A U , Q,W为正为负还是为零? (1) 以电炉丝为系统; (2 )以电炉丝和水为系统; (3)以电炉丝、水、电源及其它一切有影响的部分为系统。 2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,AJ, Q, W为正为负还是为零?(2) 如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,A U, Q , W为正为负还是为零? 作业题 1 (1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热?(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干? [答案:⑴吸收40J; (2) 16 570J] 2在一礼堂中有950人在开会,每个人平均每小时向周围散发出4. 2xl05J的热量,如果以礼堂中的 空气和椅子等为系统,则在开会时的开始20分钟内系统内能增加了多少?如果以礼堂中的空气、人和其它所有的东西为系统,则其AU = ? [答案:1.3 M08J;0] 3 一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了 1 265 000J,试求算此过程中蓄电池将吸收还是放岀多少热? [答案:放热401000J] 4体积为4.10dm3的理想气体作定温膨胀,其压力从106Pa降低到105Pa计算此过程所能作出的最大 功为若干? [答案:9441J] 5在25C下,将50gN2作定温可逆压缩,从105Pa压级到2X106Pa,试计算此过程的功。如果被压缩了的气体反抗恒定外压105Pa作定温膨胀到原来的状态,问此膨胀过程的功又为若干? [答案:-.33 X04J; 4.20 X03J] 6计算1mol理想气体在下列四个过程中所作的体积功。已知始态体积为25dm3终态体积为100dm3; 始态及终态温度均为100 Co (1) 向真空膨胀; (2) 在外压恒定为气体终态的压力下膨胀; (3) 先在外压恒定为体积等于50dm3时气体的平衡压力下膨胀,当膨胀到50dm3(此时温度仍为100C) 以后,再在外压等于100 dm3时气体的平衡压力下膨胀; (4) 定温可逆膨胀。 试比较这四个过程的功。比较的结果说明了什么问题? [答案:0; 2326J; 310l J; 4299J] 习

2热力学第一定律

热力学第一定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、已知温度T 时反应 H 2(g) 2(g) == H 2O(g) 的?,则?即为温度为T 时H 2 (g)的?C 。( ) 2、不同物质在它们相同的对应状态下,具有相同的压缩性,即具有相同的压缩因子Z 。 ( )。 3、d U = nC V ,m d T 这个公式对一定量的理想气体的任何p ,V ,T 过程均适用, ( ) 4、物质的量为n 的理想气体,由T 1,p 1绝热膨胀到T 2,p 2,该过程的焓变化 ( ) 5、25℃时H 2(g)的标准摩尔燃烧热等于25℃时H 2O(l)的标准摩尔生成热。( ) 6、判断下述结论对还是不对,将答案写在其后的括号中。 ( 1 )化学反应热Q p 其大小只取决于系统始终态;( ) ( 2 )凡是化学反应的等压热必大于等容热;( ) ( 3 )理想气体等容过程的焓变为2 1,m d ()T V T H nC T V p ?=+??;( ) ( 4 )( ) 7、理想气体的热力学能和焓均只是温度的函数,而与压力或体积无关。( ) 8、在定温定压下,CO 2由饱和液体转变为饱和蒸气,因温度不变, CO 2的内能和焓也不变。( ) 9、 25℃?f (S , 单斜) = 0 。( )。 10、已知温度T 时反应 H 2(g) + 2(g) == H 2O(l) 的?r ?r T 时H 2O(l)的?f 。 ( ) 11、理想气体在恒定的外压力下绝热膨胀到终态。因为是恒压,所以?H = Q ;又因为是绝热,Q = 0,故?H = 0。 ( ) 12、因为Q p = ?H ,Q V = ?U ,而焓与热力学能是状态函数,所以Q p 与Q V 也是状态函数。 ( )。 13、500 K 时H 2(g)的?f = 0 。( ) 14、?f , 金刚石 , 298 K) = 0。( ) 15、稳定态单质的?f (800 K) = 0 。( ) 16、在临界点,饱和液体与饱和蒸气的摩尔体积相等。 ( ) 17、?f , 石墨 , 298 K) = 0 。( ) 18、热力学标准状态的温度指定为25℃。( ) 19、100℃时,1 mol H 2O(l)向真空蒸发变成1mol H 2O(g),这个过程的热量即为H 2O( l )在100℃的摩尔汽

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

物理学史2.2 热力学第一定律的建立

2.2热力学第一定律的建立 2.2.1准备阶段 19世纪40年代以前,自然科学的发展为能量转化与守恒原理奠定了基础。主要从以下几个方面作了准备。 1.力学方面的准备 机械能守恒是能量守恒定律在机械运动中的一个特殊情况。早在力学初步形成时就已有了能量守恒思想的萌芽。例如,伽利略研究斜面问题和摆的运动,斯梯芬(Stevin,1548—1620)研究杠杆原理,惠更斯研究完全弹性碰撞等都涉及能量守恒问题。17世纪法国哲学家笛卡儿已经明确提出了运动不灭的思想。以后德国哲学家莱布尼兹(Leibniz,1646—1716)引进活力(Vis viva)的概念,首先提出活力守恒原理,他认为用mv2度量的活力在力学过程中是守恒的,宇宙间的“活力”的总和是守恒的。D.伯努利(Daniel Bernoulli,1700—1782)的流体运动方程实际上就是流体运动中的机械能守恒定律。 永动机不可能实现的历史教训,从反面提供了能量守恒的例证,成为导致建立能量守恒原理的重要线索。 至19世纪20年代,力学的理论著作强调“功”的概念,把它定义成力对距离的积分,并澄清了它和“活力”概念之间的数学关系,提供了一种机械“能”的度量,这为能量转换建立了定量基础。1835年哈密顿(W.R.Hamilton,1805—1865)发表了《论动力学的普遍方法》一文,提出了哈密顿原理。至此能量守恒定律及其应用已经成为力学中的基本内容。 2.化学、生物学方面的准备 法国的拉瓦锡(https://www.360docs.net/doc/948374489.html,voisier,1743—1794)和拉普拉斯(https://www.360docs.net/doc/948374489.html,place,1749—1827)曾经研究过一个重要的生理现象,他们证明豚鼠吃过食物后发出动物热与等量的食物直接经化学过程燃烧所发的热接近相等。德国化学家李比希(J.Liebig,1803—1873)的学生莫尔(F.Mohr,1806—1879)则进一步认为不同形式的“力”(即能量)都是机械“力”的表现,他写道: “除了54种化学元素外,自然界还有一种动因,叫做力。力在适当的条件下可以表现为运动、化学亲和力、凝聚、电、光、热和磁,从这些运动形式中的每一种可以得出一切其余形式。” 他明确地表述了运动不同形式的统一性和相互转化的可能性。 3.热学方面的准备

第二章热力学第一定律练习题及答案

第一章热力学第一定律练习题 一、判断题(说法对否): 1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生 变化时,所有的状态函数的数值也随之发生变化。 2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态 完全确定。 3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完 全确定。 4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W 的值一般也不相同。 6.因Q P = ΔH,Q V = ΔU,所以Q P与Q V都是状态函数。 7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。 10.一个系统经历了一个无限小的过程,则此过程是可逆过程。 11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。 13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。16.(?U/?V)T = 0 的气体一定是理想气体。 17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。 18.当系统向环境传热(Q < 0)时,系统的热力学能一定减少。

热力学第一定律基本概念和重点总结要点

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

物理化学第2章热力学第一定律

第二章热力学第一定律 2.1 热力学的理论基础与方法 1.热力学的理论基础 热力学涉及由热所产生的力学作用的领域,是研究热、功及其相互转换关系的一门自然科学。 热力学的根据是三件事实: ①不能制成永动机。 ②不能使一个自然发生的过程完全复原。 ③不能达到绝对零度。 热力学的理论基础是热力学第一、第二、第三定律。这两个定律是人们生活实践、生产实践和科学实验的经验总结。它们既不涉及物质的微观结构,也不能用数学加以推导和证明。但它的正确性已被无数次的实验结果所证实。而且从热力学严格地导出的结论都是非常精确和可靠的。不过这都是指的在统计意义上的精确性和可靠性。热力学第一定律是有关能量守恒的规律,即能量既不能创造,亦不能消灭,仅能由一种形式转化为另一种形式,它是定量研究各种形式能量(热、功—机械功、电功、表面功等)相互转化的理论基础。热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。利用热力学第三定律来确定规定熵的数值,再结合其他热力学数据从而解决有关化学平衡的计算问题。 2.热力学的研究方法 热力学方法是:从热力学第一和第二定律出发,通过总结、提高、归纳,引出或定义出热力学能U,焓H,熵S,亥姆霍茨函数A,吉布斯函数G;再加上可由实验直接测定的p,V,T等共八个最基本的热力学函数。再应用演绎法,经过逻辑推理,导出一系列的热力学公式或结论。进而用以解决物质的p,V,T变化、相变化和化学变化等过程的能量效应(功与热)及过程的方向与限度,即平衡问题。这一方法也叫状态函数法。 热力学方法的特点是: (i)只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构; (ii)只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。 因此,热力学方法属于宏观方法。

第一章热力学第一定律及其应用

华中科技大学博士研究生入学考试《物理化学(二)》考试大纲 第一章热力学第一定律及其应用 1.1 热力学概论 1.2 热力学第一定律 1.3准静态过程与可逆过程 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用 1.7 实际气体 1.8 热化学 1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系 1.12 绝热反应——非等温反应 1.13 热力学第一定律的微观说明 第二章热力学第二定律 2.1 自发变化的共同特征一不可逆性性 2.2 热力学第二定律 2.3 卡诺定律 2.4 熵的概念.

2.5 克劳修斯不等式与熵增加原理 2.6熵的计算 2.7热力学第二定律的本质和熵的统计意义 2.8亥姆霍兹自由能和古布斯自由能 2.9变化的方向和平衡条件 2.10ΔG的计算示例 2.11几个热力学函数间的关系 2.12单组分体系的两相平衡 2.13多组分体系中物质的偏摩尔量和化学势 2.14不可逆过程热力学简介 第三章统计热力学基础 3.1 概论 3.2玻尔兹曼统计 3.3玻色—爱因期坦统计和费米—狄拉克统计 3.4配分函数 3.5各配分函数的求法及其对热力学因数的贡献3.6晶体的热容问题 3.7分子的全配分函数 第四章溶液——多组分体系热力学在溶液中的应用4.1 引言 4.2 溶液组成的表示法 4.3 稀溶液的两个经验定律

4.4混合气体中各组分的化学势 4.5理想溶液的定义、通性及各组分的化学势4.6稀溶液中各组份的化学势 4.7理想溶液和稀溶液的微观说明 4.8稀溶液的依数性 4.9吉朽斯—杜亥姆公式和杜亥姆—马居耳公式4.10非理想溶液 4.11分配定律――溶质在两互不相溶液中的分配第五章相平衡 5.1引言 5.2多相体系的一般平衡条件 5.3相律 5.4单组份体系的相图 5.5二组份体系的相图及应用 5.6三组份体系的相图和应用 5.7二级相变 第六章化学平衡 6.1化学反应的平衡条件和化学反应的亲和势6.2化学反应的平衡常数和等温方程式 6.3平衡常数的表示式 6.4复相化学平衡 6.5平衡常数的测定和平衡转化率的计算

第二章热力学第一定律练习题及解答

第 二 章 热力学第一定律 一、思考题 1. 判断下列说法是否正确,并简述判断的依据 (1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。 答:是对的。因为状态函数是状态的单值函数。 (2)状态改变后,状态函数一定都改变。 答:是错的。因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得 变。 (3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗? 答:是错的。?U ,?H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。 (4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从 外界吸收热量。 答:是错的。根据热力学第一定律U Q W ?=+,它不仅说明热力学能(ΔU )、热(Q )和 功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。所以功的转化 形式不仅有热,也可转化为热力学能系。 (5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0 答:是错的。这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。 (6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。如将化学反应安排成反应相 同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。 答:是对的。Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值?H 1和?H 2相等。 2 . 回答下列问题,并说明原因 (1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火 车的速度加快? 答?不能。热机效率h Q W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。

(完整word版)第一章热力学第一定律思考题(答案)

第一章热力学第一定律 思考题 1. 下列说法中哪些是不正确的? (1)绝热封闭系统就是孤立系统; (2)不作功的封闭系统未必就是孤立系统; (3)作功又吸热的系统是封闭系统; (4)与环境有化学作用的系统是敞开系统。 【答】(1)不一定正确。绝热条件可以保证系统和环境之间没有热交换,封闭条件可以保证系统和环境之间没有物质交换。但是单单这两个条件不能保证系统和环境之间没有其他能量交换方式,如作功。当绝热封闭的系统在重力场中高度发生大幅度变化时,系统和地球间的作功不能忽略,系统的状态将发生变化。 (2)正确。 (3)不正确。系统和环境间发生物质交换时,可以作功又吸热,但显然不是封闭系统。为了防止混淆,一般在讨论功和热的时候,都指定为封闭系统,但这并不意味着发生物质交换时没有功和热的发生。但至少在这种情况下功和热的意义是含混的。 (4)正确。当发生化学作用(即系统和环境间物质交换)时,将同时有热和功发生,而且还有物质转移,因此是敞开系统。 2. 一隔板将一刚性容器分为左、右两室,左室气体的压力大于右室气体的压力。现将隔板抽去,左、右室气体的压力达到平衡。若以全部气体作为系统,则△U、Q、W为正?为负?或为零? 【答】因为容器是刚性的,在不考虑存在其它功的情况下,系统对环境所作的功的W = 0 ;容器又是绝热的,系统和环境之间没有能量交换,因此Q = 0;根据热力学第一定律△U = Q +W,系统的热力学能(热力学能)变化△U = 0。 3. 若系统经下列变化过程,则Q、W、Q + W 和△U 各量是否完全确定?为什么? (1)使封闭系统由某一始态经过不同途径变到某一终态; (2)若在绝热的条件下,使系统从某一始态变化到某一终态。 【答】(1)对一个物理化学过程的完整描述,包括过程的始态、终态和过程所经历的具体途径,因此仅仅给定过程的始、终态不能完整地说明该过程。 Q、W 都是途径依赖(path-dependent)量,其数值依赖于过程的始态、终态和具体途径,只要过程不完全确定,Q、W 的数值就可能不确定。因为Q + W =△U,只要过程始、终态确定,则△U 确定,因此Q + W 也确定。 (2)在已经给定始、终态的情况下,又限定过程为绝热过程,Q = 0,Q 确定;W =△U,W和△U 也确定。 4. 试根据可逆过程的特征指出下列过程哪些是可逆过程? (1)在室温和大气压力(101.325 kPa)下,水蒸发为同温同压的水蒸气; (2)在373.15 K 和大气压力(101.325 kPa)下,蒸发为同温同压的水蒸气; (3)摩擦生热; (4)用干电池使灯泡发光; (5)水在冰点时凝结成同温同压的冰;

第一章热力学第一定律答案

第一章 热力学练习题参考答案 一、判断题解答: 1.错。对实际气体不适应。 2.错。数量不同,温度可能不同。 3.错。没有与环境交换能量,无热可言;天气预报的“热”不是热力学概念,它是指温度,天气很热,指气温很高。 4.错。恒压(等压)过程是体系压力不变并与外压相等,恒外压过程是指外压不变化,体系压力并不一定与外压相等。 5.错。一般吸收的热大于功的绝对值,多出部分增加分子势能(内能)。 6.错。例如理想气体绝热压缩,升温但不吸热;理想气体恒温膨胀,温度不变但吸热。 7.第一句话对,第二句话错,如理想气体的等温过程ΔU = 0,ΔH = 0,U 、H 不变。 8.错,两个独立变数可确定系统的状态只对组成一定的均相组成不变系统才成立。 9.错,理想气体U = f (T ),U 与T 不是独立的。描述一定量理想气体要两个独立变量。 10.第一个结论正确,第二个结论错,因Q+W =ΔU ,与途径无关。 11.错,Q V 、Q p 是过程变化的量、不是由状态决定的量,该式仅是数值相关而已。在一定条件下,可以利用ΔU ,ΔH 来计算Q V 、Q p ,但不能改变其本性。 12.错,(1)未说明该过程的非体积功W '是否为零; (2)若W ' = 0,该过程的热也只等于系统的焓变,而不是体系的焓。 13.对。因为理想气体热力学能、焓是温度的单值函数。 14.错,这是水的相变过程,不是理想气体的单纯状态变化,ΔU > 0。 15.错,该过程的p 环 = 0,不是恒压过程,也不是可逆相变,吸的热,增加体系的热力学能。吸的热少于30.87 kJ 。 16.错,在25℃到120℃中间,水发生相变,不能直接计算。 17.错,H = f (T ,p )只对组成不变的均相封闭系统成立,该题有相变。 18.错,Δ(pV )是状态函数的增量,与途径无关,不一定等于功。 19.错,环境并没有复原,卡诺循环不是原途径逆向返回的。 20.错,无限小过程不是可逆过程的充分条件。如有摩擦的谆静态过程。 21.错,若有摩擦力(广义)存在,有能量消耗则不可逆过程,只是准静态过程。 22.对。只有每一步都是可逆的才组成可逆过程。 23.对。() ()()12m ,121122n n 1T T C C C C T T R V p V p W V V V p -=--=--= γ。该公式对理想气体可逆、 不可逆过程都适用。 24.错,若是非理想气体的温度会变化的,如范德华气体。 25.错,该条件对服从pV m = RT + bp 的气体(钢球模型气体)也成立。 26.错,(?U /?V )p ≠(?U/?V )T ;(?U /?P )V ≠(?U/?V )T ,因此不等于零。 27.错,U = H -pV 。PV 不可能为零的。 28.错。CO 2在1000K 的标准摩尔生成焓可以由298K 标准摩尔生成焓计算出:由基尔霍夫定律得出的计算公式:

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

热力学第一定律第二定律的基本知识部分

第二章热力学第一定律(需要掌握) 一、填空: 1、系统与环境 系统(System):________________________________________________. 环境(Surroundings):__________________________________________. 根据系统与环境之间有无物质和能量的交换,可分为三类:________、_______、___________. 2、状态与状态函数 ?状态:________________________________________. 状态函数(State function):__________________________。如______________.非状态函数(途径函数或过程函数)(process function):______________________,如______、___________. 3、热(heat):__________________________。用符号____表示。 ?Q的取号:系统吸热,Q _ 0;系统放热,Q_0 ; ?单位:能量单位,如kJ、J。 4、功(work):_________________________________。用符号____ 表示。 ?W 的取号: 环境对系统做功,系统___功,环境___功,系统能量___,W为___。 系统对环境做功,环境____功,体系___功,系统能量___,W为___。 5、体积功(e W)公式:W=__________________。 6、热功当量定律___________________________________. 焦耳(Joule)等人历经20多年,用各种实验求证____________关系,其关系为

热力学第一定律及其应用

热力学第一定律及其应用 §2. 1热力学概论 热力学的基本内容 热力学是研究热功转换过程所遵循的规律的科学。它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。 热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。 热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。如一个系统的变化的方向和变化所能达的限度等。热力学研究方法和局限性 研究方法: 热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。 特点: 首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。 局限性: 不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。 §2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。 温度概念的建立以及温度的测定都是以热平衡现象为基础。一个不受外界影

响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。这个状态参量就称为温度。 那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。 温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。 热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。 §2. 3热力学的一些基本概念 系统与环境 系统:物理化学中把所研究的对象称为系统 环境:和系统有关的以外的部分称为环境。 根据系统与环境的关系,可以将系统分为三类: (1)孤立系统:系统和环境之间无物质和能量交换者。 (2)封闭系统:系统和环境之间无物质交换,但有能量交换者。 (3)敞开系统:系统和环境之间既有物质交换,又有能量交换 系统的性质 系统的状态可以用它的可观测的宏观性质来描述。这些性质称为系统的性质,系统的性质可以分为两类: (1)广度性质(或容量性质)其数值与系统的量成正比,具有加和性,整个体系的广度性质是系统中各部分这种性质的总和。如体积, 质量,热力学能等。 (2)强度性质其数值决定于体系自身的特性,不具有加和性。如温度,压力,密度等。 通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。 热力学平衡态 当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

(完整版)第二章热力学第一定律.doc

第二章热力学第一定律 1、如果一个系统从环境吸收了40J 的热,而系统的热力学能却增加了200J ,问系统从环境中得到了多少功?如果该系统在膨胀过程中对环境作了 10kJ 的功,同时收了 28kJ 的热,求系统的热力学能变化值。 解:根据U Q W 热力学第一定律,可知 W U Q (200 40) 160J (系统从环境吸热,Q 0 ) U Q W 28 10 18kJ (系统对环境做功,W 0 ) 2、有 10mol 的气体(设为理想气体),压力为 1000kPa ,温度为 300K ,分别求出等温时下列过程的功: (1)在空气中压力为 100kPa 时,体积胀大1dm3; (2)在空气中压力为 100kPa 时,膨胀到气体压力也是100kPa ; (3)等温可逆膨胀至气体的压力为100kPa ; 解:(1)外压始终维持恒定,系统对环境做功 W p e V100 103 1 10 3 100J (2) 10mol,300K10mol,300K 1000kPa,V 1100kPa,V 2 W p e V p e (V2 V1 ) p e(nRT 2 nRT 1) nRTp e ( 1 1 ) p2 p1 p2 p1 10 8.314 300 100 103 ( 1 1 103 ) 2.2 104 J 100 103 1000 (3)等温可逆膨胀: V2 p e dV nRT ln V 2 nRT ln p 1 W V1 V1 p2 10 8.314 300 ln 1000 5.74 10 4 J 100 3、 1mol 单原子理想气体,C V ,m 3 R ,始态(1)的温度为273K ,体积为 22.4dm3,2 经历如下三步,又回到始态,请计算每个状 态的压力, Q ,W和U 。 (1)等容可逆升温由始态(1)到 546K 的状态( 2); (2)等温( 546K )可逆膨胀由状态( 2)到44.8dm3的状态( 3); (3)经等压过程由状态( 3)回到始态

第一章 热力学第一定律及应用练习题

第一章 热力学第一定律及应用练习题 一、 填空:(填<、>或=) 1、理想气体的自由膨胀:△U 0;△H 0;Q 0;W 0; 2、理想气体的等压膨胀:△U 0;△H 0;Q 0;W 0;△H △U ; 3、理想气体的等容升压:△U 0;△H 0;Q 0;W 0;△H △U ; 4、理想气体的等温压缩:△U 0;△H 0;Q 0;W 0;Q W ; 5、理想气体的节流膨胀:△U 0;△H 0;Q 0;W 0; 6、理想气体绝热抗恒外压膨胀:△U 0;△H 0;Q 0;W 0; 7、实际气体的绝热自由膨胀:△U 0; Q 0;W 0;△T 0; 8、实际气体的恒温自由膨胀:△U 0; Q 0;W 0;△U Q ; 9、实际气体的节流膨胀:△H 0; Q 0; 10、实际气体经循环过程恢复原状:△U 0;△H 0; 11、0℃、P 压力下冰融化为水:△U 0;△H 0;Q 0;W 0; 12、水蒸气通过蒸气机对外作功后恢复原状: △U 0;△H 0;Q 0;W 0;Q W ; 13、100℃、P 压力下的H 2O (l )向真空蒸发成同温同压下的蒸气: △U 0;△H 0;Q 0;W 0;△U Q ; 14、H 2(g )和O 2(g )在一绝热恒容反应器中剧烈反应生成水: △U 0; Q 0;W 0; 15、对于理想气体:V T U ??? ???? 0;P T U ??? ???? 0;T V U ??? ???? 0; T P U ??? ???? 0;V T H ??? ???? 0;P T H ??? ???? 0;T V H ??? ???? 0;

T P H ??? ???? 0;V T U ??? ???? P T U ??? ????;V T H ??? ???? P T H ??? ????; 二、单项选择题: 1.热力学第一定律的数学表达式△U =Q —W 只能适用于 (A)理想气体 ; (B)封闭物系; (C)孤立物系 ; (D)敞开物系 2、1mol 单原子理想气体,在300K 时绝热压缩到500K ,则其焓变△H 约为 (A )4157J ;(B )596J ;(C )1255J ;(D )994J 3、同一温度下,同一气体物质的等压摩尔热容Cp 与等容摩尔热容C V 之间 存在 (A )CpC V ;(C )Cp=C V ;(D )难以比较 4、对于任何循环过程,物系经历了i 步变化,则根据热力学第一定律应 该是 (A )∑i Q =0 ; (B )∑i W =0 ; (C )∑∑-][i i W Q >0 ; (D )∑∑-][i i W Q =0 ; 5、对于理想气体,下列关系中哪个是不正确的? (A )0=??? ????V T U ; (B )0=??? ????T V U ; (C )0=??? ????T P H ; (D )0=??? ????T P U 6、3mol 单原子理想气体,从初态T 1=300 K ,P 1=1atm 反抗恒定的外压0.5atm 作不可逆膨胀至终态T 2=300K .P 2=0.5atm 。对于这个过程的Q 、W 、 △U 、△H 的值下列正确的是 (A )Q=W=0;(B )△U=△H=0;(C )Q=△U=0;(D )Q=△H=0 7、实际气体的节流膨胀过程中,哪一组的描述是正确的? ’· i (A )Q=0,△H=0,△P<0; (B )Q=0,△H<0,△P>0;

相关文档
最新文档