控制阀选型原则 )

控制阀选型原则  )
控制阀选型原则  )

控制阀选型原则

调节阀的节流原理和流通能力

当流体经过调节阀时,由于阀芯、阀座间流通面积的局部缩小,形成局部阻力,使流体在此处产生能量损失,这个损失的大小通常用阀前后的压差来表示。当调节阀口径一定,即调节阀接管截面积A一定,且P1-P2不变时,阻力系数ζ减小,流量Q则增大,反之ζ增大则Q减小,所以调节阀的工作原理就是由输入信号的大小、改变阀芯的行程,从而改变流通面积达到调节流量的目的。C称为流通能力,与阀芯、阀座的结构、阀前后的压差、流体性质等因素有关。必须在规定了—定的条件后,再描述调节阀的流通能力。

我国所用流通能力C的定义为:在调节阀全开,阀前后压差为1kgf/cm2,介质重度为1gf /cm3时,流经调节阀的流量数。

例如:一个C值为32的调节阀就是表示当阀全开,阀前后压差为1kgf/cm2时,每小时能通过的水量为32m3。

一、由工艺或用户提供相关资料:

1、被控制流体的种类:(3种)液体、气体和蒸汽对于液体应考虑黏度的修正,当液体粘度过高时,其雷诺数下降,改变了流体的流动状态,在计算控制阀流通能力时,必须考虑粘度校正系数。对于气体,应该考虑其可压缩性。

对于蒸汽,要考虑饱和蒸汽和过热蒸汽。

2、流体的温度、压力根据工艺介质的最大工作压力来选定控制阀的公称压力时,必须对照工艺温度条件综合选择,因为公称压力是在一定基准温度下,依据强度确定的,其允许最大工作压力必须低于公称压力。

例如:对于碳钢阀门,当公称压力PN1.6MPa,介质温度在200℃时,最大耐压力为1.6 MPa;当250℃时,最大耐压力为1.5 MPa;当400℃时,最大耐压力为0.7 MPa。对于压力调节系统,还要考虑其阀前取压、阀后取压和阀前后压差,在进一步来选择阀的形式。

3、流体的粘度、密度和腐蚀性根据流体的粘度、密度和腐蚀性来选择不同形式的阀门以便满足工艺的要求。对于高粘度、含纤维介质常用O型和V型球阀;对于腐蚀性强的易结晶的流体常用阀体分离型的阀体。

4、最大流量和最小流量根据流量方程式可知,流量大,流通能力也大,其阀门口径也大,相应的价格也高。选择的流通能力过大,使控制阀经常工作在小开度状态,严重时会冲刷阀芯;流通能力过小,达不到工艺设计能力。因此,在决定最大流量时,在很大程度上决定于设计人员的经验。一般情况下,取稳态的最大流量的1.15~1.5倍作为计算最大流量。

5、安全方面的考虑由于停电、仪表和阀门的故障及工艺操作异常因素,需要紧急停车,为此,需要把阀门放在安全位置,即事故关阀,事故开阀。

6、噪音水平由于阀门元件机械振动、阀的空化和闪蒸等因素引起噪音。通过计算,确定阀的噪音水平是否低于“工业企业噪声卫生标准”的规定。

7、两相流出现两相流时,通常在计算控制阀的流通能力时,要分别计算每相的量,然后把所得的流通能力相加,最后得到总的流通能力。

8、进出口管道尺寸流体流过控制阀后,压力总是小于节流前压力,所以,阀的直径总是小于管道直径(切断阀除外)。

二、控制阀选择原则:

1. 选择控制阀体的结构形式(角型、双座、蝶阀等):

在满足使用要求的前提下,适合的控制阀可能有几种,应综合经济效益来考虑:

②、使用寿命;

②、结构简单,维护方便;

③、产品价格合适。

2、选择控制阀体的材料(铸钢、不锈钢或衬里)

选择材料时,主要考虑材料强度、硬度、耐腐蚀和耐高温、低温的特性。首先应满足按期安全可靠,还要考虑使用性能、使用寿命和经济性。对寒冷地区和蒸汽介质尽量不用铸铁阀体。

3、选择控制阀与工艺管道连接形式(法兰、螺纹、压力等级)

4、选择控制阀芯(直线、等百分比、快开)及其材料(304、316、17-PH 或合金)1) 定量地选择控制阀芯的形式有很多困难。在设计中,通常按照国内外工程公司设计经验来确定。通常,对液体调节系统采用线性流量特性;对于温度、压力、流量调节系统采用等百分比流量特性;需要快速切断系统则用盘型阀芯,即快开特性。2) 阀芯材料选择,根据需要来决定。

5、流量动作(流开、流闭)

一般控制阀对流向的要求可分为三种情况:

②对流向没有要求,如:球阀、普通蝶阀;

②规定了某一定向,一般不得改变,如:三通阀、文丘里角阀、双密封带平衡空的套筒阀;

③根据工艺条件,有流向的选择问题,这类阀主要为单向阀、单密封控制阀,如:单座阀、角型阀、高压阀、无平衡空的单密封套筒阀等。

具体选择如下:①高压阀,dg≤20时,选流闭型;dg>20时,因稳定性问题,根据具体

情况来确定;

②角型阀,对于高黏度、悬浮液、含固体颗粒的介质,要求自洁性好,选流闭型;仅为角型时,可选流开型;

③单座阀,通常选流开型;

④小流量阀,通常选流开型,当冲刷严重时,可选流闭型;

⑤单密封套筒阀,通常选流开型;有自洁要求,可选流闭型;

⑥对两位型控制阀选用流闭型。

6、所需执行器从可靠性和防爆性考虑,通常选用气动执行器。有正、反作用薄膜执行机构、活塞执行机构和长行程执行机构;当缺乏压缩空气时,可选用电动执行器。有角行程和直行程电动执行机构。

7、仪表空气有或无(如果无仪表空气采用电动执行器)

8、填料结构、材质(TFE、石棉、石墨)一般选单层结构,对毒性较大的流体或温度高于200℃的场合,选双层填料结构;一般选V型聚四氟乙烯填料(T<200℃),它磨擦系数小,密封性好和耐腐好,但耐温差,寿命较短。高温情况下,应选用柔性石墨填料(P<10MPa、T=-196~+600℃)。

9、所需附件(定位器、手轮、电磁阀、行程开关、阀门定位器)

调节阀的选型计算

二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适

用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。(8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。 三、调节阀的流量特性及其选择 调节阀流量特性分固有特性和工作特性两种。固有特性又称调节阀的结构特性,是由生产厂制造时决定的。调节阀在管路中工作,管路系

调节阀选型指南

调节阀选型指南◆气动ZMA□型,电动ZKZ□为什么应用越来越少? 1)应用水平落后(60年代的老产品); 2)笨重、体积大 3)流路复杂,Kv小、易堵; 4)可靠性较差。建议不推荐使用。 ◆为什么电子式阀将取代配DKZ、DKJ的电动阀? 电子式阀较DKZ、DKJ的电动阀有以下几个优点: 1)可靠性高、外观美、 2)重量轻、体积小、 3)伺服放大器一体化、调整方便。 ◆为什么角行程阀的应用将成为一种趋势? 直行程阀与角行程阀相比较存在9个方面的不足,其表现在: 1.从流路上分析,直行程阀流路复杂,导致4个不足: 1) Kv值小; 2)防堵差; 3)尺寸大,笨重; 4)外观差; 2.直行程阀阀杆上下运动,滑动摩擦大,导致2个不足:1)阀杆密封差,寿命短; 2)抗振动差; 3.从结构上分析,导致3个不足:

1)单密封允许压差小; 2)双密封泄露大; 3)阀芯在中间,无法避开高速介质(汽蚀、颗粒)的直接冲刷,寿命短。所以,角行程阀的广泛应用将成为一种必然,成为二十一世纪的主流。 ◆为什么电动阀比气动阀应用越来越广泛? 电动阀比气动阀有如下优势: 1.用电源经济方便,省去建立气源站,从经济上看,与“气动阀+定位器+电磁阀+气源”组合方式价格差不多; 2.用气动阀环节较多,增加不可靠因素和维修量; 3.电动阀的推力、刚度、精度、重量、安装尺寸都优于气动阀,但防爆价格高。所以,防爆要求不高的场合,尽可能选电动阀。 ◆为什么说精小型阀、Cv3000是第一代产品的改进型? 精小型阀较老产品,重量下降30%,体积和高度下降30%,Kv值提高30%,仅此三个30%,其功能、结构没有质的突破,只能配称改进型。 ◆Cv3000为什么成为二十世纪末调节阀的主流? Cv3000较老式产品比较有以下三个优点: 1)重量轻30%; 2)体积和高度下降30%; 3) Kv值提高30%。较原来老产品是一种改进,所以成为20世纪末的主流,但这种主导位置,很快将由角行程阀所替代。

调节阀基本选型原则

调节阀基本选型原则 一、调节阀结构形式选择及选择时应注意的问题 1、根据工艺要求、调节功能、泄露等级及切断压差、耐压及耐温、冲蚀、气蚀及腐蚀、流体介质、使用生命周期、维护及备件、性价比等,建议选择顺序是:单双座(Globe)、笼式单双座(Cage)、偏心旋转阀、蝶阀、角阀、球阀(V.O)、三通阀、特殊调节阀等。 2、调节阀结构形式选择时注意的问题 a、严密关闭阀(TSO) 选择顺序为:球阀、单座阀、偏心阀、蝶阀、角型阀等。 阀芯阀座密封型式: ——阀芯硬密封/阀座应密封,用于不干净介质、高温、高压、高压差场合,泄露等级5级; ——阀芯硬密封/阀座软密封,用于一般场合,泄露等级5级或6级; ——必须提出最大切断压差,是选择阀的关键条件之一; ——必要时提出紧急切断动作时间。 b、高温高压、高差压阀 选择顺序为:角型阀、单座阀、套筒阀。 ——特别注意“空化(cavitation,气蚀、空蚀)”、“阻塞流(闪点)”导致阀芯。阀座损坏,带来噪音和振动的危害;锅炉主给水调节阀、给水旁路阀调节。给水再循环调节阀。减温水调节阀、凝结水再循环调节阀。锅炉连续排污调节阀、减温水调节阀。凝结水再循环调节阀、锅炉连续排污调节阀、高压蒸汽压力调节、合成氨高压差调节阀等; ——高压、高压差调节阀阀体选用锻钢件; ——高压、高压差调节阀应选用带多级套筒式、多级阀芯式、多级叠板式等防空化组件; 二、调节阀的作用方式选择 a、根据工艺生产安全确定气开阀(FC-气源故障时阀关),气关阀(FO-气源故障时阀开),由工艺专业确定并在PID表示。 b、执行机构作用方式的选择 正作用:信号增加,推杆向下运动; 反作用:信号增加,推杆向上运动; ——建议单导向(FO)配正作用执行机构; 单导向(FC)配反作用执行机构; 双导向(FC/FO)配正作用执行机构。 三、调节阀执行机构选择 根据可靠性、经济性、动作平稳、足够的输出力、结构简单、维护方便、重量轻等因素,建议选择顺序:气动薄膜执行机构(直行程用)、气缸执行机构(单气缸弹簧复位、双气缸)直行程、角行程均适用、电动执行机构(包括马达驱动阀MOV)、液动执行机构。 四、调节阀的材料选择 ——流体介质温度、压力 碳钢(CS):Tmax450℃,Pmax14.4MPa(随着压力升高,温度降低。P=32MPa

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。 调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。 控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

调节阀选型方法总结

调节阀选型 自动控制系统是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。 1调节阀结构形式的选择 常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

球阀V形球阀的流量特性曲线近似对数 型,流量调节性能较好,小开度下 调节性能较好,可实现小流量下的 微调功能; O型球阀可调比R的范围为: 100-200 V型球阀可调比R的范围为 200-300球阀一般适用于低温 介质,在温度小于 160℃的情况下使用 球阀的公称通径范 围可从8mm到 1200mm 球阀适用于压力较高的 场合,从真空到40MPa 都可以选用球阀 对于粘度较大的介 质,适宜使用球阀。 球阀是石油和天然气 的理想阀门,并可用 于带固体颗粒的介 质,是自洁性能最好 的阀门 球阀全开时具有最小的 流体阻力,且密封性能良 好 球阀可以承受较高的截断差压, 适用于高压截断的情况,泄流量 小,密封性能较好 可靠性差、体积较大、结 构笨重、成本较高 套筒阀调节稳定性好,调节精度较高,可 调比R值在50左右;其可选公称通径从 15mm到250mm 套筒式调节阀可承受的 最大介质压力从到 40Mpa左右 对于不干净介质和易 结晶、结巴、结垢介 质不应选用此阀 套筒调节阀可承受较大的阀门前 后差压值,相同配置的条件下, 其承受差压值为为单座调节阀的 2倍;但套筒式调节阀的泄流量 较大 体积较大,结构笨重 直通单座阀直通单座阀的调节精度较高,其公称通径可在 20mm到200mm的范 围内进行选择,高 压差、大口径的应 用场合,不宜采用单座调节阀的使用压力 范围一般在到之间 不适用于含固体颗 粒、含纤维介质和高 黏度流体的控制 直通单座阀可承受的阀前后差压 值较小,DN100单座调节阀的允 许压差仅120kPa,但密闭性较好, 泄流量小,标准泄漏量为%C 体积大、结构笨重

暖通空调管道的阀门选型原则

暖通空调管道阀门是一种重要元件。管道的最终控制是阀门,阀门启闭件控制着介质在管道内的流束方式,阀门流道的形状使阀门具备一定的流量特性。在选择管道系统最适合安装的阀门时必须考虑到这一点。下面我们就来谈谈暖通空调管道的阀门选型原则。 一、阀门选型设计 1、冷冻水机组、冷却水进出口设计蝶阀; 2、水泵前蝶阀、过滤器,水泵后止回阀、蝶阀; 3、集、分水器之间压差旁通阀; 4、集、分水器进、回水管蝶阀 5、水平干管蝶阀; 6、空气处理机组闸阀、过滤器、电动二通或三通阀 7、风机盘管闸阀(或加电动二通阀) 二、一般采用蝶阀时,口径小于150mm时采用手柄式蝶阀(D71X、D41X);口径大于150mm时采用蜗轮传动式蝶阀(D371X、D341X)。 三、选用阀门的注意事项 1、减压阀,平衡阀等必须加旁通; 2、全开全闭最好用球阀、闸阀; 3、尽量少用截止阀;

4、阀门的阻力计算应当引起注意; 5、电动阀一定要选好的。 四、给水管道上使用的阀门,应根据使用要求按右列原则选型 1、需调节流量、水压时,宜采用调节阀、截止阀; 2、要求水流阻力小的部位(如水泵吸水管上),宜采用闸板阀; 3、安装空间小的场所,宜采用蝶阀、球阀; 4、水流需双向流动的管段上,不得使用截止阀; 5、口径较大的水泵,出水管上宜采用多功能阀 止回阀设置要求 1、引入管上; 2、密闭的水加热器或用水设备的进水管上; 3、水泵出水管上; 4、进出水管合用一条管道的水箱、水塔、高地水池的出水管段上。 注:装有管道倒流防止器的管段,不需在装止回阀。 止回阀的阀型选择 应根据止回阀的安装部位、阀前水压、关闭后的密闭性能要求和关闭时引发的水锤大小等因素确定,应符合下列要求: 1、阀前水压小的部位,宜选用旋启式、球式和梭式止回阀。

流量调节阀选型设计

, 浅析流量调节阀的选型设计 内容来源自网络 { 摘要:流量调节阀,在计量收费的供热系统中,占有非常重要的地位。因此,如何正确的进行流量调节阀的选型与设计,就显得特别关键!本文从流量调节阀的构造及工作原理入手,提出在调节阀的选型与设计中应注意的问题。 ~ 摘要:流量调节阀,在计量收费的供热系统中,占有非常重要的地位。因此,如何正确的进行流量调节阀的选型与设计,就显得特别关键!本文从流量调节阀的构造及工作原理入手,提出在调节阀的选型与设计中应注意的问题。在温控阀的选型设计中,在选出与管道同口径的温控阀的同时,还要给选定的温控阀造成一个理想的压差工作条件;电动调节阀是适用于计算机监控系统中进行流量调节的设备,一般多在无人值守的热力站中采用;对手动平衡法来说,如何利用阀门的特性曲线分析阀门的调节性能,如何解决阀门在小开度情况下阀门容易导致导致汽水击现象的问题;对自力式流量控制阀在设计选型时注意阀门有最小工作差的要求。 关键词:温控阀电动调节阀平衡阀差压调节阀 供热系统实行热计量收费可以节约能源,提高供热系统的能效。就目前现状而言,我国供热系统的能效只有30%左右。人们往往只注意锅炉和外网的热损失,而忽略了热用户散热损失。热用户散热损失,主要是由于冷热不均造成的,这部分热损失约为30~40%,是相当可观的的。供热系统搞计量收费,从节能的角度考虑,主要是挖掘这部分的节能潜力。 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理(1) 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。 " 温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双

阀门选用标准及要求

阀门选用标准及要求 一般要求: 根据我集团各产品生产工艺的特点,针对各种介质,作阀门选用的一般要求如下: 第一条:阀门选用的第一原则是阀门的密封性能要符合介质的要求。即内漏要符合标准GB /T13927-1992《通用阀门压力试验》,外漏则是根本不允许的。 第二条:正确选择阀门的类型。阀门类型的正确选择是以选用者对整个生产工艺流程需要的综合估计为先决条件的,在选择阀门类型的同时,选用者应首先了解每种阀门的结构特点和性能。一般阀门的类型选择如中低压蒸汽选用铜密封面的截止阀,DN200以上的蒸汽用闸阀;循环水总管上用蝶阀,支管上用衬胶闸阀;低压空气总管上用蝶阀,支管上用截止阀;一般液态物料用球阀等。 第三条:确定阀门的端部连接。在螺纹连接、法兰连接、焊接端部连接中,前两种最常用,其中螺纹连接形式的价格比法兰连接形式低得多,一般为较小口径阀门,应首先选用。 第四条:阀门主要零件材质的选择。选择阀门主要零件的材质,首先应考虑到工作介质的物理性能(温度、压力)和化学性能(腐蚀性)等。同时还应了解介质的清洁程度(有无固体颗粒)。除此之外,还要参照国家和使用部门的有关规定的要求。正确合理地选择阀门的材料可以获得阀门最经济的使用寿命和最佳的性能。(附表1-1、1-2、1-3) 阀体材料选用顺序大致按照铸铁-碳钢-不锈钢,密封圈材料选用顺序:橡胶-铜-合金钢-F4。 第五条:确定流经阀门的流量。 第六条:压力等级选用按照由低到高顺序。 附表1-1阀门壳体常用材质

附表1-2阀门内件常用材质 附表1-3阀门密封面常用材料及适用温度 各种类型阀门的选用标准及要求如下:

闸阀 特点:密封性能好,流体阻力小,且有一定的调节性能;但尺寸大、结构复杂,加工困难、密封面易磨损,不易维修,启闭时间长。适合制成大口径的阀门,除适用于蒸汽、油品等介质外,还适用于含有粒状固体及粘度较大的介质,并适用于作放空和低真空系统的阀门。 选用标准: 一、平板闸阀 1、适用介质范围:水、蒸汽、油品、氧化性腐蚀介质(Z42W-16Ti)、酸、碱类 烟道气等。 2、性闸阀适用于蒸汽、高温油品及油气等介质,及开关频繁的部位,不宜用于易 结焦的介质; 3、城市煤气输送管线选用单闸板或双闸板软密封明杆平板闸阀; 4、城市自来水工程,选用单闸板或双闸板无导流孔明杆平板闸阀; 5、带有悬浮颗粒介质的管道,选用刀形平板闸阀; 二、楔式闸阀 1、一般只适用于全开或全闭,不能作调节和节流使用; 2、一般用在对阀门的外形尺寸没有严格要求,而且使用条件又比较苛刻的场合。 如高温高压的工作介质,要求关闭件要保证长期密封的情况下等等; 3、通常,使用条件或要求密封性能可靠,高压、高压截止、低压截止、低噪音、 有气穴和汽化现象、高温介质、低温深冷时,推荐使用楔式闸阀。如石化石油、城市建设中的自来水工程和污水处理工程,化工等领域中应用较多; 4、在要求流阻小、流通能力强、流量特性好、密封严格的工况选用; 5、在高温、高压介质上选用楔式闸阀;如高温蒸汽、高温高压油品。 6、低温、深冷介质如:液氨、液氢、液氧等选用楔式闸阀; 7、低压大口径,如自来水工程、污水处理工程选用楔式闸阀; 8、当高度受限制时选用暗杆式,当安装高度不受限制时用明杆闸阀; 9、在开启和关闭频率较低的场合下,宜选用楔式闸阀;

调节阀选型注意事项

调节阀选型注意事项 调节阀阀型的选择: (1)确定公称压力,不是用Pmax去套PN,而是由温度、压力、材质三个条件从表中找出相应的PN并满足于所选阀之PN值。 (2)确定的阀型,其泄漏量满足工艺要求。 (3)确定的阀型,其工作压差应小于阀的允许压差,如不行,则须从特殊角度考虑或另选它阀。 (4)介质的温度在阀的工作温度范围内,环境温度符合要求。 (5)根据介质的不干净情况考虑阀的防堵问题。 (6)根据介质的化学性能考虑阀的耐腐蚀问题。 (7)根据压差和含硬物介质,考虑阀的冲蚀及耐磨损问题。 (8)综合经济效果考虑的性能、价格比。需考虑三个问题: a.结构简单(越简单可靠性越高)、维护方便、备件有来源; b.使用寿命; c.价格。 (9)优选秩序。 蝶阀-单座阀-双座阀-套筒阀-角形阀-三通阀-球阀-偏心旋转阀-隔膜阀。 调节阀执行机构的选择: (1)最简单的是气动薄膜式,其次是活塞式,最后是电动式。 (2)电动执行机构主要优点是驱动源(电源)方便,但价格高,可靠性、防水防爆不如气动执行机构,所以应优先选用气动式。 (3)老电动执行机构笨重,我们已有电子式精小型高可靠性的电动执行机构提供(价格相应高)。 (4)老的ZMA、ZMB薄膜执行机构可以淘汰,由多弹簧轻型执行机构代之(性能提高,重量、高度下降约30%)。 (5)活塞执行机构品种规格较多,老的、又大又笨的建议不再选用,而选用轻的新的结构。 调节阀材料的选择: (1)阀体耐压等级、使用温度和耐腐蚀性能等方面应不低于工艺连接管道的要求,并应优先选用制造厂定型产品。 (2)水蒸汽或含水较多的湿气体和易燃易爆介质,不宜选用铸铁阀。 (3)环境温度低于-20℃时(尤其是北方),不宜选用铸铁阀。 (4)对汽蚀、冲蚀较为严重的介质温度与压差构成的直角坐标中,其温度为300℃,压差为1.5MPa两点连线以外的区域时,对节流密封面应选用耐磨材料,如钴基合金或表面堆焊司特莱合金等。

多级降压调节阀的选型、设计与计算解读

多级降压调节阀的计算与选型 大连亨利测控仪表工程有限公司于伟 关键词:调节阀、流量系数、降压级数、材料 目前随着石油、化工、冶金、电力工业的迅速发展,工艺水平的日渐提高,对其流体的控制部件调节阀的要求也越来越高;尤其在高压差的场合。为了防止闪蒸、空化,避免汽蚀,增加使用寿命,降低噪音。各大控制阀生产商投入大量的人力、物力研发多级降压高压调节阀并取得相当大的进展。大连亨利测控仪表工程有限公司与国外知名专业控制阀公司合作研发并生产了多层笼式、迷宫式多级降压调节阀,能够有效防止空化、汽蚀。耐腐蚀、抗冲刷,有较长使用寿命。为过程控制提供了优良的控制阀产品。 降压级数:多层笼式可达四级、迷宫式可达二十四级。内件见图一所示,调节阀执行机构有气动薄膜式、气缸式和电子式。下面就具体事例将有关计算与选型略作介绍。

图一 例一:介质:水,Qmax=25T/h,P1=1.6Mpa,P2=0.18Mpa,T=21.1℃,ρ=956Kg/M3液体的饱和蒸汽压Pv =0.0255Kgf/cm2, 调节阀流量系数的计算 △P = P1-P2 =1.6-0.18 = 1.42 △P′=F L2(P1-F F Pv-----------------------(1

式中: F L ~ 阀门的压力恢复系数,本例取0.9。 F F~ 液体的临界压力比系数; F F = 0.96-0.28 Pv / Pc ------------------ (2 Pc ~~热力学临界压力,水:Pc = 22.5MPa 代入(2得: F F =0.96 -0.28 2.55×10-3/22.5 = 0.957 △P′=0.92(1.6-0.957×2.55×10-3=1.294(MPa ∵△P >△P′为阻塞流情况 G 又∵Cv = 1.17Q ---------------- (3 P1-P2 G ∴Cv = 1.17Q ------------------ (4 △P′ 其中:Q ~ 流量(M3/h , G ~ 比重, P1 ~ 进口压力(Kgf/cm2,P2 ~ 出口压力(Kgf/cm2,本例中:Q = 25/0.956 = 26.2 (M3/h , G = 0。956 代入(4中 0.956 Cv = 1.17×26.2 = 8.33

阀门选用标准及要求

阀门选用标准及要求阀门选型一般要求 阀体常用材质 阀门内件常用材质 阀门密封面常用材料及适用温度 闸阀 平板闸阀 锲式闸阀 截止阀 柱塞阀 球阀 节流阀 旋塞阀 蝶阀 止回阀 隔膜阀 蒸汽疏水阀 安全阀 减压阀 一般要求:

根据我集团各产品生产工艺的特点,针对各种介质,作阀门选用的一般要求如下: 第一条:阀门选用的第一原则是阀门的密封性能要符合介质的要求。即内漏要符合标准GB /T13927-1992《通用阀门压力试验》,外漏则是根本不允许的。 第二条:正确选择阀门的类型。阀门类型的正确选择是以选用者对整个生产工艺流程需要的综合估计为先决条件的,在选择阀门类型的同时,选用者应首先了解每种阀门的结构特点和性能。一般阀门的类型选择如中低压蒸汽选用铜密封面的截止阀,DN200以上的蒸汽用闸阀;循环水总管上用蝶阀,支管上用衬胶闸阀;低压空气总管上用蝶阀,支管上用截止阀;一般液态物料用球阀等。 第三条:确定阀门的端部连接。在螺纹连接、法兰连接、焊接端部连接中,前两种最常用,其中螺纹连接形式的价格比法兰连接形式低得多,一般为较小口径阀门,应首先选用。 第四条:阀门主要零件材质的选择。选择阀门主要零件的材质,首先应考虑到工作介质的物理性能(温度、压力)和化学性能(腐蚀性)等。同时还应了解介质的清洁程度(有无固体颗粒)。除此之外,还要参照国家和使用部门的有关规定的要求。正确合理地选择阀门的材料可以获得阀门最经济的使用寿命和最佳的性能。(附表1-1、1-2、1-3) 阀体材料选用顺序大致按照铸铁-碳钢-不锈钢,密封圈材料选用顺序:橡胶-铜-合金钢-F4。 第五条:确定流经阀门的流量。 第六条:压力等级选用按照由低到高顺序。 附表1-1阀门壳体常用材质

在暖通空调水系统里电动调节阀的选型

在暖通空调水系统里电动调节阀的选型 摘要:电动调节阀在中央空调和集中供热系统里是一个非常重要的控制部件, 但只有根据换热设备的特性进行正确的选型才能发挥作用。 关键词:电动调节阀阀权度自动调节 引言 随着中国城市化进程的不断发展,城市里商业和民用建筑不断增多,为了创 造良好的工作和居住环境,在我国的大部分地区,中央空调系统在上述建筑中得 到了广泛的安装和应用,在北方地区冬季还有集中供热系统。在上述系统里电动 调节阀得到了广泛的应用。设计院的暖通设计师在方案设计过程中对电动调节阀 的选型并不十分了解,尤其是面对大量的国内和国外产品手册,各厂家介绍的选 型方式不尽相同,国内阀门和国外阀门标注的技术参数也有差别,导致设计师在 阀门选型过程中产生困惑,阀门的选择到底是根据什么技术参数和指标来进行, 不同的设计师有不同的理解,大多数的情况下设计师都是根据中央空调和集中供 热系统里管径的大小来确定电动调节阀的大小,最后造成在实际运行过程中电动 调节阀没有起到良好的自动调节作用,造成房间温湿度或水温等参数波动过大、 运行能耗增加、电动调节阀的损坏等等一些现象。 针对上述情况,为了保证在中央空调和集中供热水系统里电动调节阀能够在 最佳工况下工作,保证控制对象的精度,笔者在此总结了电动调节阀的选型方法,因为电动二通调节阀的使用数量远大于电动三通调节阀,故本文中只讲述电动二 通调节阀的选型,并且着重论述阀门口径的确定和调节特性选择的这两个最重要 的选型因素。 1 确定阀门口径 1.1 阀门流通能力 阀门流通能力,也叫流量系数,用Kv表示,表示阀两端的压差为1bar,流 体密度ρ=1g/cm3时,流经阀门的流量,单位是m3/h。而Kvs表示阀门处于全开 状态时阀门的流通能力,公式表示如下: 式中,Q--通过阀门的流量,m3/h; △P--通过阀门的压降,bar。 1.2 阀门的理想流量特性 阀门的流量特性反映的是阀门的相对流量(Q/Qmax)与相对行程(l/lmax) 之间的关系,即 Q/Qmax=?(l/lmax) 式中,Q--调节阀在某一开度时的流量; Qmax--调节阀在全开时的流量; l--调节阀在某一开度时阀芯的行程; lmax--调节阀在全开状态时阀芯的行程。 当阀两端的压差固定不变时(ΔP=const),所得到的流量特性,称为理想流量特性。 下图就是理想流量特性曲线: 其中,1--快开型:行程较小时,流量就比较大,阀的有效行程<d/4; 2--直线型:单位行程变化引起的流量变化相等;

控制调节阀的阀门定位器选型指南

控制调节阀的阀门定位器选型指南 阀门定位器(又称:气动阀门定位器)是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。 在众多的控制应用场合中,阀门定位器是调节阀最重要的附件之一。尤其是对于某个特定的应用场合,如果要 选择一个最适用阀门定位器,那么就应注意考虑下列因素: 1)阀门定位器能否实现“分程(Split_ranging)”实现“分程”是否容易、方便?具备“分程”功能就意味着阀门 定位器只对输入信号的某个范围(如:4~12mA或0.02~0.06MPaG)有响应。因此,如果能“分程”的话,就可以根据实际需要,只用一个输入信号实现先后控制两台或多台调节阀。 2)定位器的零点和量程的调校是否容易、方便?是不是不用打开盒盖就可以完成零点和量程的调校?但值得注意 的是:有时候为了避免不正确的(或非法的)操作,这种随意就可进行调校的方式需要被禁止。 3)阀门定位器的零点和量程的稳定性如何?如果零点和量程容易随着温度、振动、时间或输入压力的变化而产 生漂移的话,那么阀门定位器就需要经常地被重新调校,以确保调节阀的行程动作准确无误。 4)阀门定位器的精度在理想工况下,对应某一输入信号,调节阀的内件(TrimParts,包括球体/阀芯、阀杆、阀座 等)每次都应准确地定位在所要求的位置,而不管行程的方向或者调节阀的内件承受多大的负载。 5)阀门定位器对空气质量的要求如何?由于只有极少数供气装置能提供满足ISA标准(有关仪表用空气质量的标 准:ISA标准F7.3)所规定的空气,因此,对于气动(或电- 气)阀门定位器,如果要经受得住现实环境的考验,就必须能承受一定数量的尘埃、水汽和油污。 6)零点和量程的标定两者是相互影响还是相互独立?如果相互影响,则零点和量程的调校就需要花费更多的时 间,这是因为调校人员必须对这两个参数进行反复调整,以便逐步地达到准确的设定。 7)阀门定位器是否具备“旁路”,可允许输入信号直接作用于调节阀?这种“旁路”有时可简化或者省去执行 机构装配设定的校验,如:执行机构的“支座组件设定”和“弹簧座负载设定”――这是因为在许多情况下,一些气动调节器的气动输出信号与执行机构的“支座组件设定”完全吻合匹配,用不着对其再进行设定(其实,在这种情况下,阀门定位器完全可以省去不用。当然,如果选用了,那么也可利用阀门定位器的“旁路”使气动调节器的气动输出信号直接作用于调节阀)。另外,具备“旁路”有时也可允许在线的对阀门定位器进行有限度的调校或维修维护(即利用阀门定位器的“旁路”使调节阀继续保持正常工作,无须强制调节阀离线)。 8)阀门定位器的作用是否快速?空气流量(Airflow)愈大(阀门定位器不断的比较输入信号和阀位,并根据它们之 间的偏差,调节其本身的输出。如果阀门定位器对这种偏差响应快速,那么单位时间里空气的流动量就大),调节系统对设定点和负载变化的响应就愈快――这意味着系统的误差(滞后)愈小,控制品质愈佳。 9)阀门定位器的频率特性(或称频率响应,FrequencyResponse――即G(jω),系统对正弦输入的稳态响应)是什 么?一般来说,频率特性愈高(即对频率响应的灵敏度愈高),控制性能就愈好。但必须注意:频率特性应采用稳定的实验方法而非理论方法来确定,并且在评估测定频率特性时,应将阀门定位器和执行机构合并起来考虑。 10)阀门定位器的最大额定供气压力是多少?例如:有些阀门定位器的最大额定供气压力只标定为501b/in2(即: 50psi,lpsi=0.070kgf/cm2≈6.865kPa),如果执行机构的额定操作压力高于501b/in2,那么阀门定位器就成了执行机构输出推动力的制约因素。 11)当调节阀与阀门定位器装配组合后,它们的定位分辨率(PositioningResolution)如何?这对调节系统的控制品 质有非常明显的作用,因为分辨率越高,调节阀的定位就越接近理想值,因调节阀过调而造成的波动变化就可以得到扼制,从而最终达到限制被调节量周期性变化的目的。 12)阀门定位器的正反作用转换是否可行?转换是否容易?有时这个功能是必要的。例如,要把一个“信号增加 ――阀门关”的方式改为“信号增加――阀门开”的方式,就可使用阀门定位器的正反作用转换功能。

调节阀选型方法总结

调节阀选型方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

调节阀选型 自动控制系统是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。 1调节阀结构形式的选择 常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。 2

结构类型流量调节性能适用温度适用口径适用压力等级适用介质情况压力损失耐受差压及密封性外观、尺寸、重量、价 格 全功能超轻型调节阀调节性能好,其流量特性曲线接近 等百分比特性,也可做成直线特 性;调节精度高,R=100~200, 是蝶阀、球阀、单座阀、双座阀、 套筒阀的3~7倍;小开度调节性 能好,小流量微调功能强;流通能 力是单座阀、双座阀、套筒阀的 2~3倍;调节速度快 全功能调节阀的温度 适应范围较宽, -60℃~600℃ 其适用口径范围在 20mm至400mm 超轻型全功能调节阀可 以承受较高的管道介质 压力,其公称压力值可 以达到32Mpa 全功能超轻型调节阀 具有极好的抗腐蚀和 抗冲蚀功能,可适用 于各种气体及液体介 质 相对于其他调节阀,全 功能调节阀的压力损失 较大 其耐受阀门前后差压值较大,可 以接近其公称压力PN的水平, Δp≤PN; 密闭性好,泄流量极小,约为 1×10-6~1×10-7 倍的C值 重量轻、尺寸小,结构 紧凑、重量轻、外型美 观、性能稳定可靠, 具有蝶阀、球阀、偏心 旋转阀的共同优点 蝶阀三偏心蝶阀具有等百分比的调节特 性,调节死区特性好,调节精度 高,可调比可以达到100左右,调 节速度快,适于对管路流量进行调 节。但在小开度下流量调节性能较 差,不适于用做小流量的微调节蝶阀一般不适于用在 高温的场合,其使用 温度一般在80℃以下 蝶阀的使用口径范 围可从50mm到 2200mm,一般在口 径较大的场合(DN ≥600mm),宜采 用蝶阀 蝶阀一般不用于高压管 路之中,其一般用于压 力小于 1.0MPa 的管路 之中 适用于水、油、压缩 空气、蒸汽、含固体 颗粒的介质如污水等 蝶阀相对于闸阀、球阀 压力损失比较大,故蝶 阀适用于压力损失要求 不严的管路系统中 蝶阀耐受的截断差压值较低,不 适用于高压截断的情况 重量轻、尺寸小、成本 较低 3

调节阀设计计算选型导则

调节阀设计计算选型导则(一) 发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛 1 前言 调节阀是生产过程自动化系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触,控制流体的压力或流量。人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论,巧秒的控制思想,复杂的控制策略都是通过执行器对被控对象进行作用的。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 2 调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座阀、双座阀、角型阀、套筒阀(笼型阀)、三通分流阀、三通合流阀、隔膜阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。

相关文档
最新文档