2.2.1 条件概率练习题

2.2.1 条件概率练习题
2.2.1 条件概率练习题

2.2.1 条件概率练习题

1.已知P(B|A)=103,P(A)=5

1,则P(AB)=( ) A .21 B.23 C .32 D.50

3 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.8

1

3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为15

2,既刮风又 下雨的概率为10

1,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83 D.4

3 4.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次 抽到白球的概率为( )

A.53

B.43

C.21

D. 10

3

5.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同 学排在第二跑道的概率( )

A.52

B.51

C.92

D. 7

3

6.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( )

A.52

B.51

C.21

D. 7

3

7.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶” “欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选 取一个留作纪念。按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝” 和“晶晶”一只也没有被选中的概率是( )

A.101

B.53

C.103

D.5

2

8.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则 ={x|0

9.设n 件产品中含有m 件废品,今从中任取两件,在已知其中一件是废品的前提下, 另一件也是废品的概率为________________________

10.根据历年气象资料统计,某地四月份刮东风的概率是30

8,既刮东风又下雨的概率 是30

7。问该地四月份刮东风时下雨的概率是____________________

11.一个口袋内装有2个白球,3个黑球,则

(1)先摸出1个白球后放回,再摸出1个白球的概率

(2)先摸出1个白球后不放回,再摸出1个白球的概率

12.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率是2

1,现有

一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率

13.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽 取一粒,求这粒种子能成长为幼苗的概率。

14.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 概率是21,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3

1,求两次闭

合都出现红灯的概率。

15.市场供应的灯泡中,甲厂产品占有70%,乙厂产品占有30%,甲厂产品的合格率为 95%,乙厂产品的合格率为80%。现从市场中任取一灯泡,假设A=“甲厂生产的产品”,

A =“乙厂生产的产品”

,B=“合格灯泡”,B =“不合格灯泡”,求: (1)P(B|A) ;(2)P(B |A) ;(3)P(B|A ) ;(4)P(B |A ).

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者或者。 边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则?E∈σ(S),可以定义集函数PX|A如下: PX|A(E)=PX(A∩E)/PX(E)。 易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。

独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

条件概率公式

条件概率 示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。 条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。 边缘概率:是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。条件概率公式例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 定理1

设A,B 是两个事件,且A不是不可能事件,则称 为在事件A发生的条件下,事件B发生的条件概率。一般地,,且它满足以下三条件: (1)非负性;(2)规范性;(3)可列可加性。 定理2 设E 为随机试验,Ω为样本空间,A,B 为任意两个事件,设P(A)>0,称 为在“事件A 发生”的条件下事件B 的条件概率。 上述乘法公式可推广到任意有穷多个事件时的情况。 设A1,A2,…An为任意n 个事件(n≥2)且P(A1A2…An-1)>0,则P(A1A2…An)=P(A1)P(A2|A1)…P(An|A1A2…An-1)定理3(全概率公式1) 设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω的一个完备事件组。 定理4(全概率公式2) 设事件组B1,B2是样本空间Ω的一个划分,且P(Bi)>0(i=1,2,…n),则对任一事件B,有

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题 一. 填空题(每小题2分,共计60分) 1、A、B 是两个随机事件,已知,则 0.4 、 0.7 、 1/3 0.3 。 2、一个袋子中有大小相同的红球4只黑球2只, (1)从中不放回地任取2只,则第一、二次取到球颜色不同的 概率为: 8/15 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。 (3)若第一次取一只球后再追加一只与其颜色相同的球一并放 入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 . 3、设随机变量X服从参数为6的泊松分布,则 1- 4、设随机变量X服从B(2,0. 6)的二项分布,则 0.36 , Y服从B(8,0. 6)的二项分布, 且X与Y相 互独立,则服从 B(10,0. 6)分布, 6 。 有 5、设二维随机向量的分布律是 则_0.3_,的数学期望 0 1 1 0.3 0.2 0.2

0.5,的相关系数0.1。 6、三个可靠性为p>0的电子元件独立工作, (1)若把它们串联成一个系统,则系统的可靠性为:; (2)若把它们并联成一个系统,则系统的可靠性为:; 7、(1)若随机变量,则 0.5;_13/3, 3/4 . (2)若随机变量~且则 0.6826 , 3 , 16 )。 8、随机变量X、Y的数学期望E(X)=1,E(Y)=2, 方差D(X)=1, D(Y)=2, 且X、Y相互独立,则: 5 , 17 。 9、设及分别是总体的容量为10,15的两个 独立样本,分别为样本均值,分别为样本方差。 则: N(20,3/5) , N(0,1) ,= 0.3174 , , F(9,14) 。 此题中。 10、在假设检验中,显著性水平a是用来控制犯第一类错误的概率,第一类错误 是指: H0成立的条件下拒绝H0的错误。

概率论与数理统计期末考试题及答案

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,,,n X X X L 为其样本,1 1n i i X X n ==∑为 样本均值,则θ的矩估计量为: 。 9、设样本129,,,X X X L 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4,||,02,(,)0, y x x x y ?<<??

概率论与数理统计期末试卷及答案(最新8)

2016-2017学年第二学期期末考试课程试卷(A ) 警告、记过、留校察看,直至开除学籍处分! 一、 选择题(每题3分,共15分) 1. 设事件1A 与2A 同时发生必导致事件A 发生,则下列结论正确的是( B ). A .)()(21A A P A P = B. 1)()()(21-+≥A P A P A P C. )()(21A A P A P Y = D. 1)()()(21-+≤A P A P A P 2.假设连续型随机变量X 的分布函数为()F x ,密度函数为()f x .若X 与-X 有相同的分布函数,则下列各式中正确的是( C ). A .()F x =()F x - B .()F x =()F x -- C .()f x =()f x - D .()f x =()f x -- 3. 已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。 学号:________________ 姓名:________________ 班级:______________ 请考生将答案写在试卷相应答题区,在其他地方作答视为无效!

A. )2(2y f X - B. )2(y f X - C. )2(21y f X -- D. )2 (21y f X - 4. 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足 αu X P α=>}{, 若αx X P =<}|{|, 则x 等于( A )。 A. 12u α- B. 21u α- C. 2u α D. 1u α- 5. 12,,n X X X L 是来自正态总体()2,μσX N :的样本,其中μ已知,σ未知,则 下列不是统计量的是( C )。 A. 4 1 14i i X X ==∑ B. 142X X μ+- C. 4 2 211 ()i i K X X σ==-∑ D. 4 2 1 1()3i i S X X ==-∑ 二、 填空题(每题3分,共15分) 事件,则“事件,A B 发生但C 不发生”表示为 。 2. 三个人独立破译一份密码,各人能译出的概率分别为4 1 ,51,31,则密码能译出 的概率为 3/5 。

概率论期末考试试题A卷及答案

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3)(===k a k X P k 则a = 3 2 . 解答:32233 111310 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1 it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++

概率统计复习提纲百度文库讲解

《概率论与数理统计》总复习提纲 第一块随机事件及其概率 内容提要 基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验. 1、随机试验、样本空间与随机事件 (1)随机试验:具有以下三个特点的试验称为随机试验,记为. 1)试验可在相同的条件下重复进行; 2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪一个结果会出现. (2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为. (3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算 (1)包含关系与相等:“事件发生必导致发生”,记为或;且. (2)互不相容性:;互为对立事件且. (3)独立性: (1)设为事件,若有,则称事件与相互独立. 等价于:若 (). (2)多个事件的独立:设是n个事件,如果对任意的,任意的 ,具有等式,称个事件相互独立. 3、事件的运算 (1)和事件(并):“事件与至少有一个发生”,记为. (2)积事件(交):“事件与同时发生”,记为或.

(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件; 称为的对立事件;易知:. 4、事件的运算法则 1) 交换律:,; 2) 结合律:,; 3) 分配律:,; 4) 对偶(De Morgan)律:,, 可推广 5、概率的概念 (1)概率的公理化定义: (2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即. (3)统计概率:称为事件的(统计)概率. 在实际问题中,当很大时,取 (4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,

《概率论》期末考试试题A卷和答案

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3)(===k a k X P k 则a = 3 2 . 解答:32233 1113 10 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1 it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++

概率论知识点总结归纳

欢迎共阅 概率论知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件 样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差 互斥事件对立事件=?B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC (4)对偶律(摩根律):B A B A ?=?B A B A ?=? 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时 概率的性质:

(1)P(Φ)=0 (2)有限可加性:n A A A ??? 21两两不相容时 当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB) (5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节古典概率模型 1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为 2落在区域把μ相互独立. 总结:1.3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。 第二章一维随机变量及其分布 第二节分布函数 分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节离散型随机变量

概率论与数理统计期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为 __________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 解答: 由)2(4)1(==≤X P X P 知λλλ λλ---=+e e e 22 即0122 =--λλ 解得1=λ,故 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率密度为 =)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解在(0,2)上函数2 y x = 严格单调,反函数为()h y =所以 4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________, }1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故2λ= 41e -=-. 5. 设总体X 的概率密度为 ?????<<+=其它, 0,10,)1()(x x x f θ θ1->θ. n X X X ,,,21Λ是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

条件概率公式

条件概率公式 条件概率: 设A、B是两个事件,在A事件发生的条件下,B事件发生的概率,其中P(A)>0。说明A事件发生的概率大于0,表示A事件是必然发生的。记为:P(B|A)=P(AB)/P(A) 。 注意事件A作为条件,分母必定是条件概率,所以A事件的概率必定在分母上,分子P(AB)表示事件A与B相交的概率,记作P(A∩B)。 举例说明:将一枚硬币抛两次,观察正反面,正面记H,反面记T. 样本空间Ω=(HH, HT,TH,TT) 设事件A:至少一次为正面,即事件A=(HH,HT,TH) 设事件B:两次为同一面,即事件B=(HH,TT) 求事件A发生条件下,事件B发生的概率?即求P(B|A)。 (例子来自浙大版概率与统计第四版) 从已知条件可知,总样本Ω为4个,A事件有3个,B事件有2个。 所以可以直接求出A的概率与B的概率。即P(A)=3/4 , A事件与B事件相交事件只有一个即HH。 即P(AB)=1/4.有公式1可知 P(B|A)=P(AB)/P(A)=(1/4)/(3/4)=1/3. 1.2 乘法公式:把式1条件概率公式P(B|A)=P(AB)/P(A)

把P(AB)相交概率移到式子左边,把P(B|A)条件概率移动式子右边。即得到乘法公式。如式P(AB)=P(B|A) P(A)。 全概率公式: 在条件概率中引入(A∩B)积事件的概念。积事件概率表示相交事件的概率只有在A与B事件同事发生情况下才会发生。P(A∩B)表示A和B相交的概率。而在全概率公式中将引入∪和事件概念. 有个小窍门,其实可以把积事件理解为数字电路的与门、把和事件理解为数字电路的或门。比如样本空间S,可以划分样本B1,B2...B6组成,即S=(B1∪B2∪ (6)

概率期末考试试题《概率论与数理统计》题

概率论与数理统计 班 姓名 学号 第 1 页 2008~2009学年秋季学期概率论与数理统计期中测试题 一、(共20分,每题5分) 1、设事件A 与B 相互独立,8.0)(,5.0)(==B A P A P , 求)(B A P . 2、三人独立地去破译一份密码,他们译出的概率分别为4 1 ,31,51. 求能将此密码译出的概率. 3、设随机变量X 的分布律为 求12+=X Y 的分布律,并计算)31(<≤X P .

4、已知随机变量1X ,2X 的概率分布分别为 1X -1 0 1 2X 0 1 k P 1/4 1/2 1/4 k P 1/2 1/2 且1}0{21==X X P (1)求1X 和2X 的联合分布律。 (2)问X1和X2 是否独立?为什么? 二、(共20分,每题5分) 1、若随机变量),1,2(~),4,1(~N Y N X 且随机变量X 与Y 相互独立, 试求随机变量Y X Z -=2+1的概率密度. 2、若随机变量X 在区间(0,5)上服从均匀分布, 求方程012=++tX t 有实根的概率.

概率论与数理统计 班 姓名 学号 第 2 页 3、已知随机变量X 与Y 的相关系数为5.0=XY ρ,121+=X X ,131+=Y Y ,求1X 与1Y 的相关系数. 4、设随机变量X 的分布律为? ?? ? ??6/16/26/16/28421 , 求X 的分布函数)(x F . 三、(共24分,每题8分) 1、设随机变量),(Y X 在D 上服从均匀分布,其中区域D 是由x 轴,y 轴以及直线12+=x y 所围成的三角形区域, (1)确定常数k ;(2)求关于X 及Y 的边缘概率密度; (3)判断X 与Y 是否相互独立.

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

9条件概率公式

条件概率编辑讨论上传视频 本词条由“科普中国”科学百科词条编写与应用工作项目审核。 条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。条件概率可以用决策树进行计算。条件概率的谬论是假设P(A|B) 大致等于P(B|A)。数学家John Allen Paulos 在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。中文名条件概率外文名Conditional probability分类数学表示P(A|B)计算决策树定理贝叶斯公式 目录 1 基本概念 2 基本定理 3 统计独立性 4 互斥性 5 其它 6 著名谬论 基本概念编辑 条件概率 条件概率是指事件A在事件B发生的条件下发生的概率。条件概率表示为:P(A|B),读作“A在B发生的条件下发生的概率”。若只有两个事件A,B,那么,。

概率测度 如果事件B 的概率P(B) > 0,那么Q(A) = P(A | B) 在所有事件A 上所定义的函数Q 就是概率测度。如果P(B) = 0,P(A | B) 没有定义。条件概率可以用决策树进行计算。[1] 联合概率 表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。[2] 边缘概率 是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 条件概率公式 条件概率公式 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。[3] 基本定理编辑 定理1

概率论期末考试试题

1.全概率公式贝叶斯公式 1.某保险公司把被保险人分成三类:“谨慎的” 、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和 0.3。并且它们分别占投保总人数的20% , 50% 和 30% 。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少? 解:设 A i、 A2、 A3分别表示“谨慎的”“一般的”和“冒失的”保险户, B 表示“发生事故” ,由贝叶斯公式知 P(A1 | B) P( A1)P(B | A1) P( A1 )P( B | A1) P( A2 )P( B | A2 ) P( A3) P(B | A3) 0.20.050.057 0.20.050.50.150.30.30 2.老师在出考题时 ,平时练习过的题目占60%. 学生答卷时 , 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对 的概率为 30%,求 : (1)考生在考试中答对第一道题的概率; (2)若考生将第一题答对了, 那么这题是平时没有练习过的概率. 3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3 。在三地拉到一级菜的概率分别为10% , 30%,70% 。 1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。 解: 1、解:设事件 A 表示拉到一级菜,B1表示从甲地拉到, B2 表示从乙地拉到, B3表示从丙地拉到 则 P(B1)0.2 , P(B2 )0.5 ; P(B3)0.3P( A B1) 0.1 , P(A B2) 0.3 , P(A B3)0.7 则由全概率公式得 3 P(A/ B ) =0.20.1 0.50.30.30.70.38 —(7分) P( A)P(B ) i i i 1 (2)拉的一级菜是从乙地拉得的概率为 P( B2 P(B2) P( A B2)0.50.3 0.3947 —————————( A) 0.38 10 分) P( A) 2.一维随机变量 5. 设随机变量X 在区间 [0,1]上服从均匀分布,求随机变量 Y=e 2X的密度函数 . 6. 已知X ~ N( , 2),用分布函数法证明:Y X -~ N (0,1). 证明 : 设X ~ f x( x), YaX b ,则 a0 时,Y~f Y( y)=1f Y(y a b) a F Y ( y) P Y y X y P X y F X ( y) ( y)2 1 y2 f Y ( y) F Y ( y) F X ( y) f X ( y)e 2 2 e 2 22 Y ~ N (0,1) 7.设随机 7.变量 X 的密度函数

条件概率、全概率公式与贝叶斯公式

条件概率、全概率公式与贝叶斯公式 一、背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件 发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一位,换一句话说,发生之后,发生的概率(暂且记为) 自然是. [例2] 将一枚硬币抛掷,观察其出现正反面的情况.设事件为“两次掷出同一面”,事件为“至少有一次为正面H”.现在来求已知事件已经发生的条件下事件发生的概率. 这里,样本空间.易知此属于古典概型问题.已知事件已发生,有了这一信息,知道不可能发生,即知试验所有可能结果所成的集合就是.中共有3个元素,其中只有属于.于是,在发生的条件下,发生的概率为

对于例1,已知 容易验证在发生的条件下,发生的概率 对于例2,已知 容易验证发生的条件下,发生的概率 对一般古典概型, 容易验证:只要,则在发生的条件下, 发生的概率, 总是成立的. 在几何概率场合,如果向平面上单位正方形内等可能任投一点,则当发生的条件下, 这时发生的概率为

由此可知对上述的两个等可能性的概率模型,总有成立. 其实,还可以验证, 这个关系式对频率也是成立的.于是,从这些共性中得到启发,引入下面的一般定义. 二、条件概率 若是一个概率空间,,若,则对于任意的,称 为已知事件发生的条件下, 事件发生的条件概率. [例3] 一盒子中装有4只产品,其中有3只是一等品,1只是二等品.从中取产品两次,每次任取一只,作不放回抽样,设事件为“第二次取到的是一等品”,事件为“第一次取到的是一等品”,试求条件概率 解:易知此属古典概型问题.将产品编号:1,2,3号为一等品,4号为二等品.以表示第一次、第二次分别取到第号、第号产品.试验E (取产品两次,记录其号码)的样本空间为 ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4), (4,1),(4,2),(4,3)} ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4)} ={(1,2),(1,3), (2,1),(2,3), (3,1),(3,2)} 由条件概率公式得,

相关文档
最新文档