应用回归分析第三版数据文件

应用回归分析第三版数据文件
应用回归分析第三版数据文件

《应用回归分析》(第三版)数据下载

第2章

例题

表火灾损失表

例题.

第51页

第54页

第3章

例题

表北京开发区数据

x1x2y x1x2y

257

205321400

6751160464

100140

525187

8253427122

12074

28

例题

年份y x1x2x3x4x5

19782313010188881491

19792983350219586389

19803433688253192204

19814013941279995300

19824454258305499922

198339147363358106044

198455456523905110353

198574470204879112110

198699778595552108579

1987131093136386112429

19881442117388038122645

19891283131769005113807

1990166014384966395712

19912178165571096995081

19922886202231298599693

199333832488215949105458

第85页

序号降低成本

率y(%)

流动资金

x1(万元)

固定资金

x2(万元)

优良品率

x3(%)

竣工面积

x4(万m2)

劳动生产率

x5(元/人)

施工产值

x6(万元)

16761 27133 36946 44968 56810 66416 76911 87124

第88页

国内生产总值GDP和三次产业数据单位:亿元

资料来源:2005年《中国统计年鉴》,未经2005年经济普查修订。

第4章表

第127页表

第5章

例题

第148页

例题

第156页

第7章

第187页

银行不良贷款数据

第8章表

资料来源:中经网

第9章例题

例题

X i1 X i2

例题表试验设计与结果

表回归变量表

例题

例题

表我国民航国内航线里程数据单位:万公里

例题

表我国历年大陆总人口数单位:亿人

年份t y年份t y 19501197829 19512197930 19523198031 19534198132 19545198233 19556198334 19567198435 19578198536 19589198637 195910198738 196011198839 196112198940 196213199041 196314199142 196415199243 196516199344 196617199445 196718199546 196819199647 196920199748 197021199849 197122199950 197223200051 197324200152 197425200253 197526200354 197627200455 197728200556

例题

年份t GDP K L lnGDP ln K ln L

1978140152

1979241024

1980342361

1981443725

1982545295

1983646436

1984748197

1985849873

1986951282

习题

第10章表

第7章 相关与回归分析。

第七章相关与回归分析 学习内容 一、变量间的相关关系 二、一元线性回归 三、线性回归方程拟合优度的测定 学习目标 1. 掌握相关系数的含义、计算方法和应用 2. 掌握一元线性回归的基本原理和参数的最小二 3. 掌握回归方程的显著性检验 4. 利用回归方程进行预测 5. 了解可化为线性回归的曲线回归 6. 用Excel 进行回归分析 一、变量间的相关关系 1. 变量间的关系(函数关系) 1)是一一对应的确定关系。 2)设有两个变量x和y,变量y 随变量x一起变化, 并完全依赖于x,当变量x 取某个数值时,y依确定的关系取相应的值, 则称y 是x的函数,记为y = f (x),其中x 称为自变量,y 称为因变量。 3)各观测点落在一条线上。 4)函数关系的例子 –某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)。 –圆的面积(S)与半径之间的关系可表示为S = π R2。 –企业的原材料消耗额(y)与产量x1、单位产量消耗x2、原材料价格x3间的关系可表 示为y =x1 x2 x3。 单选题 下面的函数关系是() A、销售人员测验成绩与销售额大小的关系 B、圆周的长度决定于它的半径 C、家庭的收入和消费的关系 D、数学成绩与统计学成绩的关系

2. 变量间的关系(相关关系) 1)变量间关系不能用函数关系精确表达。 2)一个变量的取值不能由另一个变量唯一确定。 3)当变量 x 取某个值时,变量 y 的取值可能有几个。 4)各观测点分布在直线周围。 5)相关关系的例子 –商品的消费量(y)与居民收入(x)之间的关系。 –商品销售额(y)与广告费支出(x)之间的关系。 –粮食亩产量(y)与施肥量(x1)、降雨量(x2)、温度 (x3)之间的关系。 –收入水平(y)与受教育程度(x)之间的关系。 –父亲身高(y)与子女身高(x)之间的关系。 3. 相关图表 1)相关表:将具有相关关系的原始数据,按某一顺序平行排列在一张表上,以观察它 们之间的相互关系。 2)相关图:也称为分布图或散点图,它是在平面直角坐标中把相关关系的原始数据用 点描绘出来,通常以直角坐标轴的横轴代表自变量x,纵轴代表因变量y。 4. 相关关系的类型

应用回归分析,第5章课后习题参考答案.docx

第5 章自变量选择与逐步回归 思考与练习参考答案 自变量选择对回归参数的估计有何影响? 答:回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢 掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关 性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。 自变量选择对回归预测有何影响? 答:当全模型(m元)正确采用选模型(p 元)时,我们舍弃了m-p 个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差, 所以全模型正确而误用选模型有利有弊。当选模型(p 元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选 模型的大,所以回归自变量的选择应少而精。 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣? 答:如果所建模型主要用于预测,则应使用C p 统计量达到最小的准则来衡量回 归方程的优劣。 试述前进法的思想方法。 答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm 建立m个一元线性回归方程, 并计算 F 检验值,选择偏回归平方和显著的变量(F 值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的 F 检验值,选择偏回归平方和显著的两变量变 量(F 值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再 引入一个变量,建立m-2 个三元线性回归方程,计算它们的 F 检验值,选择偏

应用回归分析课后习题第7章第6题

7.6一家大型商业银行有多家分行,近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的提高。为弄清楚不良贷款形成的原因,希望利用银行业务的有关数据做定量分析,以便找出控制不良贷款的方法。表7-5是该银行所属25家分行2002年的有关业务数据。 (1)计算y 与其余4个变量的简单相关系数。 由系数表可知,y 与其余4个变量的简单相关系数分别为0.844,0.732,0.700,0.519. (2)建立不良贷款对4个自变量的线性回归方程,所得的回归系数是否合理? 由上表可知,回归方程为为: 022.1029.0015.0148.04.0?4321--++=x x x x y 从上表可看出,方程的自变量2x 、3x 、4x 未通过t 检验,说明回归方程不显著,而且由实际意义出发,4x 的系数不能是负的,所以所得的回归系数不合理。 (3)分析回归模型的共线性。

由上表可知,所有自变量对应的VIF 全部小于10,所以自变量之间不存在共线性。但进行特征根检验见下表: 由这个表可以看出来,第5行中1x 、3x 的系数分别为0.87和0.63,可以说明这两个变量之间有共线性。 (4)采用后退法和逐步回归法选择变量,所得的回归系数是否合理?是否还存在共线性? 采用后退法(见上表),所得回归方程为972.0029.0149.0041.0y ?421--+=x x x 采用逐步回归法(见上表),所得回归方程为443.0032.005.0?41--=x x y 所得4x 的系数不合理(为负),说明存在共线性. (5)建立不良贷款y 对4个变量的岭回归。

大数据分析及其在医疗领域中的应用-图文(精)

第7期 24 2014年4月10日 计算机教育 ComputerEducation ◆新视点 文章编号:1672.5913(2014)07—0024-06 中图分类号:G642 大数据分析及其在医疗领域中的应用 邹北骥 (中南大学信息科学与工程学院,湖南长沙410083) 摘要:互联网和物联网技术的快速发展给数据的上传与下载带来了前所未有的便利,使得互联网上 的数据量急剧增长,由此产生了针对大数据的存储、计算、分析、处理等新问题,尤其是对大数据的挖掘。文章分析当前大数据产生的背景,阐述大数据的基本特征及其应用,结合医疗领域,论述医疗 大数据分析的目的、意义和主要方法。 关键词:大数据;物联网;医疗;大数据挖掘 1 大数据早已存在,为何现在称之为大

数据时代 计算与数据是一对孪生姐妹,计算需要数据,数据通过计算产生新的价值。数据是客观事 物的定量表达,来自于客观世界并早已存在。例 如,半个世纪前,全球的人口数量就有数十亿,与之相关的数据就是大数据;但是在那个时代,由于技术的局限性,大数据的采集、存储和处理 还难以实现。 互联网时代之前,采集世界各地的数据并让它们快速地进入计算系统几乎是一件不可想象的 事情。20世纪80年代兴起的互联网技术在近30 年里发生了翻天覆地的变化,彻底地改变了人们的工作和生活方式【l】。通过互联网人们不仅可以下载到新闻、小说、论文等各类文字数据,而且可以轻而易举地下载到音乐、图像和视频等多媒体数据,这使得互联网上的数据流量急剧增长。据统计,现在互联网上每分钟流人流出的数 据量达到1 000 PB,即10亿 GBt21。 推动大数据产生的另一个重要因素是物联网技术。近几年发展起来的物联网技 术通过给每个物品贴上标签 并应用RFID等技术实现了

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

应用回归分析,第7章课后习题参考答案

第7章岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X|≈0,回归系数估计的方差就很大,估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)-1为奇异时,给X’X加上一个正常数矩阵 D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k有哪几种方法? 答:最优 是依赖于未知参数 和 的,几种常见的选择方法是: 岭迹法:选择 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多;

方差扩大因子法: ,其对角线元 是岭估计的方差扩大因子。要让 ; 残差平方和:满足 成立的最大的 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量。如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。

应用回归分析第章课后习题答案

第6章 6.1 试举一个产生多重共线性的经济实例。 答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。 6.2多重共线性对回归参数的估计有何影响? 答:1、完全共线性下参数估计量不存在; 2、参数估计量经济含义不合理; 3、变量的显著性检验失去意义; 4、模型的预测功能失效。 6.3 具有严重多重共线性的回归方程能不能用来做经济预测? 答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。 6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系? 答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。 6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。将所得结果与逐步回归法所得的选元结果相比较。 5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x3为建筑业增加值(亿元),x4为人口数(万人),x5为社

应用回归分析_第3章课后习题参考答案

第3章 多元线性回归 思考与练习参考答案 见教材P64-65 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响? 答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。如果n<=p 对模型的参数估计会带来很严重的影响。因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。 2. 解释变量X 是确定性变量,要求()1rank p n =+

一般来说,R2越接近1,即R2取值越大,说明回归拟合的效果越好。但由于R2的大小与样本容量n和自变量个数p有关,当n与p的值接近时,R2容易接近1,说明R2中隐含着一些虚假成分。而当样本容量n较小,自变量个数p较大时,尽管R2很大,但参数估计效果很不稳定。所以该题中不能仅仅因为R2很大而断定回归方程很理想。如何正确理解回归方程显著性检验拒绝H0,接受H0? 答:一般来说,当接受假设H0时,认为在给定的显著性水平α之下,自变量x1,x2,…,x p对因变量y无显著性影响,则通过x1,x2,…,x p 去推断y就无多大意义。此时,一方面可能该问题本应该用非线性模型描述,我们误用线性模型描述了,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,由于认识上的局限性把一些影响因变量y的自变量漏掉了,这就从两个方面提醒我们去重新考虑建模问题。 当拒绝H0时,也不能过于相信该检验,认为该模型已经很完美。其实当拒绝H时,我们只能认为该回归模型在一定程度上说明了自变量x1,x2,…,x p与因变量y的线性关系。因为这时仍不能排除我们漏掉了一些重要自变量。此检验只能用于辅助性的,事后验证性的目的。(详细内容可参考课本P95~P96评注。) 数据中心化和标准化在回归分析中的意义是什么? 答:原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。中心化和标准化回归系数有利于消除由于量纲不同、数量级不

应用回归分析第七章答案

第七章岭回归 1.岭回归估计是在什么情况下提出的? 答:当解释变量间出现严重的多重共线性时,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘法的效果变得很不理想,为了解决这一问题,统计学家从模型和数据的角度考虑,采用回归诊断和自变量选择来克服多重共线性的影响,这时,岭回归作为一种新的回归方法被提出来了。 2.岭回归估计的定义及其统计思想是什么? 答:一种改进最小二乘估计的方法叫做岭估计。当自变量间存在多重共线性,∣X'X∣≈0时,我们设想给X'X加上一个正常数矩阵kI(k>0),那么X'X+kI 接近奇异的程度小得多,考虑到变量的量纲问题,先对数据作标准化,为了计算方便,标准化后的设计 阵仍然用X表示,定义为 ()()1 ?'' X X I X y βκκ- =+ ,称为 β的岭回归估计,其中k 称为岭参数。 3.选择岭参数k有哪几种主要方法? 答:选择岭参数的几种常用方法有1.岭迹法,2.方差扩大因子法,3.由残差平方和来确定k值。 4.用岭回归方法选择自变量应遵从哪些基本原则? 答:用岭回归方法来选择变量应遵从的原则有: (1)在岭回归的计算中,我们假定设计矩阵X已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小,我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量。 (2)当k值较小时标准化岭回归系数的绝对值并不是很小,但是不稳定,随着k的增加迅速趋于零。像这样的岭回归系数不稳定,震动趋于零的自变量,我们也可以予以删除。 (3)去掉标准化岭回归系数很不稳定的自变量,如果有若干个岭回归系数不稳定,究竟去掉几个,去掉哪几个,这并无一般原则可循,这需根据去掉某个变量后重新进行岭回归分析的效果来确定。 5.对第5章习题9的数据,逐步回归的结果只保留了3个自变量x1,x2,x5,用y对这3个自变量做岭回归分析。 答:依题意,对逐步回归法所保留的三个自变量做岭回归分析。 程序为: include'C:\Program Files\SPSSEVAL\Ridge regression.sps'. ridgereg dep=y/enter x1 x2 x5 /start=0.0/stop=1/inc=0.01.

应用回归分析课后答案

应用回归分析课后答案 第二章一元线性回归 解答:EXCEL结果: SUMMARY OUTPUT 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值5 方差分析 df SS MS F Significance F 回归分析125 残差3 总计410 Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% Intercept X Variable 15 RESIDUAL OUTPUT 观测值预测Y残差 1 2 3 4 5 SPSS结果:(1)散点图为:

(2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 12 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? (10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3= ++++= 1 330 6.13 σ∧=≈ (5)由于2 11(, )xx N L σββ∧ :

t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑ (7)

第三章回归分析原理

第三章 回归分析原理 3·1、一元线性回归数学模型 按理说,在研究某一经济现象时,应该尽量考虑到与其有关各种有影响的因素或变量。但作为理论的科学研究来说,创造性地简化是其的基本要求,从西方经济学的基本理论中,我们可以看到在一般的理论分析中,至多只包含二、三个 变量的数量关系的分析或模型。 这里所讨论的一元线性回归数学模型,是数学模型的最简单形式。当然要注意的是,这里模型讨论是在真正回归意义上来进行的,也可称之为概率意义上的线性模型。 在非确定性意义上,或概率意义上讨论问题,首先要注意一个最基本的概念或思路问题,这就是总体和样本的概念。 我们的信念是任何事物在总体上总是存在客观规律的,虽然我们无论如何也不可能观察或得到总体,严格说来,总体是无限的。而另一方面,我们只可能观察或得到的是样本,显然样本肯定是总体的一部分,但又是有限的。 实际上概率论和数理统计的基本思想和目的,就是希望通过样本所反映出来的信息来揭示总体的规律性,这种想法或思路显然存在重大的问题。但另一方面,我们也必须承认,为了寻找总体的规律或客观规律,只能通过样本来进行,因为我们只可能得到样本。 在前面我们已经知道,用回归的方法和思路处理非确定性问题或散点图,实际上存在一些问题,亦即只有在某些情况下,回归的方法才是有效的。因此,在建立真正回归意义上建立其有效方法时,必须作出相应的假设条件。 基本假设条件: (1)假设概率函数)|(i i X Y P 或随机变量i Y 的分布对于所有i X 值,具有相同的方差2σ ,且2σ 是一个常数,亦即)(i Y Var =)(i Var μ=2σ。 (2)假设i Y 的期望值)(i Y E 位于同一条直线上,即其回归直线为 )(i Y E =i X βα+ 等价于 0)(=i E μ 这个假设是最核心的假设,它实际上表明)(i Y E 与i X 之间是确定性的关系。 (3)假设随机变量i Y 是完全独立的,亦即。j i u u Cov Y Y Cov j i j i ≠==,0),(),(

应用回归分析第三章课后习题整理

y1 1 x11 x12 x1p 0 1 3.1 y2 1 x21 x22 x2p 1 + 2 即y=x + yn 1 xn1 xn2 xnp p n 基本假定 (1) 解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求 rank(X)=p+1

n 注 tr(H) h 1 3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中 自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。 3.5当接受H o 时,认定在给定的显著性水平 下,自变量x1,x2, xp 对因变量y 无显著影响,于是通过x1,x2, xp 去推断y 也就无多大意 义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显著影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。 当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2, xp 与自变量y 的线性关系,这时仍不能排除排除我 们漏掉了一些重要的自变量。 3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计 值1, 2, p 比一般的经验回归方程减少了一个未知参数,在变量较 SSE (y y)2 e12 e22 1 2 1 E( ) E( - SSE* - n p 1 n p n 2 [D(e) (E(e ))2 ] 1 n (1 1 n 2 en n E( e 1 1 n p 1 1 n p 1 1 "1 1 n p 1 J (n D(e) 1 (p 1)) 1_ p 1 1 1 n p 1 2 2 n E(e 2 ) (1 h ) 2 1

应用回归分析,第7章课后习题参考答案

第7章 岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X |≈0,回归系数估计的方差就很大, 估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其 统计思想是对于(X ’X )-1为奇异时,给X’X 加上一个正常数矩阵D, 那么X’X+D 接近奇异的程度就会比X ′X 接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue 。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k 有哪几种方法? 答:最优k 是依赖于未知参数β和2σ的,几种常见的选择方法是: ○ 1岭迹法:选择0k 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多; ○ 2方差扩大因子法:11()()()c k X X kI X X X X kI --'''=++,其对角线元()jj c k 是岭估计的方差扩大因子。要让()10jj c k ≤; ○ 3残差平方和:满足()SSE k cSSE <成立的最大的k 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这 样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k 值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随

第一章课后习题解答(应用回归分析)

1、 变量间统计关系和函数关系的区别是什么 答:函数关系是一种确定性的关系,一个变量的变化能完全决定另一个变量的变化;统计关系是非确定的,尽管变量间的关系密切,但是变量不能由另一个或另一些变量唯一确定。 2、 回归分析与相关分析的区别和联系是什么 答:联系:刻画变量间的密切联系; 区别:一、回归分析中,变量y 称为因变量,处在被解释的地位,而在相关分析中,变量y 与x 处于平等地位;二、相关分析中y 与x 都是随机变量,而回归分析中y 是随机的,x 是非随机变量。三、回归分析不仅可以刻画线性关系的密切程度,还可以由回归方程进行预测和控制。 3、 回归模型中随机误差项ε的意义是什么主要包括哪些因素 答:随机误差项ε的引入,才能将变量间的关系描述为一个随机方程。主要包括:时间、费用、数据质量等的制约;数据采集过程中变量观测值的观测误差;理论模型设定的误差;其他随机误差。 4、 线性回归模型的基本假设是什么 答:1、解释变量非随机;2、样本量个数要多于解释变量(自变量)个数;3、高斯-马尔科夫条件;4、随机误差项相互独立,同分布于2(0,)N σ。 5、 回归变量设置的理论根据在设置回归变量时应注意哪些问题 答:因变量与自变量之间的因果关系。需注意问题:一、对所研究的问题背景要有足够了解;二、解释变量之间要求不相关;三、若某个重要的变量在实际中没有相应的统计数据,应考虑用相近的变量代替,或者由其他几个指标复合成一个新的指标;四、解释变量并非越多越好。 6、 收集、整理数据包括哪些内容 答:一、收集数据的类型(时间序列、截面数据);二、数据应注意可比性和数据统计口径问题(统计范围);三、整理数据时要注意出现“序列相关”和“异

应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1 y x =β 基本假定: (1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵 (2) 误差项()()200i i j E ,i j cov ,,i j ?ε=? ?δ=?εε=??≠?? (3)()2 0i i j ~N ,,?εδ??εε??诸相互独立 3.2 ()10111 ?X X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。即|则必有故 3.3 ()()()() ()22 11 122 12 22211111111 n n n i i ii i i i n ii i n i i E e D e h n h n p ?E E e n p n p n p =====??==-δ ????? =-δ=--δ ??? ??∴δ ==--δ=δ ? ----??∑∑∑∑∑ 3.4 并不能这样武断地下结论。2 R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2 R 易接近1,其中隐含着一些虚假成分。因此,并不能仅凭很大的2 R 就模型的优劣程度。 3.5 首先,对回归方程的显著性进行整体上的检验——F 检验 001230p H :β=β=β=β==β=……

接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系 第二,对单个自变量的回归系数进行显著性检验。 00i H :β= 接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著 3.6 原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。 3.7 11 22 011122201122p p p p p p p ?????y x x x ??????y y (x x )(x x )(x x )????y x x )x x )x x )y =β +β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程: ……对方程进行如下运算: …… ……*j j ?+β=……即 3.8 121321233132212312212331 312311232332 13 231313********* 111 r r r r r r r r r r r r r r r r r r r r r ?? ?= ? ????==-?= =-?= =-即证

应用回归分析-第7章课后习题参考答案

应用回归分析-第7章课后习题参考答案

第7章 岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X |≈0,回归系数估计的方差就很大, 估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X ’X )-1为奇异时,给X’X 加上一个正常数矩阵D, 那么X ’X+D 接近奇异的程度就会比X ′X 接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue 。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k 有哪几种方法? 答:最优k 是依赖于未知参数β和2σ的,几种常见的选择方法是: ○ 1岭迹法:选择0k 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太 多; ○ 2方差扩大因子法:11()()()c k X X kI X X X X kI --'''=++,其对角线元()jj c k 是岭估计的方差扩大因子。要让()10jj c k ≤; ○ 3残差平方和:满足()SSE k cSSE <成立的最大的k 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这 样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量;

课程名称大数据分析与应用

课程名称:大数据分析与应用 一、课程编码: 课内学时:32学分:2 二、适用学科专业:计算机专业硕士 三、先修课程:无 四、教学目标 通过本课程的课堂学习与应用案例,建立科学的大数据观,掌握大数据架构、大数据精准语义搜索、大数据语义分析挖掘、知识图谱等关键技术,熟练使用常用的大数据搜索挖掘与可视化工具,提升大数据的综合应用能力。 五、教学方式 课堂学习、研讨班与应用实践 六、主要内容及学时分配 1.科学的大数据观2学时 1.1.大数据的定义,科学发展渊源; 1.2.如何科学看待大数据? 1.3.如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大 数据观。 2.大数据技术平台与架构4学时 2.1云计算技术与开源平台搭建 2.2Hadoop、Spark等数据架构、计算范式与应用实践 3.机器学习与常用数据挖掘4学时 3.1常用机器学习算法:Bayes,SVM,最大熵、深度神经网络等; 3.2常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析。 4.大数据语义精准搜索4学时 4.1.通用搜索引擎与大数据垂直业务的矛盾; 4.2.大数据精准搜索的基本技术:快速增量在线倒排索引、结构化与非机构化数 据融合、大数据排序算法、语义关联、自动缓存与优化机制; 4.3.大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索; 4.4.JZSearch大数据精准搜索应用案例:国家电网、中国邮政搜索、国家标准搜 索、维吾尔语搜索、内网文档搜索、舆情搜索; 5.非结构化大数据语义挖掘10学时 5.1.语义理解基础:ICTCLAS与汉语分词 5.2.内容关键语义自动标引与词云自动生成; 5.3.大数据聚类; 5.4.大数据分类与信息过滤; 5.5.大数据去重、自动摘要; 5.6.情感分析与情绪计算;

应用回归分析 课后答案 浙江万里学院

2.1 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得: 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。 证明: 其中: 即: ∑e i =0 ,∑e i X i =0 2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。 ∑∑+-=-=n i i i n i X Y Y Y Q 1 21021 ))??(()?(ββ211 1 2 )?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-= 01????i i i i i Y X e Y Y ββ=+=-0 1 00??Q Q β β ??==??

答:由于εi ~N(0, σ2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N(0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 2.5 证明0 ?β是β0的无偏估计。 证明:)1[)?()?(111 0∑∑==--=-=n i i xx i n i i Y L X X X Y n E X Y E E ββ )] )(1 ([])1([1011i i xx i n i i xx i n i X L X X X n E Y L X X X n E εββ++--=--=∑∑== 1010)()1 (])1([βεβεβ=--+=--+=∑∑==i xx i n i i xx i n i E L X X X n L X X X n E 2.6 证明 证明: )] ()1([])1([)?(102110i i xx i n i i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 2 2221 2]1[])(2)1[(σσxx xx i xx i n i L X n L X X X nL X X X n +=-+--=∑= 2.7 证明平方和分解公式:SST=SSE+SSR ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ() ) 1()1()?(2 2 2 1 2 2 xx n i i L X n X X X n Var +=-+=∑=σσβ

应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1 基本假定: (1) rank (x )=p+1,X 为满秩矩阵 (2 (3 3.2 3.3 3.4 n 有关,当样本量n 1,其中隐含着一些虚假成分。因此,就模型的优劣程度。 3.5 首先,对回归方程的显著性进行整体上的检验——F 检验

接受原假设:在显著水平α下,表示随机变量 y与诸x之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y与诸x之间有显著的线性关系 第二,对单个自变量的回归系数进行显著性检验。 y的线性效果并不显著 3.6 原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。 3.7 3.8

3.9 由上两式可知,j个因素的重要程度, 3.10 【没整出来……】 3.11 (1)计算可知,y与x1 x2 x3 的相关关系是:

则相关关系矩阵如下: (3)拟合优度检验

决定系数R2=0.708 R=0.898较大所以认为拟合度较高 (4)对回归方正作整体显著性检验 ANOVA b Model Sum of Squares df Mean Square F Sig. 1Regression13655.37034551.7908.283.015a Residual3297.1306549.522 Total16952.5009

ANOVA b Model Sum of Squares df Mean Square F Sig. 1Regression13655.37034551.7908.283.015a Residual3297.1306549.522 Total16952.5009 a. Predictors: (Constant), 居民非商品支出x3, 工业总产值x1, 农业总产值x2 b. Dependent Variable: 货运总量y F=8.283 取α=0.05时 P=0.015<0.05所以认为回归方程在整体上拟合的好 (5)对每个回归系数作显著性检验 α=0.05时,x3并未通过显著性检验

相关文档
最新文档