应用回归分析 课后答案 浙江万里学院

应用回归分析 课后答案 浙江万里学院
应用回归分析 课后答案 浙江万里学院

2.1 一元线性回归有哪些基本假定?

答: 假设1、解释变量X 是确定性变量,Y 是随机变量;

假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n

假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n

误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得:

2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:

其中:

即: ∑e i =0 ,∑e i X i =0

2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

∑∑+-=-=n

i

i i n i X Y Y Y Q 1

21021

))??(()?(ββ211

1

2

)?()?(i n

i i n i i

i e X Y Y Y Q β∑∑==-=-=

01????i i

i

i i

Y X e Y Y ββ=+=-0

1

00??Q

Q

β

β

??==??

答:由于εi ~N(0, σ2

) i=1,2, …,n

所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2

) 最大似然函数:

使得Ln (L )最大的0

?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小,

上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N(0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。

所以在εi ~N(0, σ2

) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。

2.5 证明0

?β是β0的无偏估计。 证明:)1[)?()?(111

0∑∑==--=-=n

i i xx

i n i i Y L X X X Y n E X Y E E ββ )] )(1

([])1([1011i i xx i n i i xx i n

i X L X X X n E Y L X X X n E εββ++--=--=∑∑==

1010)()1

(])1([βεβεβ=--+=--+=∑∑==i xx i n

i i xx i n

i E L X X X n

L X X X n E 2.6 证明 证明:

)] ()1([])1([)?(102110i i xx

i n

i i

xx i n

i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 2

2221

2]1[])(2)1[(σσxx xx i xx i n

i L X n L X X X nL X X X n +=-+--=∑=

2.7 证明平方和分解公式:SST=SSE+SSR

∑∑+-=-=n

i

i i n i X Y Y Y Q 1

2102

1

))??(()?(ββ()

)

1()1()?(2

2

2

1

2

2

xx n

i i

L X n X X

X n

Var +=-+=∑=σσβ

证明:

2.8 验证三种检验的关系,即验证: (1)2

1)2(r r n t --=

;(2)22

2

1

??)2/(1/t L n SSE SSR F xx ==-=σ

β 证明:(1)

?t ======

(2)

2

2222011111

1

1

1

??????()()(())(())n

n

n

n

i i i

i xx i i i i SSR y y x y y x x y x x L βββββ=====-=+-=+--=-=∑∑∑∑2212?/1

?/(2)xx L SSR F t SSE n βσ

∴===-

2.9 验证(2.63)式:2

211σ)L )x x (n ()e (Var xx

i i ---=

证明:

11

222

2

222

???var()var()var()var()2cov(,)???var()var()2cov(,())()()11[]2[]()1[1]i i i i i i i i

i

i

i

i i xx xx

i xx

e y y

y y y y y x y y x x x x x x n L n L x x n L β

ββσσσσ

=-=+-=++-+---=++-+-=--

其中:2

22221111))(1()(1)

)(,()()1,())(?,(),())(?,(σσσββxx

i xx i n

i i xx

i i i n

i i i i

i i i i L x x n L x x n y L x x y Cov x x y n y Cov x x y Cov y y Cov x x y y Cov -+=-+=--+=-+=-+∑∑==

()()

∑∑==-+-=-=n

i i

i i n i i Y Y Y Y Y Y SST 1

21

2

]?()?[(

)

(

)

()

∑∑∑===-+--+-=n

i i

i n i i i i n i i

Y Y Y Y Y Y Y Y 1

2

112

)??)(?2?(

)()

SSE

SSR )Y ?Y Y Y ?n

1

i 2

i

i n

1

i 2i +=-+-=∑∑

==

2.10 用第9题证明是σ2的无偏估计量

证明:

2

2

211

221122

11??()()()22()111var()[1]221

(2)2

n n i i i i n n i i i i xx E E y y E e n n x x e n n n L n n σσσσ=====-=---==----=

-=-∑∑∑∑ 2.11 验证决定系数与F 值之间的关系式

2

2-+=

n F F

r

证明:

21

1/1

1/(/(2))1221SSR SSR r SST SSR SSE SSE SSR

SSR SSE n F n F n F =

==

++=+

-==

-+-+

2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y (万元)和广告费用x (万元),数据见表2.6,要求用手工计算: 表2.6

(1) 画散点图(略)

(2) X 与Y 是否大致呈线性关系? 答:从散点图看,X 与Y 大致呈线性关系。

(3) 用最小二乘法估计求出回归方程。

计算表

2?2

2-=

∑n e i

σ

(4) 求回归标准误差 先求SSR (Qe )见计算表。 所以

(5) 由于(1-α)的置信度下, 的置信区间是 查表可得 915.110

667

.36?2?1

==

=

xx

L S σβ 所以 的95%的区间估计为:(7—3.182*1.915,7+3.182*1.915),即(0.906,13.094)。

351.6)10

25

51(667.36)1(?22

?

=+=+=xx L X n S σβ

所以 的95%的区间估计为:(-1-3.182*6.351,-1+3.182*6.351), 即(-21.211, 19.211)。^

0β的置信区间包含0,表示^

0β不显著。 (6) 计算x 和y 的决定系数

说明回归方程的拟合优度高。 (7) 对回归方程作方差分析

方差分析表

????(,)i

i

i i t s t s ααββ

ββ-?+?i

β?182

.3)3()2(025.02/==-t n t α1?β0?β

F 值=13.364>F 0.05(1,3)=10.13(当n 1=1,n 2=8时,α=0.05查表得对应的值为10.13),所以拒绝原假设,说明回归方程显著。

(8)做回归系数β1的显著性检验H0: β1=0

656.3915.1/7/?1

?1===β

βS t t 值=3.656>t 0.05/2(3)=3.182,所以拒绝原假设,说明x 对Y 有显著的影响。

(8) 做相关系数R 的显著性检验

R 值=0.904>R 0.05(3)=0.878,所以接受原假设,说明x 和Y 有显著的线性关系。

(9) 对回归方程作残差图并作相应的分析

残差图(略) .从残差图上看出,残差是围绕e=0在一个固定的带子里随机波动,基本满足模型的假设e i ~N(0, σ2

), 但由于样本量太少, 所以误差较大.

(10) 求广告费用为4.2万元时,销售收入将达到多少?并给出置信度为95%的置信区间. 解: 当X 0=4.2时,

所以广告费用为4.2万元时, 销售收入将达到28.4万元. 由于置信度为1-α时,Y 0估计值的置信区间为:

)10

44.1511(667.36)(11(?202

?0

++=-++=-xx Y

Y L X X n S σ

所以求得Y 0的95%的置信区间为: [6.05932 ,50.74068] 预测误差较大.

02

2

?000

?0??Y

Y Y Y S t Y Y S t Y --?+<

100=?+-=+=X Y ββ

3.1

y x =β

基本假定:

(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵

(2) 误差项()()200i i j E ,i j cov ,,i j

?ε=?

?δ=?εε=??≠??

(3)()2

0i i j ~N ,,?εδ??εε??诸相互独立

3.2

()10111

?X X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。即|则必有故

3.3

()()()()

()22

11

122

1222211111111

n n

n

i i ii i i i n

ii i n

i i E e D e h n h n p ?E E e n p n p n p =====??==-δ ?????

=-δ=--δ ???

??∴δ==--δ=δ ?

----??∑∑∑∑∑ 3.4

并不能这样武断地下结论。2

R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2

R 易接近1,其中隐含着一些虚假成分。因此,并不能仅凭很大的2

R 就模型的优劣程度。 3.5

首先,对回归方程的显著性进行整体上的检验——F 检验

001230p H :β=β=β=β==β=……

接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系

第二,对单个自变量的回归系数进行显著性检验。

00i H :β=

接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著

3.6

原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。

3.7

11

22

011122201122p

p

p p p p p ?????y x x x ??????y y (x x )(x x )(x x )????y x x )x x )x x )?y =β

+β+β++β-=β+β-+β-++β--ββ=-+-++-=+对最小二乘法求得一般回归方程:

……对方程进行如下运算:

……

……*j

j

?+β=……即

3.8

121321233132212312212331

3123

11232332

13

231313*********

111

r r r r r r r r r

r r r r r r r r r r r r ?? ?= ? ????==-?=

=-?=

=-即证

3.9

()

()()()

()

1211121121211111j j

j j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,

,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+??=

=

-----=

……,

而……,

由上两式可知,其考虑的都是通过j SSE ?在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2

yj r 是等价的。

4.1 试举例说明产生异方差的原因。

答:例4.1:截面资料下研究居民家庭的储蓄行为 Yi=β0+β1Xi+εi

其中:Yi 表示第i 个家庭的储蓄额,Xi 表示第i 个家庭的可支配收入。

由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi 的方差呈现单调递增型变化。

例4.2:以某一行业的企业为样本建立企业生产函数模型 Yi=Ai β1 Ki β2 Li β3e εi

被解释变量:产出量Y ,解释变量:资本K 、劳动L 、技术A ,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。 4.2 异方差带来的后果有哪些?

答:回归模型一旦出现异方差性,如果仍采用OLS 估计模型参数,会产生下列不良后果: 1、参数估计量非有效

2、变量的显著性检验失去意义

3、回归方程的应用效果极不理想

总的来说,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y 的预测误差变大,降低预测精度,预测功能失效。

4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。所以

就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法:

4.4简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。

答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数i w

,以调整各项在平方和中的

作用,加权最小二乘的离差平方和为: ∑=----=n i ip p i i i p w x x y w Q 1

2

11010)( ),,,(ββββββ (2)

加权最小二乘估计就是寻找参数p

βββ,,,10 的估计值

pw

w w βββ?,,?,?10 使式(2)的离差

平方和

w Q 达极小。所得加权最小二乘经验回归方程记做

p

pw w w w x x y βββ????110+++= (3)

多元回归模型加权最小二乘法的方法:

首先找到权数i w ,理论上最优的权数i w 为误差项方差2

i σ的倒数,

21

i i w σ=

(4)

误差项方差大的项接受小的权数,以降低其在式(2)平方和中的作用; 误差项方差小的项

接受大的权数,以提高其在平方和中的作用。由(2)式求出的加权最小二乘估计

pw

w w βββ?,,?,?10 就是参数

p

βββ,,,10 的最小方差线性无偏估计。

一个需要解决的问题是误差项的方差2

i σ是未知的,因此无法真正按照式(4)选取权数。在实际问题中误差项方差2i σ通常与自变量的水平有关(如误差项方差2

i σ随着自变量的增大而增大),可以利用这种关系确定权数。例如2i σ与第j 个自变量取值的平方成比例时, 即

2

i σ=k

2

ij

x 时

,

220111???()()N N w i i i i i i i i Q w y y w y x ββ===-=--∑

22

__

1

_2__02

2

2

2()()?()?111

1

,i i N w i i i w i w i w w

w w w

kx i i

i i m

i i

i m

i w x x y y x x y x w kx x kx w x σβ

ββ

σ

σ==---=-=

=

=

==∑

1N i =11表示=或

21ij

i x w

=

(5)

更一般的情况是误差项方差2

i σ与某个自变量j x (与|e i

|的等级相关系数最大的自变量)取值

的幂函数

m

ij

x 成比例,即2

i σ=k m

ij x ,其中m 是待定的未知参数。此时权数为

m ij

i x w 1

=

(6)

这时确定权数

i w 的问题转化为确定幂参数m 的问题,

可以借助SPSS 软件解决。4.5(4.5)

式一元加权最小二乘回归系数估计公式。

证明: 由 得: w

w w i

n i i

w i w i

n

i i

x y x x

w y y x x

w 102

1

1

1

??)()

)((?βββ-=---=∑∑==

4.6验证(4.8)式多元加权最小二乘回归系数估计公式。 证明:对于多元线性回归模型 ,y =X β+ε (1)

2()0,cov(,)E σ'?==εεεW ,即存在异方差。设

,00

n w '=??=

? ???

W DD D ,

用-1

D 左乘(1)式两边,得到一个新的的模型:

---111D y =D X β+D ε,即***y =X β+ε。

因为

22

()()()E E E σσ---''''''====1-11-11-1εεD εεD D εεD D WD I , 故新的模型具有同方差性,故可以用广义最小二乘法估计该模型,得

111?()()()**-**------''''''''===1111w

βX X X y X D D X X D D y X WX X Wy

原式得证。

22

0111

???()()N

N

w i i i

i i

i i i Q w y y w y x ββ===-=--

∑01

00??

Q Q ββ??==??

4.7 有同学认为当数据存在异方差时,加权最小二乘回归方程与普通最小二乘回归方程之间必然有很大的差异,异方差越严重,两者之间的差异就越大。你是否同意这位同学的观点?说明原因。

答:不同意。当回归模型存在异方差时,加权最小二乘估计(WLS )只是普通最小二乘估计(OLS )的改进,这种改进可能是细微的,不能理解为WLS 一定会得到与OLS 截然不同的方程来,或者大幅度的改进。实际上可以构造这样的数据,回归模型存在很强的异方差,但WLS 与OLS 的结果一样。加权最小二乘法不会消除异方差,只是消除异方差的不良影响,从而对模型进行一点改进。 4.8 对例4.3的数据,用公式

iw

i iw e w e ='

计算出加权变换残差'

iw e ,绘制加权变换残差图,

根据绘制出的图形说明加权最小二乘估计的效果。 解:用公式

iw

i iw e w e ='计算出加权变换残差'

iw e ,分别绘制加权最小二乘估计后的残差图

和加权变换残差图(见下图)。

根据绘制出的两个图形可以发现加权最小二乘估计没有消除异方差,只是对原OLS 的残差有所改善,而经过加权变换后的残差不存在异方差。 5.10

(1)建立y 对2

6x ~x 的线性回归方程

由上可知,线性回归方程是:

23456

59228274864237481790114539846867y ..x .x .x .x .x =++-+-(2)用后退法选择变量

由上三表可知,用后退法选出的变量及其回归方程为:

34614453809482310971882827999232202y ..x .x .x .x =-+--+

(3)用逐步回归法选择自变量

Model Summary

Model R R Square Adjusted R

Square

Std. Error of the

Estimate

1 .498a.248 .194 1092.832

2 .697b.485 .406 937.950

3 .811c.657 .572 796.609

a. Predictors: (Constant), x3

b. Predictors: (Constant), x3, x5

c. Predictors: (Constant), x3, x5, x4

逐步回归法可得:

35414128073440348729415136y ..x .x .x =++-

(4)根据以上计算结果分析后退法与逐步回归法的差异:

两个方法得到的最终模型是不同的。在后退法中首先剔除了5x ,第二步剔除了2x ;而逐步回归法则在第二步引入了5x ,第三步引入了4x 。说明两种方法对自变量重要性的认可是不

同的,这与自比那两之间的相关性有关。相比之下,后退发首先做全模型的回归,每个自变

量都有机会展示自己的作用,所得结果更值得信服。如,在本题中可以看到,5x 是之后六

个月的最惠利率,对因变量的影响似乎并不大。

7

1.岭回归估计是在什么情况下提出的?

答:当解释变量间出现严重的多重共线性时,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘法的效果变得很不理想,为了解决这一问题,统计学家从模型和数据的角度考虑,采用回归诊断和自变量选择来克服多重共线性的影响,这时,岭回归作为一种新的回归方法被提出来了。

2.岭回归估计的定义及其统计思想是什么?

答:一种改进最小二乘估计的方法叫做岭估计。当自变量间存在多重共线性,∣X'X ∣≈0时,我们设想给X'X 加上一个正常数矩阵kI(k>0),那么X'X+kI 接近奇异的程度小得多,考虑到变量的量纲问题,先对数据作标准化,为了计算方便,标准化后的设计阵仍然用X 表

示,定义为

,称为的岭回归估计,其中k 称为岭参数。

3.选择岭参数k 有哪几种主要方法?

答:选择岭参数的几种常用方法有1.岭迹法,2.方差扩大因子法,3.由残差平方和来确定k 值。

4.用岭回归方法选择自变量应遵从哪些基本原则? 答:用岭回归方法来选择变量应遵从的原则有:

(1)在岭回归的计算中,我们假定设计矩阵X 已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小,我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量。

(2) 当k 值较小时标准化岭回归系数的绝对值并不是很小,但是不稳定,随着k 的

增加迅速趋于零。像这样的岭回归系数不稳定,震动趋于零的自变量,我们也可以予以删除。

(3) 去掉标准化岭回归系数很不稳定的自变量,如果有若干个岭回归系数不稳定,

究竟去掉几个,去掉哪几个,这并无一般原则可循,这需根据去掉某个变量后重新进行岭回归分析的效果来确定。

()()1

?''X X I X y β

κκ-=+β

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

26、回归分析测试题及答案

中级经济师基础知识 第 1题:单选题(本题1分) 某公司产品当产量为1000单位时,其总成本为4000元;当产量为2000单位时,其总成本为5000,则设产量为x,总成本为y,正确的一元回归方程表达式应该是( )。 A、y = 3000 + x B、y = 4000 + 4x C、y = 4000 + x D、y = 3000 + 4x 【正确答案】:A 【答案解析】: 本题可列方程组:设该方程为y = a + bx,则由题意可得:4000 = a + 1000b5000 = a + 2000b 解该方程,得b=1,a=3000,所以方程为y = 3000 + x 第 2题:单选题(本题1分) 在回归分析中,估计回归系数的最小二乘法的原理是( )。 A、使得因变量观测值与均值之间的离差平方和最小 B、使得因变量估计值与均值之间的离差平方和最小 C、使得观测值与估计值之间的乘积和最小 D、使得因变量观测值与估计值之间的离差平方和最小 【正确答案】:D 【答案解析】: 较偏较难的一道题目。最小二乘法就是使得因变量的观测值与估计值之间的离差平方和最小来估计参数的一种方法 第 3题:多选题(本题2分) 关于相关分析和回归分析的说法,正确的的有() A、相关分析可以从一个变量的变化来推测另一个变量的变化 B、相关分析研究变量间相关的方向和相关的程度 C、相关分析中需要明确自变量和因变量 D、回归分析研究变量间相互关系的具体形式 E、相关分析和回归分析在研究方法和研究目的有明显区别 【正确答案】:BDE 【答案解析】: 相关分析与回归分析在研究目的和方法上具有明显的区别。 (1)、相关分析研究变量之间相关的方向和相关的程度,无法从一个变量的变化来推测另一变量的变化情况。 (2)、回归分析是研究变量之间相关关系的具体形式

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

数值分析课后习题答案

习 题 一 解 答 1.取3.14,3.15, 227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016 ()0.51103.14r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311 101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085 ()0.27103.15r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1 =11211101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22 () 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:

回归分析练习试题和参考答案解析

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据: 求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 α=)。 (5)检验回归方程线性关系的显著性(0.05 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。 解:(1)

可能存在线性关系。 (2)相关系数: 系数a 模型非标准化系数标准系数 t Sig. 相关性 B标准误差试用版零阶偏部分 1(常量).003 人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平 有很强的线性关系。 (3)回归方程:734.6930.309 y x =+ 系数a 模型非标准化系数标准系数t Sig.相关性

回归系数的含义:人均GDP没增加1元,人均消费增加元。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 系数(a) 模型非标准化系数标准化系数 t显著性B标准误Beta 1(常量) 人均GDP(元) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4) 模型汇总 模型R R 方调整 R 方标准估计的误 差 1.998a.996.996 a. 预测变量: (常量), 人均GDP。 人均GDP对人均消费的影响达到%。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 模型摘要 模型R R 方调整的 R 方估计的标准差

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

多元线性回归模型习题及答案

多元线性回归模型 一、单项选择题 1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为( D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B ) A. i C (消费)=500+i I (收入) B. d i Q (商品需求)=10+i I (收入)+i P (价格) C. s i Q (商品供给)=20+i P (价格) D. i Y (产出量)=0.6i L (劳动)0.4i K (资本) 3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显著性水平上对 1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F 4.模型 t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B ) A.x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C ) A.异方差性 B.序列相关 C.多重共线性 D.高拟合优度 6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...) t H b i k ==时,所用的统计量 服从( C ) (n-k+1) (n-k-2) (n-k-1) (n-k+2) 7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2 211n R R n k -=-- B. 22111 n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。 A.只有随机因素 B.只有系统因素 C.既有随机因素,又有系统因素 、B 、C 都不对 9.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C ) A n ≥k+1 B n

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

回归分析练习题(有答案)

1.1回归分析的基本思想及其初步应用 一、选择题 1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平 均值为2,数据 y 的平均值为3,则 ( ) A .回归直线必过点(2,3) B .回归直线一定不过点(2,3) C .点(2,3)在回归直线上方 D .点(2,3)在回归直线下方 2. 在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线方程为( )A . y x 1=+ B . y x 2=+ C . y 2x 1=+ D. y x 1=-3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤: ①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ) ,1,2i =,…,n ; ③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图 如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③① 4. 下列说法中正确的是( ) A .任何两个变量都具有相关关系 B .人的知识与其年龄具有相关关系 C .散点图中的各点是分散的没有规律 D .根据散点图求得的回归直线方程都是有意义的 5. 给出下列结论: (1)在回归分析中,可用指数系数2 R 的值判断模型的拟合效果,2 R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好; (3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有( )个. A .1 B .2 C .3 D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A.y 平均增加1.5个单位 B.y 平均增加2个单位 C.y 平均减少1.5个单位 D. y 平均减少2个单位 7. 下面的各图中,散点图与相关系数r 不符合的是( )

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

(参考资料)数值分析课后答案1

1第一章 习题解答 1 设x >0,x 的相对误差限为δ,求 ln x 的误差。 解:设 x 的准确值为x *,则有 ( | x – x * | /|x *| ) ≤ δ 所以 e (ln x )=| ln x – ln x * | =| x – x * | ×| (ln x )’|x=ξ·≈ ( | x – x * | / | x *| ) ≤ δ 另解: e (ln x )=| ln x – ln x * | =| ln (x / x *) | = | ln (( x – x * + x *)/ x *) | = | ln (( x – x * )/ x * + 1) |≤( | x – x * | /|x *| ) ≤ δ 2 设 x = – 2.18 和 y = 2.1200 都是由准确值经四舍五入而得到的近似值。求绝对误差限ε( x ) 和 ε( y ) 。 解:| e (x ) | = |e (– 2.18)|≤ 0.005,| e (y ) | = |e ( 2.1200)|≤ 0.00005,所以 ε( x )=0.005, ε( y ) = 0.00005。 3 下近似值的绝对误差限都是 0.005,问各近似值有几位有效数字 x 1=1.38,x 2= –0.0312,x 3= 0.00086 解:根据有效数字定义,绝对误差限不超过末位数半个单位。由题设知,x 1,x 2, x 3有效数末位数均为小数点后第二位。故x 1具有三位有效数字,x 2具有一位有效数字,x 3具有零位有效数字。 4 已知近似数x 有两位有效数字,试求其相对误差限。 解:| e r (x ) | ≤ 5 × 10– 2 。 5 设 y 0 = 28,按递推公式 y n = y n-1 – 783/ 100 ( n = 1,2,…) 计算到y 100。若取≈78327.982 (五位有效数字),试问,计算 y 100 将有多大的误差? 解:由于初值 y 0 = 28 没有误差,误差是由≈78327.982所引起。记 x = 27.982,783?=x δ。则利用理论准确成立的递推式 y n = y n-1 – 783/ 100 和实际计算中递推式 Y n = Y n-1 – x / 100 (Y 0 = y 0) 两式相减,得 e ( Y n ) = Y n – y n = Y n-1 – y n-1 – ( x – 783)/ 100 所以,有 e ( Y n ) = e ( Y n-1) – δ / 100 利用上式求和 δ?=∑∑=?=100111001)()(n n n n Y e Y e 化简,得 e ( Y 100) = e ( Y 0) – δ = δ 所以,计算y 100 的误差界为 4100105001.05.0)(?×=×=≤δεY 6 求方程 x 2 – 56x + 1 = 0的两个根,问要使它们具有四位有效数字,D=ac b 42 ?至少要取几位有效数字? 如果利用韦达定理,D 又应该取几位有效数字? 解:在方程中,a = 1,b = – 56,c = 1,故D=4562?≈55.96427,取七位有效数字。

回归分析练习题及参考答案

1 下面是7个地区2000年的人均国生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元 北京上海 22460 11226 34547 4851 5444 2662 4549 7326 4490 11546 2396 2208 1608 2035 求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 (5)检验回归方程线性关系的显著性(0.05 α=)。 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。 解:(1) 可能存在线性关系。 (2)相关系数:

(3)回归方程:734.6930.309 y x =+ 回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规排版。 系数(a) 模型非标准化系数标准化系数 t 显著性B 标准误Beta 1 (常量)734.693 .540 5.265 0.003 人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (4) 模型汇总 模型R R 方调整 R 方标准估计的误 差 1 .998a.996 .996 247.303 a. 预测变量: (常量), 人均GDP。 人均GDP对人均消费的影响达到99.6%。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规排版。 模型摘要 模型R R 方调整的 R 方估计的标准差 1 .998(a) 0.996 0.996 247.303 a. 预测变量:(常量), 人均GDP(元)。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

相关文档
最新文档