近些年来新型纤维的特点及应用

近些年来新型纤维的特点及应用
近些年来新型纤维的特点及应用

近些年来新型纤维的特点及应用

摘要:介绍了近年来几种新型天然纤维和新型合成纤维的主要特点,并对它们的应用情况及研究进展进行了概述。

关键词:新型天然纤维;新型合成纤维;纤维特点;发展概况

1新型天然纤维的特点及其发展概述

竹纤维就是从自然生长的竹子中提取出的一种纤维素纤维,是继棉、麻、毛、丝之后的第五大天然纤维。竹纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,同时又具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。

1.1.1竹纤维的特点

竹纤维中含有一种名为“竹琨”的抗茵物质,具有天然抗菌、防螨、防臭的药物特性,竹沥有广泛的抗微生物功能,竹纤维中的叶绿素和叶绿素铜钠具有较好的除臭作用。经高科技工艺制作的竹纤维织品可有效地抑制细菌生长,清洁人体周围空气,预防传染病。其抑菌功能经反复洗涤后也不会衰减”。在正常温度条件下,竹纤维及其纺织品很稳定,但在一定环境下竹纤维可以分解为水和二氧化碳。

1.1.2竹纤维的应用

竹纤维织物的天然抗茵、抗紫外线作用在经多次反复洗涤、日晒后,仍能保证其原有的特点,对人体皮肤无任何过敏性不良庋应,并对人体皮肤具有保健作用。现已大量应用于口罩、绷带、手术服、护士服等医用防护品和毛巾、袜子、内衣、床上用品等亲肤日用品。另外,竹纤维与其他材料融合的应用也非常广阔。比如,用竹纤维制备的经济墙板综合了竹纤维和水泥两者的良好特性,具有防火、隔音、隔热、耐水、防蛀及安装简便、经济实用等

优点。用竹纤维与玻璃纤维复合建筑材料为主体骨架的模板组成的活动房屋,具有以下几个优点:减轻建筑物的自重:节约能源;可靠性高;经久耐用。此外,它还具有耐腐蚀、不怕风吹雨淋及雨水浸泡、防火性强等特点。用竹纤维和树脂复合制作的竹纤维增强塑料的强度相当高,可以作为许多土建工程的主、次承力构件,耐腐性比钢材好,也可以应用于交通运输、建筑、家具等行业。1.2海藻纤维

从广义上来说,将含有海藻成分的纤维统称为海藻纤维。海藻酸纤维又称碱溶纤维、藻蛋白酸纤维,其原材料来自天然海藻中所提取的海藻多糖。海藻多糖

主要来自海带、巨藻、墨角藻、昆布和马尾藻等褐藻类。

1.2.1海藻纤维的特点

高吸湿性:海藻纤维能吸收大量伤口渗出物,使绷带更换的时间,间隔延续一段较长时间,减少绷带更换次数,减少护理时间.降低总护理费用。

易去除性:海藻纤维与渗出液接触后,大大膨化而形成柔软的水凝胶。高海藻纤维可以通过用温热的盐水溶液淋洗去除;高G海藻酸盐绷带在治疗过程中,膨化较小,可以整片拿掉。这对伤口新生的娇嫩组织有极大的保护,可防止取出纱布过程中造成二次伤口创伤。

高透氧性:海藻纤维吸湿后形成亲水性凝胶,与亲水基团结合的“自由水”成为氧气传递的通道,氧气根据吸附一扩散一解吸的原理从外界环境进入伤口内环境;另外纤维内的高段作为纤维的大分子骨架连接点成为水凝胶的相对硬性部分,成为氧气通过的微孔。这些特点避免了伤口的缺氧环境,提高了伤口治愈环境的质量。

凝胶阻塞性质:海藻酸盐绷带与渗出液接触时,纤维大大地膨化,大量的渗出液保持在处于凝胶结构的纤维中。单个纤维的膨化减少了纤维之间的细孔结构,流体的散布被停止,海藻酸盐绷带的“凝胶阻塞”性质,使伤口渗出物的散布、对健康组织的浸渍作用大大减少。

生物降解性和相容性:海藻纤维是一种生物可降解纤维,这就解决了对环境污染的问题。其生物相容性使其作为手术线时可不经二次拆线,减少了病人的痛苦。

金属离子吸附性:海藻纤维的高金属离子吸附性可吸附大量金属离子形成导电链,提高大分子链的聚集能,从而可使其用于制造防护纺织品。

1.2.2海藻纤维的研究应用

海藻纤维在国内外的研究应用十分广泛。在国内,青岛大学公开了一种壳聚糖接枝海藻纤维及其制备方法与用途的专利,这种纤维由于表面包覆一定的壳聚糖,因而具有良好的吸湿性和抗茵性,且无毒。无害、安全性高及生物可降解性,在医药、环保等颌域均有良好的应用前景,作为止血治疗的新型材料,尤其适合于制造纱布做伤口敷料用‘纠。在国外,意大利Zegna Baruffa Lane Borgosesia 纺丝公司也推出一种名为Thalassa的长丝,丝中含有海藻成分,用这种纤维制成的面料和服装比一般纤维制成的面料和服装更能保持和提高人体表面温度。这种含有海藻成分的面料穿着后可以让人的大脑松弛,也可以提高穿着者的注意力

与记忆力,还具有抗过敏、减轻疲劳及改善失眠状况。日本一家特种纤维公司是世界首家实现海藻纤维大批量生产的厂家,其工艺属领先地位,销售海藻纤维毛巾、海藻纤维内衣。海藻纤维在内衣上的应用充分体现了海藻纤维能反射远红外线,产生负离子保暖和保健作用的特性。

2新型合成纤维特点及发展概述

2.1玉石纤维

玉石纤维是一种新型阳离子可染纤维,是运用萃取和纳米技术,把玉石和其他矿物质材料达到亚纳米级粒径,然后熔入涤纶纺丝熔体中,经纺丝加工制成。玉石和其他矿物质粒子的加入赋予了玉石纤维很多独特的功能。如抗茵保健,玉石纤维独特的微孔中空结构使其具有吸湿快干的特性,而且,由于玉石纤维在涤纶单体中接入了第三单体,是一种新型的差别化涤纶纤维,具有常压阳离子可染韵特性。玉石纤维是在涤纶纤维的基础上加入了第三单体,具有微孔结构,并具有以下特性:首先,玉石中含有丰富的对人体有益的矿物质和微量元素,长期贴附在人体的皮肤上进行释放,能改善血液微循环,促进新陈代谢,产生凉血、降压、安神、缓解疲劳等保健功能,对因湿热引起的皮肤病也有良好的康复作用:其次,用玉石纤维制成的织物,人体感觉有较好的凉爽感,特别适合在炎热的夏天或运动的时候穿着使用;玉石纤维本身还具有一定的抗菌作用:此外,玉石纤维具有抗起毛起球性,这一点使得它与普通聚酯纤维相比具有令人瞩目的优势j 玉石纤维极易染色,可在常压下完成深浓色上染,与传统聚酯纤维染色相比可大大降低能源消耗,减少废液排放中染料的含量,有益于环境保护,因此将玉石纤维面料应用于纺织印染加工还有着积极的环保和节能减排意义。

2.2调温纤维

调温纤维是一种具有双向温度调节作用的新型纤维,它能够根据外界环境温度的变化,通过纤维中的调温材料从环境中吸收热量贮存于纤维内部,或放出纤维中贮存的热量,在纤维周围形成温度基本恒定的微气候,从而实现温度调节功能。

2.2.1调温纤维特点

调温纤雏区别于传统的保暖纤维和凉爽纤维,后两类纤维在温度调节作用上都呈现被动、隔离式、无法自调控制的特征,对湿、冷、热环境不能自主调整,其本质上仍为普通纤维或差别化纤维,并非智能纤维‘剐。传统的保温纤维是通过绝热方法避免皮肤温度降低过多,而绝热效果主要取决于织物的厚度和温度。

凉爽纤维是通过具有异形截面的纤维,如杜邦公司生产的具有四沟槽的Coolmax 纤维,它们能够迅速吸收和传输人体表面的汗液并带走皮肤表面的热量,从而使人体产生凉爽舒适的感觉。而调温纤维的保暖则是通过对水分和外界压力变化的敏感响应,为人体提供舒适的微气候环境,即提供热调节而不是热隔绝,因此是一种全新的调温机理。

2.2.2调温纤维发展概况

智能调温纤维能纯纺,也可与棉、毛、丝、麻等各类纤维混纺交织,可以梭织或针织。大量应用于户外服装、内衣裤、毛衣、衬衣、帽子、手套和床上用品等,具有良好的效果。调温纤维在户外运动者和对温度变化较为敏感的老年、婴幼儿中更受欢迎。目前,以相变材料为主要调温纤维应用比较成熟的国家主要有美国和瑞士,日本大和化学工业以研制微胶囊浆料涂层技术见长。我国调温纤维尚处于研制开发和试制生产阶段,产品市场尚不成熟。主要有:北京雪莲羊绒股份有限公司与山西恒天新纤维科技开发有限公司于2007年3月共同研制开发的智能牛奶蛋白调温纤维,其耐压、耐高温性能优良。

2.3 PTT(聚对苯二甲酸丙二醇酯)

PTT纤维是Shell公司开发的一种性能优异的聚酯类新型纤维。它是由对苯二甲酸(PTA)和1.3-丙二醇(PDO)缩聚而成。PTT纤维综合了尼龙的柔软性、腈纶的蓬松性、涤纶的抗污性,加上本身固有的弹性,以及能常温染色等特点,把各种纤维的优良服用性能集于一身,从而成为当前国际上最新开发的热门高分子新材料之一。

2.3.1 PTT纡维的优良性能

良好的拉伸回弹性:PTT纤维具有优异的拉伸回弹性,这种纤维即使经过1 0次20%的最大拉伸,仍然能100%地回复,这表明PTT纤维具有优异的弹性回复性。并且,PTT纤维的弹性回复率明显高于PBT和PETm。

较低的模量:PTT的挠屈模量指标低于涤纶而与尼龙相仿,其杨氏模量的情况也相仿。与涤纶纤维和制品的突出刚性相比,PTT纤维和织物的手感更接近于尼龙柔软而舒适的感觉。

低温染色性:对纯PTT纤维最适合的染料是分散染料,使用分散染料染色,温度必须在玻璃化温度(Tg)上才能染成深色。PTT纤维的Tg为55'C.比PET纤维(81℃)低26'C左右。其染色性能优于PET纤维。PTT纤维在IOO'C时有很高的上染率,通常可在常压沸染州。

2.3.2 PTT纤维的应用

PTT纤维弹性面料具有优良的拉伸及回弹性能,服用感觉非常舒适:同时该款面料抗皱性能好,面料缩率小,尺寸稳定性高,经熨烫后折痕保持性好,能够长久倮持西服和制服挺括的外形;并且PTT纤维的染色性能优于普通涤纶,使得PTT弹性面料色牢度好,可工业洗烫;具有优良的耐磨和耐穿性能。PTT纤维在毛纺面料上的应用因为PTT纤维良好的拉伸回弹性能,可满足制服面料对微弹性的需求。和毛纤维相近的低初始模量,可赋予面料柔软手感。将PTT纤维和毛混纺,利于改善常规毛涤制服面料的弹性和抗皱性能,开发新一代毛感强的毛混纺制服面料。PTT与天然纤维混纺的目的是赋予纱线以及织物以天然纤维的特性,同时改善PTT在吸湿、抗静电等方面的缺陷,与毛进行混纺,还可避免织物泛黄:在与天然纤维混纺的基础上,再添加一些新型纤维如Tencel等,可以更好地改善纱线及织物的功能性。PTT与超细丝交织的T恤面料、运动装面料和PTT与海岛丝等多种成分混纺的家纺面料。

3结束语

新型纤维中天然纤维竹纤维现已大量应用于医用防护品,亲肤日用品及其他领域,海藻纤维在国内外的研究应用也十分广泛,新型合成纤维中玉石纤维抗菌保健环保凉爽,调温纤维我国尚处于研制开发和试制生产阶段.PTT弹性系列精纺面料及PTT混纺面料有很好前景,为此科研工作者应进~步致力于新型纤维的深入研究,推动新型纤维更好的开发写应用。

4参考文献:

[1] 王亚军,竹纤维抗菌性能的研究[专著].天津工业大学出版社,2007.

[2] 展义臻,朱平,张建波,等.海藻纤维的性能与应用[期刊论文].印染助剂,

2006(6)

[3] 赵永霞,海藻纤维的发展及应用[期刊论文]纺织导报,2008(7).

[4] 刘影,崔淑玲,阴甫,一种新型纤维——玉石纤维的问世[期刊论文].河北

纺织,2008( 4)

[5] 韩娜,张荣,张兴祥.储热调温纤维的研究进展(一).产业用纺织品[期刊

论文],2011(4).

[6] 王小娟.PTT纤维的性能研究[期刊论文].染整技术,2009 (5)

[7] 柯宝珠,张燕,王华平,等.21世纪新型聚酯纤维——PTT[期刊论文]中国

个体防护,2006( 01).

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

纳米纤维

纳米纤维的研究应用及其成型技术 闫晓辉化工学院材料学110030324 摘要:当聚合物纤维的尺度从微米或亚微米级降至纳米级时,就会显示出某些奇特的物理和生化性能。本文阐述了纳米纤维的基本特性,列举了相关的一些前沿应用进展,并介绍了制备纳米纤维的几种成型工艺。 关键词:纳米纤维,应用,成型技术 一、纳米纤维的概述 纤维对大家来说是十分熟悉的,如日常生活中作为服装材料用的羊毛、蚕丝、亚麻、棉花等都是天然纤维;20世纪出现的化学纤维工业,为人类提供了各种各样的合成纤维和人造纤维;还有金属纤维、矿物纤维和陶瓷纤维等。作为纤维有两个明显的几何特征:第一是纤维有较大的长度/直径比,例如蚕丝和化学纤维的长丝都可认为长度/直径比趋于无穷大;第二是纤维的直径必须比较细,这是出现一定柔韧性所必需的。传统普通纤维材料的直径多为5~50μm;最新开发的超细纤维直径可达0.4~4μm。由此可见,超细纤维也仅是与蚕丝直径相当或稍细的纤维,其直径绝对值只能达到微米或亚微米级,还不是真正意义上的超细纤维。 纳米是一个长度单位,1nm=10-9m。纳米量级一般是指1~100nm的尺度范围。纳米科技的发展,将会给纤维科学与工程带来新的观念。对纳米纤维定义其直径是1~100nm的纤维,即一维纳米材料。纳米纤维按获取途径可以分为天然纳米纤维和人造纳米纤维。纳米纤维(nanofiber)从广义上讲包括纤维直径为纳米量级的超细纤维,还包括将纳米颗粒填充到普通纤维中对其进行改性的纤维。后者是目前国内外开发的热点;采用性能不同的纳米颗粒,可开发阻燃、抗菌、抗静电、防紫外线、抗电磁屏蔽等各种功能性纤维[1]。而对于前者,才是真正意义上的纳米纤维(一维纳米材料),由于其极大的比表面积和表面积-体积比所表现出的特殊性能,日益引起科学家们的重视。天然纳米纤维由生物体产生。生物体内的大分子,如核酸(DNA 及RNA)、蛋白质、纤维素及多糖,在生命活动中起着决定作用。一些科学家认为,阐明生命科学中的高分子化学基础或者高分子化学模拟是高分子化学今后的主要研

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

棉纤维的吸湿性能

(一)棉纤维得吸湿性能 棉纤维就是一种多孔性物质,由于纤维素大分子上存在很多得游离亲水性基团(羟基),所以能从潮湿空气中吸收水分与向干燥空气放出水分,这种现象称为棉纤维得吸湿性。棉纤维得吸湿性,对其她各项物理性能都有影响。如棉纤维吸湿后,重量增加,密度先增大后减小,强伸度增加,导电性能增强,纤维膨胀等。因此,在籽棉加工、农商交接、纤维性能测试以及纺织生产等过程中,都要规定并控制棉纤维得吸湿量。 棉纤维得吸湿就是比较复杂得物理化学现象。棉纤维含水得原因,主要有纤维本身结构以及大气温度与相对湿度等。 1.影响棉纤维吸湿得内部因素 亲水基因:棉纤维得主要成分就是纤维素。纤维素大分子上每个葡萄糖剩基上有3个羟基,它们属于亲水基因,对水分子有相当得亲与力,所以棉纤维分子结构中得自由羟基得数目越多,棉纤维得吸湿能力就越大。 棉纤维内得纤维素大分子上除羟基直接吸附水分以外,已被吸附得水分子,由于它本身也具有极性,帮也可吸附其她水分子,使后来吸附得水分子积聚在上面,称为间接吸附得水分,这些水分子排列不定,结合力也比较弱,存在于纤维内部得微小间隙成为微毛细水;当温度很高时,这种间接吸收得水分可以填充到纤维内部较大得间隙中,成为大毛细水。随着微毛细水与大毛细水得增加,棉纤维发生溶胀可以拆开分子间得一些联结点,使得更多得自由羟基与水分子结合。 分子排列:棉纤维中纤维素分子链相互间排列不匀,存在着结晶区与非结晶区。在结晶区,纤维素分子链排列整齐,分子间距较大,仅在少数点联结,结合力弱,就是一种松弛得网状结构,大多数自由羟基都向水分子开放,水分子很容易进入,所以棉纤维得吸湿主要发生在非结晶区。因此棉纤维得结晶度越低,吸湿能力越强。对单根棉纤维来说,初生层得非结晶区比次生层得多,不成熟得棉纤维非结晶区所占得比例比成熟棉纤维得大。因此,不成熟得低级棉常含有较高得水分。 除了结晶度影响纤维得吸湿性外,在同样得结晶度下,微晶体得大小对吸湿性也有影响。一般说来,晶体小得吸湿性较大。另外,大分子得取向度一般对吸湿性得影响较小,但聚合度有时对纤维得吸湿能力有一定得影响。 表面吸附:棉纤维暴露在大气中,就会在纤维表面吸附一定量得水汽与其她气体,这一般称为物理吸附。表面吸附能力得大小与纤维比表面积有一定得关系。单位体积得棉纤维所具有得表面积,叫棉纤维得比表面积。棉纤维愈细,棉纤维中缝隙孔洞愈多,比表面积愈大,吸湿性也要大一些。所以棉纤维得比表面积得大小,也就是影响吸湿性得一个因素。例如,在同样条件下,成熟差得棉纤维比成熟好得棉纤维比表面积大,其吸湿性也较大。 纤维素伴生物:棉纤维除主要成分就是纤维素外,还有少量得果胶、蛋白质、多缩戊糖、脂肪与蜡质、以及某些无机盐类等伴生物。脂肪与蜡质就是疏水物质,能保护棉纤维不易受潮。果胶、蛋白质、多缩戊糖,以及无机盐类中得氧化铁、氧化镁、氧化钙等就是亲水物质,能使棉纤维得吸湿性增强。因此,棉纤维中纤维素伴生物得性质与含量,也影响棉纤维得吸湿程度。另外,棉纤维在采集与初加工过程中还保留一定数量得杂质,这些杂质往往具有较高得吸湿能力。因此,棉纤维中含杂得多少,对棉纤维得吸湿性也有一定得影响。 2.影响棉纤维吸湿得外部因素 与棉纤维含水有关得外部因素有大气压力、温度与相对湿度。由于地球表面上大气压力得变化不大,这里主要讨论空气温度与相对湿度对棉纤维吸湿能力得影响。 相对湿度:棉纤维含水大小与空气得相对湿度密切相关。在一定得大气压力与温度下,相对湿度愈高,空气中水蒸气分压愈大,即单位体积内得空气中水分子数目愈多,水分子进入棉纤维中得机会愈多,其吸湿时就愈大。反之,当空气中水蒸气分压与相对湿度降低时,棉纤

服装纤维的种类与特点

服装纤维的种类与特点 班级:服装设计与工程3班姓名:潘冬林学号:222008323022083 纺织纤维是构成面料的基本材料,它有两大类:天然纤维与化学纤维。 1、天然纤维。 常规的天然纤维有棉、麻、丝、毛,随着科学技术的发展,新的天然纤维又有出现,比如菠萝叶纤维与现在普遍使用的竹纤维。它们都是大自然奉献给我们的优质纺织纤维原料。棉、麻、竹、菠萝叶纤维是天然纤维素纤维,用火点燃很快炭化为灰烬,伴随着烧草的气味。毛、丝纤维是天然动物纤维,点燃后变焦并有烧头发的气味,其中丝纤维是投入使用的唯一的一种长纤材料,可长达几百米,现在正在研究中的蜘蛛丝纤维应该也是长纤,但没有投入实际使用。 2、化学纤维。 化学纤维是随着化工行业的发展兴起的,目前已经成为纺织纤维的主体。它分为两大类,一类是合成纤维,一类是再生纤维。 A、合成纤维是以石油为原料,经化学聚合而成,主要纤维材料有涤纶、锦纶、腈纶、维纶、丙纶、氯纶、氨纶等。它们可以根据需要切割成不同长度或直接使用长丝。其统一的燃烧特点是熔融成滴。涤纶纤维刚性较好,有很好的保型性与挺括性,常与棉、毛等混纺。 锦纶又称尼龙,是一种较有弹性的纤维材料,并且最为耐磨,常用做服装的“三口”,并在袜类产品中经常使用,最近几年常见锦纶与粘胶纤维交织,形成锦粘交织面料。 腈纶是保暖性最好的合成纤维,俗称合成羊毛,常用做毛衫材料。 维纶吸湿性能是合成纤维中最好的,服用性能接近棉纤维,民用较少,档次很低,通常用于工业产品,如绳索、水龙带、鱼网等。 丙纶质地最轻,比重为0。91,是目前纺织纤维中最轻的一种材料,耐磨、耐穿、不起球。氯纶不易燃烧,常用做针织内衣、毛线等民用产品,还用于工业滤布、工作服、绝缘布、安全帐篷等。 氨纶是弹性最高的一种纤维材料,高伸长、高弹性,常用做紧身产品,但由于不着色、强力最低,所以一般很少裸丝使用。 B、再生纤维,也叫做人造纤维,是利用天然材料经制浆喷丝而成,有再生纤维素与再生蛋白质之分。其中最常用的是粘胶纤维(再生纤维素纤维),它具有棉、麻的主要特性,但强力低于棉麻,且湿态强力更小。再生蛋白质使用较少,甲壳质纤维已经很成熟的用于当今医学领域。 3. 纺织纤维的特点 纺织标准状态与纤维回潮率 纺织材料由于具有一定的吸湿能力,这种能力在不同的状态下是不同的,为了使纺织材料的吸湿有一定的可比性,同时便于统一计量纺织材料的重量,一般我们规定标准大气状态,标准状态的规定国际上是统一的,只是允许误差范围略有不同。 我国规定的标准状态为:湿度65%±3%,温度20℃1±3℃。 含水率:纤维含水重量占纤维湿重的百分比,即:含水率=(纤维湿重-纤维干重)/纤维湿重 回潮率:纤维含水重量占纤维干重的百分比,即:回潮率=(纤维湿重-纤维干重)/纤维干重 标准回潮率:不用的大气状态纤维的回潮率是不同的,标准回潮率就是指纤维在标准状

碳纤维的性能与应用论文

碳纤维的性能与应用 系别:食品化工系 专业纺织品检验与贸易 班级:级纺检 学生姓名: 指导教师: 完成日期:

碳纤维的性能与应用 第1页共19 页 河南质量工程职业学院毕业设计(论文)任务书

碳纤维的性能与应用 第2页共19 页目录 摘要 (3) Abstract (4) 绪论 (5) 1 碳纤维的定义及其分类 (6) 1.1 什么是碳纤维 (6) 1.2 分类 (6) 2 碳纤维的制造 (6) 3 碳纤维的性能 (7) 3.1 碳纤维的优良特性 (7) 3.1.1 在纤维轴向方向显示高抗拉强度和高弹性模量 (7) 3.1.2 密度小 (7) 3.1.3 纤维细 (7) 3.1.4 不生锈、耐腐蚀 (7) 3.1.5 即耐低温,又耐高温 (7) 3.1.6 耐温度骤变,热膨胀系数小 (8) 3.1.7 常温下导热性能良好,高温下导热性能低 (8) 3.1.8 突出的导电性能 (8) 3.1.9 优良的吸附性能 (8) 3.1.10 具有耐辐射,能反射中子等特性 (9) 3.2 碳纤维的缺点 (9) 3.2.1 比较脆,怕受压和剪切 (9) 3.2.2 抗氧化性差 (9) 3.2.3 破坏前无预报 (9) 4 碳纤维的应用 (10) 4.1 碳丝 (10) 4.2 碳纤维毡和碳素短纤维 (10) 4.3 碳纤维织物 (10) 4.4 活性炭碳纤维 (10) 5 碳纤维的发展前景 (10) 6结论 (11) 参考文献 (12) 致谢 (13)

碳纤维的性能与应用 摘要 碳纤维是一种新型材料,本文主要阐述了碳纤维的分类、生产制造等,碳纤维的高强度、高模量、耐高温等主要特性,及在各行业中的应用,并对其近年来的市场前景的展望,使人们对其有一定的了解。(可以说的详细些,让别人看了摘要就知道你本篇论文写了那些东西) 关键词:新型碳纤维应用 第3页共19 页

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

碳纤维导线的特性及应用

碳纤维导线的特性及应用 韩国聚1赵功展2齐文灿1、2 (1.平顶山电力设计院;2.平顶山供电公司;河南平顶山市,467001) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性拐点 ACCC/TW ACSR Properties and Applications of Aluminum Conductor Composite Core HAN Guo-ju et al (Pingdingshan Electric Power Design Institute, Pingdingshan467001,Henan Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords:Aluminum Conductor Composite Core Features Knee ACCC/TW ACSR 0引言 随着我国电力需求的不断增长,许多电力线路面临增容的压力。线路增容最经济的办法之一是利用原有杆塔只更换导线。而利用原有杆塔的前提条件是,更换的导线荷载不能超过原有杆塔的设计条件。为此,新更换的导线一般不能采用普通的钢芯铝绞线ACSR(Aluminum Conductor Steel Reinforced),而是采用新型的增容导线。这种新型导线一般具备这样三个特点:一是弧垂随温度的变化小;二是质量轻、外径小;三是具有输送大电流的能力。而碳纤维复合芯软铝绞线(以下简称碳纤维导线)ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal Wire)是典型的品质优良的增容导线品种之一。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等[1]。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯 图1-1碳纤维导线结构 2.碳纤维导线的特性 2.1.抗拉强度高 目前各设计院广泛采用的钢芯铝绞线基本上仍为GB1197-83标准中的型式,该标准导线中使用的钢芯绞合后强度为1244N/mm2,而碳纤维导线ACCC/TW的复合芯抗拉强度最小值可

纳米纤维的技术进展

纳米纤维的技术进展 赵婷婷 张玉梅 (东华大学纤维材料改性国家重点实验室,上海,200051) 崔峥嵘 (辽阳石化分公司,辽阳,111003) 王华平 (东华大学纤维材料改性国家重点实验室,上海,200051) 摘 要:本文简单介绍了纳米纤维的定义、特点和应用,主要讨论了纳米纤维的制备方法,包括传统纺丝方法(如:静电纺丝法、复合纺丝法和分子喷丝板法)的改进以及新兴的生物合成法和化学合成法。 关键词:纳米纤维,技术,进展,生物合成,化学合成 中图分类号:TS1021528 文献标识码:A 文章编号:1004-7093(2003)10-0038-05 1 前言 纳米纤维是直径1nm~100nm的纤维,此为狭义的纳米纤维的定义。广义地说,零维或一维纳米材料与三维纳米材料复合而制得的传统纤维,也可以称为纳米复合纤维或广义的纳米纤维。更确切地说,这种复合纤维应称为由纳米微粒或纳米纤维改性的传统纤维。纳米纤维最大的特点就是比表面积大,导致其表面能和活性的增大,从而产生了小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理(热、光、电磁等)性质方面表现出特异性。纳米纤维广泛应用在服装、食品、医药、能源、电子、造纸、航空等领域。 一方面,纳米纤维的广泛应用,对纳米纤维的制备技术提出了新的要求,同时也为纳米纤维制备技术的发展提供了新的发展空间;另一方面,纳米纤维制备技术的不断创新与发展,也使得纳米纤维的种类不断推陈出新,其性能和功能也得以进一步的体现和应用。本文主要讨论一维纳米纤维制备技术的进展情况。 收稿日期:2003-05-20 作者简介:赵婷婷,女,1980年生,在读硕士研究生。主要从事细菌纤维素的研究。2 传统纺丝方法的改进 2.1 静电纺丝法[1~4] 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心,是使带电荷的高分子溶液或熔体在静电场中流动并发生形变,然后经溶剂蒸发或熔体冷却而固化,于是得到纤维状物质,这一过程简称电纺。 目前电纺技术已经用于几十种不同的高分子,即包括大品种的采用传统技术生产的合成纤维,如:聚酯、尼龙、聚乙烯醇等柔性高分子的电纺,包括聚氨酯弹性体的电纺以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的电纺。此外,包括蚕丝、蜘蛛丝在内的蛋白质和核酸(DNA)等生物大分子也进行过电纺实验。尽管所用的材料十分广泛,但是目前电纺纤维总是以在收集板负极上沉积的非织造布的形式而制得的,其中单纤维的直径可以随加工条件而变化,典型的数值为40nm~2μm,甚至可以跨越10nm~10μm的数量级,即微米、亚微米或纳米材料的范围。 电纺纤维最主要的特点是所得纤维的直径较细,新形成的非织造布是一种有纳米微孔的多孔材料,因此有很大的比表面积,有多种潜在用途。但是,目前的电纺技术在推广上存在一定技术问题:第一,由于静电纺丝机设计的构型,此法得到的只能是非织造布,而不能得到纳米纤维彼此可

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

棉纤维的性能及其应用

棉纤维的性能及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

课文翻译: 吸湿性和良好的吸湿排汗性能使棉纤维的一个更舒适的一个比较高的水平。因为在纤维素的羟基基团,棉花对水有很强的吸引力。当水进入纤维棉,膨胀,其截面变得更圆。水分和膨胀时湿让棉花吸收水的重量约四分之一的高亲和力的能力。这意味着,在炎热的天气里,身体的汗会吸收棉织品,沿运纱布的外表面和蒸发到空气中。因此,身体会帮助维持其温度。 不幸的是,棉花的亲水性使得它容易受到水渍。如在咖啡或葡萄汁的水溶性色素会渗入纤维随着水;当水分蒸发,着色剂是困在纤维。也许主要的缺点,棉织品是他们的倾向,皱纹和去除皱纹的困难。棉纤维的刚度降低纱线抗起皱能力。当纤维弯曲的一种新的配置,氢债券持有的纤维素链在一起破裂和分子滑动以减少纤维中的应力。在新的位置的氢键的改革,所以当破碎力去除纤维保持在新的位置。这是氢键,有助于保持皱纹的断裂和改革,使棉织品要熨。 棉花是具有良好的耐磨性和尺寸稳定性好,中等强度的纤维。这是抵抗酸,碱和有机溶剂,通常提供给消费者。但由于它是一种天然物质,它是受攻击的昆虫,霉菌和真菌。最突出的是棉花霉烂的倾向,如果允许存在潮湿。 棉花抗太阳光和热,虽然直接暴露于恒定的强烈的阳光会引起黄的最终降解纤维。变黄时也可能出现在气干燥器干燥棉织品。颜色的变化是一种化学反应的纤维素和氧或氮氧化物之间在热空气中干燥的结果。棉花将保留其白度较长时,线干或在电干燥器中干燥。 主要感兴趣的是事实,棉纱时干时湿比。此属性的宏观和微观结构特征的纤维的结果。当水被吸收,纤维膨胀,其截面变得更圆。通常这种大量的外来物质的吸收会导致内部应力较高,导致纤维弱化。然而,棉花,水的吸收导致的内部应力减少。因此,减少内部应力来克服,肿胀的纤维变得更强。同时,在纱线溶胀纤维按对彼此更强烈。的内部摩擦增强纱线。此外,所吸收的水作为一个内部润滑剂,赋予纤维较高水平的灵活性。这说明棉花衣服更容易熨潮湿时。纯棉织物易收缩不利于洗涤。 也许比任何其他纤维,棉满足服装,家居家具,休闲的要求,和工业用途。它提供了强大的,面料轻薄,柔软,易干燥,易清洗。在服装,棉提供服装,舒适,容易干燥,在明亮的,持久的色彩,容易照顾。主要的缺点是一种棉纱和棉布收缩起皱的倾向。收缩可以由应用程序的控制防缩整理。免烫性能可以通过化学处理或由棉纤维混纺传授更多的抗皱,如涤纶。 在居家摆设,耐用是棉花,织物一般服务。虽然他们可能缺乏来自其他纤维材料的形式出现,棉织品提供一个舒适,温馨的环境。棉织物一直是几十年来的床单和毛巾的支柱,因为他们是舒适,耐用,和吸湿剂。涤/棉混纺织物提供没有铁的床单和枕套,保持一个清晰的现代消费,新鲜的感觉。 用于娱乐用途,棉花已被用于帐篷和野营装备,船帆,运动鞋和运动服。棉花是特别适合的帐篷。一个帐篷织物必须能够“呼吸”,让居住者不被自己的二氧化碳。此外,与外界空气交换减少湿度在帐篷和使它变得闷。机织物棉可以打开足够舒适,提供良好的透气性。帐篷也流下的水,当被雨水打湿,棉纱膨胀,降低纱线和抗水渗透之间的间隙。今天,然而,沉重的帆布齿轮被取代的轻质尼龙检测设备。

新型纤维综述

新型纤维综述 一、常规纺织纤维的类别和特征(举例) 1.植物纤维:棉、麻 棉:吸湿性好,穿着舒适,光泽较暗,手感柔软,风格朴实,耐用耐洗,物美价廉,易折皱,服装保形性欠佳,耐碱不耐酸。 麻:吸湿散湿性好,干爽利汗,风格粗犷,有光泽,粗硬,弹性差,易折皱。耐碱不耐酸。 2.动物纤维:羊毛、蚕丝 羊毛:吸湿性强,手感丰满柔软,光泽柔和莹润,因表面有鳞片具有独特的缩绒性,保暖性能好,干燥时抗皱弹性好,湿态易皱,易虫蛀,耐酸不耐碱。 蚕丝:吸湿透气,舒适性极佳,滑爽柔软,光泽优雅悦目,风格高雅华丽,变形时弹性好,悬垂性好,湿态易皱,不耐汗,耐光性差,多晒会泛黄变脆,耐酸强于耐碱。 3.人造纤维:粘胶 粘胶:吸湿性好,穿着舒适,光滑明亮,柔软,悬垂性好,易皱,水洗易变形,缩水严重,湿强低,耐碱不耐酸。 4.化学纤维:锦纶、涤纶、腈纶 锦纶:耐用性,弹性好 涤纶:洗可穿的佼佼者 腈纶:最不怕光的合成羊毛 共性:强度高,不易起皱,悬垂性好,服装保形性好,易洗快干,不缩水,不霉不蛀,热定型性能好,可形成稳定造型,吸湿性差,易产生静电,易起毛起球。 二、新型纤维的种类和特性(举例) 1.天然纤维:(竹纤维)植物纤维、(蜘蛛丝)动物纤维、(银纤维)金属纤维及其他 竹纤维:竹原纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。竹再生纤维素纤维不具抗菌功能。 用途:竹纤维纱线用于服装面料、凉席、床单、窗帘、围巾等,如采用与维纶混纺的方法可生产轻薄服装面料。与棉、毛、麻、绢及化学纤维进行混纺,用于机织或针织,生产各种规格的机织面料和针织面料。机织面料可用于制作窗帘、夹克衫、衬衫、床单和毛巾等。针织面料适宜制作内衣、汗衫、T恤衫、袜子等。竹原纤维含量30%以下的竹棉混纺纱线更适合于内裤、袜子,还可用于医疗护理用品。 蜘蛛丝:高强度,高弹性,高断裂功,低密度,有良好的耐温及耐紫外线性能,有良好的生物相容性,理化性质优,每根蜘蛛丝的抗拉强度是钢材的五倍,弹性也比人造纤维好,开发前景广阔。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

纳米纤维概述

纳米纤维概述 1.纳米纤维的概念 纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。 2.纳米纤维的制备方法 随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。 2.1静电纺丝法 静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。 2.2双组份复合纺丝法 双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。 海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

相关文档
最新文档