2017二次函数中的面积问题

2017二次函数中的面积问题
2017二次函数中的面积问题

二次函数——面积问题 〖知识要点〗

一.求面积常用方法:

1.

直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2.

利用相似图形,面积比等于相似比的平方 3.

利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解)

二. 常见图形及公式

抛物线解析式y=ax 2+bx+c(a ≠0)

抛物线与x 轴两交点的距离AB=︱x 1–x 2︱=

a ? 抛物线顶点坐标(-a b

2,a b ac 442-)

抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀”ah S ABC 2

1=?,即三角形面积等于水平宽与铅垂高乘积的一半.

y 轴交于点C ,PCD 的面积

3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b =,c =.

〖典型例题〗

● 面积最大问题

1、二次函数c bx ax y ++=2

的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式;

(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标

(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标

(4)P 为抛物线上一点,若使得ABC PAB S S ??=2

1,求P 点坐标。 ● 同高情况下,面积比=底边之比

2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.

(1)求B 、C 两点的坐标和抛物线的解析式;

图1

(2)若点P 在直线BC 上,且,求点P 的坐标.

3.已知:m 、n 是方程x 2﹣6x +5=0的两个实数根,且m <n ,抛物线y=﹣x 2+bx +c 的图象经过点A (m ,0)、B (0,n ).

(1)求这个抛物线的解析式;

(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax 2+bx +c (a ≠0)的顶点坐标为

(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.

● 三角形面积等于水平宽与铅垂高乘积的一半

4.阅读材料:如图,过△ABC 的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可以得出一种计算三角形面积的新方法:S △ABC =ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图,抛物线顶点坐标为点C (1,4)交x 轴于点A ,交y 轴于点B (0,3)

(1)求抛物线解析式和线段AB 的长度;

(2)点P 是抛物线(在第一象限内)上的一个动点,连接PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及S △CAB ;

(3)在第一象限内抛物线上求一点P ,使S △PAB =S △CAB .

法一:同底情况下,面积相等转化成平行线

法二:同底情况下,面积相等转化成铅垂高相等

变式一:如图2,点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,请说明理由.

变式二:抛物线上是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,请说明 ● 点动+面积

5.如图1,已知△ABC 中,AB=10cm ,AC=8cm ,BC=6cm ,如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4).解答下列问题:

(1)当t 为何值时,PQ ∥BC .

(2)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在求出此时t 的值;若不存在,请说明理由.

(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

形动+面积

6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;

(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;

(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题说出如何表示各图中阴影部分的面积? 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC 的“铅垂高h”。三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。 x y O M E N A 图 O x y D C 图 x y O D C E B 图六 P x y O A B D 图 E x y O A B 图 x y O A B 图

抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0), 交y 轴于点B 。 (1)求抛物线和直线AB 的解析式;(2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △ PAB =S △CAB ,若存在,求出P 点的坐标; 若不存在,请说明理由。

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为在双曲线3 y x =上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由. A x y O B C 变式二图

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数的应用——面积最大问题

《二次函数的应用——何时围得面积最大?》 说课稿 【教材分析】 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,也为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。 【课时安排】 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。 【学情及学法分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课

标中知识与技能呈螺旋式上升的规律。 【教学目标】 1.知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的 图象与性质,理解顶点与最值的关系,会求解最值问题。 2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中 的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的 能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合 作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛 的应用价值。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 正确构建数学模型 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本 节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探 究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性, 突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入: 复习引入阶段我设计了三个问题:

二次函数的应用--最大面积

二次函数的应用—面积问题 【知识要点】 (1)求出面积与自变量的函数关系y=ax2+bx+c(a≠0) (2)用配方法用配方法将y=ax2+bx+c化为y=a(x-h)2+k的形式: y=ax2+bx+c==a=a+. 当a>0时,则时,y最小值= 当a<0时,则时,y最大值= (3)确定自变量的取值范围,检验是否在取值范围内,若不在,则根据函数的增减性,代入自变量的端点值求出最值 求几何图形的常见方法: ①利用几何图形的面积公式; ②利用三角形的相似(面积比等于相似比的平方); ③利用割补法求几何图形的面积和或差; 【例题解析】 例4、有窗框料12m长,现要制成一个如图所示的窗框,问长宽各为多少米,才能使光照最充足?

例5、在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少? 例6、如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N 作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时. (1)P点的坐标为______(用含t的代数式表示); (2)记△MPA的面积为S,求S与t的函数关系式(0<t<4); (3)当t=______秒时,S有最大值,最大值是______; (4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式. 【课堂练习】

6.4 二次函数的应用(2)【最大面积是多少】

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案) 备课时间: 主备人: 教学目标: 掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题. 教学重点: 本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题. 教学难点: 由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式. 教学方法: 教师指导学生自学法。 教学过程: 一、例题: 例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上. (1)设矩形的一边AB=xcm,那么AD边的长度如何表示? (2)设矩形的面积为ym2,当x取何值时,y的最大值是多少? 例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少? 二、练习 1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角 边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?

2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少? 3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm, S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积. 三、小结:本节课我们学习了什么? 四、作业:

二次函数面积最大问题

二次函数面积最大问题 : 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x 轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)求三角形CBM的最大值 2、如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点. ①若点P在抛物线上,且S △POC =4S △BOC .求点P的坐标; ②设点Q是抛物线上一点,位于线段AC的下方,作QD⊥x轴交抛物线于点D,交AC于点P,求线段QP长度的最大值.(3)求S△ACQ的最大值,

3、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 4、如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

5、如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号) 6、如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

二次函数与实际问题(面积最值问题)教学设计解读

[教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其整体性思想。 【过程与方法】 :能通过设置的三个问题, 概括出二次函数解决这类问题的基本思路和基本方法, 并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。 【情感态度与价值观】 :体会函数建模思想的同时, 体会数学与现实生活的紧密联系, 培养学生认真观察, 不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。感受多媒体的直观性和愉悦感。 【重点】 :如何利用二次函数的性质解决实际问题——图形面积的最值问题 【难点】 :如何探究在自变量取值范围内求出实际问题的解 【教学过程】 【活动 1】 :导入引言: 二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。而最值问题考试类型有两类 (1利润最大问题; (2几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。 【活动 2】 :师生互动,合作学习 我们来看一道简单的例题

例 1:李大爷要借助院墙围成一个矩形菜园 ABCD ,用篱笆围成的另外三边总长为 24米,则矩形的长宽分别为多少时,围成的矩形面积最大? 师(让学生思考 :题目中已知量是什么? 未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化 师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗? 学生解决:若设矩形一边长为 X ,当 X 在变长时,另一边变短,当 X 变短时,另一边变长,则面积 S 也随之发生了变化;设宽 AB 为 X 米,则长为 24-2X (m 所以面积 S=X(24-2X=-2X2+24X=-2(X-122 +288 师:分析归纳解函数问题的一般步骤是什么? (板书 : 第一步,正确理解题意 , 分析问题中的常量和重量; 第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系; 第三步,计算,将一般式转化为顶点式,求出数学问题的最值。 师:请问这时解出的数学问题的解是不是实际问题的解,如何检验呢?(在师生共同研讨的过程中找出计算中学生容易犯的错误,分析解答是否符合实际问题 小结:求解完答案后,我们要善于检查,分析,反思数学问题的解是否是实际问题的解。 活动 3:变式训练,巩固应用。

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数面积最大值

二次函数面积最大值 教学目标: 1.通过本节课学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 2.通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型 2、对函数图象顶点与最值关系的理解与应用 教学过程: 一、复习旧知: 1.二次函数y=ax 2+bx+c 的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当 a>0时,抛物线开口向 ,有最 点,函数有最 值,是_____;当 a<0时,抛物线开口向 ,有最 点,函数有最 值,是 . 2. 二次函数y=2x 2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 . 二、创设情境: 小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD 究竟应为多少米才能使花圃的面积最大 (设计意图:寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,加深对知识的理解,做到数与形的完美结合,既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 三、讲解新知: 有一块三角形余料如图所示,∠A=90°,AM=30cm ,AN=40cm ,要利用这块余料截出一个矩形,怎样截取矩形的面积最大

二次函数的应用_——最大面积问题教学设计

《二次函数的应用——面积最大问题》教学设计 二次函数的应用——面积最大问题。所用教材是教育材九年级上册第三章第六节二次函 数的应用,本节共需四课时,面积最大是第一节。 下面我将从教材容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程 的设计和教学效果预测几方面对本节课进行说明。 一、教学容的分析 1、地位与作用: 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际 问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数 的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利 用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感 兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题 奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和 函数有关的应用问题。此部分容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以 后学习更多函数打下坚实的理论和思想方法基础。 2、课时安排 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有 归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运 动中的二次函数、综合应用四课时,本节是第一课时。 3.学情及学法分析 学生由简单的二次函数y =x 2学习开始,然后是y =ax2,y =ax 2+c ,最后是y=a(x-h)2, y =a(x-h)2+k ,y =ax 2+bx+c ,学生已经掌握了二次函数的三种表示方式和图像的性质。 对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值, 但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这 一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力, 这也符合新课标中知识与技能呈螺旋式上升的规律。 二、教学目标、重点、难点的确定 教学目标: 1、知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性 质,理解顶点与最值的关系,会求解最值问题。 2.过程与方法:经历“实际问题转化成数学问题——利用二次函数知识解决问题— —利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务 于 生活。 3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过 程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究 式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论, 充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将 此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、C . (1)求抛物线的解析式. (2)若点P 是第二象限抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2 -2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数综合应用—面积问题(学生版)

二次函数与图形面积 适用学科数学适用年级九年级 适用区域全国课时时长(分钟)120分钟 知识点二次函数面积问题 教学目标通过数形结合,讨论二次函数面积问题 教学重点充分考虑到二次函数中“数”的规律和“形”的特征,运用好数形结合; 对于各种可能的情况我们常常要运用分类讨论逐一加以研究 教学难点运用数学模型,利用“构造法”达到解决问题 教学过程 一、复习预习 求面积常用的方法 a.直接法 b.简单的组合 c.面积不变同底等高或等底等高的转换 d.相似 e.三角函数 f.找面积的最大最小值利用二次函数的性质 二、知识讲解 考点/易错点1 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线一侧上的动点,求三角形面积最大

考点/易错点2 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线上一动点,求三角形面积等于定值的动点坐标。 考点/易错点3 二次函数中所围成的四边形面积求法:

三、例题精析 例题1【题干】已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式; (2)设此二次函数的顶点为P,求△ABP的面积. 【例题2】【题干】已知二次函数y=x2-8x+15的图象交x轴于A、B两点,交y轴于点C.请 结合这个函数的图象解决下列问题: (1)求△ABC的面积; (2)点P在这个二次函数的图象上运动,能使△PAB的面积等于1个平方单位的P点共有多少个?请直接写出满足条件的P点坐标; (3)在(2)中,使△PAB的面积等于2个平方单位的P点是否存在?如果存在,写出P点的个数;如果不存在,请说明理由

【例题3】【题干】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的解析式; (2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

二次函数的应用—面积问题

二次函数面积问题 基础知识 () 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 知识典例 (夯实基础)(30分钟) [例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动. (1)运动第t秒时,△PBQ的面积y(cm2)是多少? (2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围. (3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? ()(5分钟) [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 强化练习 x

二次函数中三角形面积最大值综合题

二次函数中三角形面积 最大值综合题 Revised by Petrel at 2021

2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点 ()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840 a b a b -+=?? ++=?,1分 解得:14a =-,32 b =. ∴该二次函数的表达式为21 344 2 y x x =-++.3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0),C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022 ABC S BC OA =?=??=.5分

∴2811 (8)(2)(3)510 55 AMN ABN n S S n n n -= =-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴1 2 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可 分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.

二次函数中的面积最值问题最佳处理方法

因材教育二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形. 方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P 点(x ,-x 2-2x +3)(-3

二次函数应用(面积最值)

二次函数应用(面积最值) 1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2. (1)写出广告牌的面积S与边长x的函数关系式; (2)画出这个函数的大致图象(其中0≤x≤10); (3)根据图象观察当边长x为何值时,广告牌面积S最大? 2、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面 用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养 鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 3如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m), 围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2. (1)求S与x的函数关系式; (2)如果要围成面积为45 m2的花圃,AB的长是多少米?

(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由. 4、 如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB 上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE; (2)求y与x之间的函数关系式,并求出x的取值范围; (3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值

5、 如图所示,在生产中,为了节约原材料,加工零件时常用一些边角余料,△ABC为锐角三角形废料.其中BC=12 cm,BC边上高AD=8 cm,在△ABC上截取矩形PQMN,与BC边重合,画出草图说明P,N两点落在什么位置上,才能使它的面积最大?最大面积是多少?并求出这时矩形的长和宽. 6、 如图所示,E,F分别是边长为4的正方形ABCD的边BC,CD上的点,CE=1,CF= ,直线EF交AB的延长线于G,过线段FG上一个动点H作HM⊥AG,HN⊥AD,垂足分别为M,N.设HM=x,矩形AMHN的面积为y. (1)求y与x之间的函数关系; (2)当x为何值时,矩形AMHN的面积最大?最大面积是多少?

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 题目(重庆市江津区) 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3, 0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

解答 (1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P点(x,-x2-2x+3)(-3

相关文档
最新文档