激光焊接设备振镜的工作原理讲解

激光焊接设备振镜的工作原理讲解

激光焊接设备振镜的工作原理

一、教学目标

掌握激光焊接设备振镜的工作原理

二、激光焊接设备振镜的工作原理

振镜的原理是:输入一个位置信号,摆动电机(振镜)就会按一定电压与角度的转换比例摆动一定角度。整个过程采用闭环反馈控制,由位置传感器、误差放大器、功率放大器、位置区分器、电流积分器等五大控制电路共同作用。

一束激光被两片扫描振镜反射,并且通过一片聚焦镜。振镜片在马达的带动下高速的来回延轴旋转,达到改变激光光束路径的目的。

镜片1(X轴)的宽度是由光束的直径所决定的。镜片2(y轴)的宽度应该等于振镜1的长度。镜片2的长度就是光束打在第二个镜片上时同S1的距离,和最大入射角q。

课堂小结

本次课学习了激光焊接设备振镜的工作原理,振镜的工作原理就是输入一个位置信号,摆动电机(振镜)就会按一定电压与角度的转换比例摆动一定角度。

练一练

1、激光焊接设备振镜的工作原理是?

答:振镜的工作原理就是输入一个位置信号,摆动电机(振镜)就会按一定电压与角度的转换比例摆动一定角度。

(完整版)激光扩束望远镜设计

激光扩束望远镜设计 一、 项目研究背景 在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角.这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点.此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、 项目研究内容 1、望远镜系统激光扩束原理 激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为 11221M l f f f M f ττ???+ ? ? ???-+ ??? 式中12,f f 分别表示两镜的焦距,两镜间距 12l f f =++?,其中?表示失调量,2 1f M f τ=-为放大镜的放大率。 设入射光束束腰为0w ,焦参数为 20w f πλ=,物距为s ,经望远镜系统后变为束腰为'0w ,像距为' s 的高斯光束。 其中对于调焦系统有: 2' 12()s M f f M s ττ=-+- '00 w M w τ= 远场发散角0θ与束腰0w 间有反比关系,即 02011M τθθ=,远场发散角被压缩M τ倍,且与物距和像距均无关。当1s f =时,'2s f =,即像方激光束腰位于第二透镜2 L 的后

焦面上;当12s f f >>+时,'2s M s τ≈-,该望远镜系统的扩束比'00w M M w τ==。 2、几种激光扩束望远镜的性能分析 2.1折射式扩柬组远镜系统 使用透镜作物镜的望远系统称为折射式望远镜,根据不同的目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。 伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。 2.2反射式扩束望远镜系统 反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用.在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统 反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标 强脉冲激光发射系统的工作波长为10.6m λμ=,入射光束口径050D mm ≤, 要求出射光束口径200D mm =,在距离激光器100m 范围内,激光光束的口径250D mm ≤,在100m 的目标距离处光斑大小具有一定的可调节性。

海镭激光焊接机的详细工作原理

随着科学技术的发展,近年来出现了激光焊接机。那么什么是激光焊接机呢?激光焊接机的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出。 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接机的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在

2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有明显偏移。这是由于激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很轻易造成焊接缺陷。 2、激光器及其相关系统的成本较高,一次性投资较大。 激光焊接的工艺参数

激光振镜场镜原理(精)

光纤激光器原理: 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值,光束质量好和窄线宽等优点。并且,光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点;超长的工作寿命和免维护时间,平均免维护时间在10 万小时以上。 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如 说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连 串脉冲,比如, 1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为 1 ,那么, 1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而 1 秒钟发出 1 个脉冲,那么,它的脉冲重复周期为 1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么, 平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t ,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中 E = 50 mJ, t = 10 ns, P 峰值= 50 ×10^(-3)/[10 10×^(-9)] = 5 10×^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k= ?秒平均功率 P=E/T=0.001J/0.00005s=20W P 峰值功率=E/t

激光打标机基本基础学习知识原理

第一章激光器原理 可以肯定地说:本世纪最后的伟大发明之一是激光技术。它自一九五八年问世以来,已经逐步地然而是坚定地渗透到了科研、军事、工业等各个领域。不是吗?看看我们的周围,你就可以轻易地找到它应用的实例:医院中的激光诊断及激光治疗机、商店中的条码识别器、办公室中的激光打印机、把我们与世界各地联结在一起的光纤等等,就是在我们的家中也有它的身影:激光唱机、激光影碟机。 人类发明了多种多样的激光器。诸如:气体激光器(He-Ne激光器、CO2激光器等)、固态晶体激光器(红宝石激光器、钕玻璃激光器等)、离子激光器(氪离子激光器、氩离子激光器等)、染料激光器(甲酚紫激光器、萤光素激光器等)、超辐射激光器(氮分子激光器等)以及半导体激光器(砷化镓半导体二极管等)等等。 在世界的许多地方,几乎所有的商品激光器都在制造业中得到越来越广泛的应用。CO2激光器的主要用途就是各类工业激光加工设备,作为固态晶体激光器的Nd: YAG(掺钕钇铝石榴石)激光器的最大应用便是在激光打标领域。 1.1 激光原理 我们知道,物质是由原子组成的,而原子是由带正电的原子核和带负电的核外电子组成的(见图1.1)。每一个电子都沿着自己特定的轨道绕原子核高速旋转,其旋转半径决定于电子所处的能级。原子吸收能量后,电子的旋转半径会增加,电子的能级就会提高;原子释放能量后,电子的旋转半径会减小,电子的能级就会降低。每个能级对应着一个特定的能量。电子所具有的能量是不连续的,也就是说原子的能级是量子化的。原子只有吸收了两个能级之间差值的能量才会提高一个能级,电子在能级之间的变动现象称为跃迁。同样,当原子跃迁到较低能级时,会释放出两个能级之间差值的能量。原子的最低能级为E0,高的能级依次为E1、E2、E3、……,高的能级称为上能级,低的能级为下能级。处在能级E0的原子称为基态原子,其它能级称为激发态(见图1.2)。 原子可以吸收光子来获得能量,当然这个光子必须具有与原子能级差相等的能量(例如:E1-E0)原子只能吸收带有几个能量的光子。光子的能量决定于光子本身的波长。所以,原子只能吸收几个特定波长的光子。 正常情况下,原子吸收能量后会在上能级停留一段时间(这一时间被称为原子的上能级寿命),然后向任意一个方向发射一个光子并返回基态。这一现象称为原子的自发发射。对这一现象,图1.3作了形象的描述。

激光扩束望远镜设计

激光扩束望远镜设计 一、项目研究背景在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角、这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点、此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、项目研究内容 1、望远镜系统激光扩束原理激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为式中分别表示两镜的焦距,两镜间距,其中表示失调量,为放大镜的放大率。设入射光束束腰为,焦参数为,物距为s,经望远镜系统后变为束腰为,像距为的高斯光束。其中对于调焦系统有:远场发散角与束腰间有反比关系,即,远场发散角被压缩倍,且与物距和像距均无关。当时,,即像方激光束腰位于第二透镜的后焦面上;当时,,该望远镜系统的扩束比。 2、几种激光扩束望远镜的性能分析2、1折射式扩柬组远镜系统使用透镜作物镜的望远系统称为折射式望远镜,根据不同的

目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。2、2反射式扩束望远镜系统反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用、在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标强脉冲激光发射系统的工作波长为,入射光束口径,要求出射光束口径,在距离激光器100m范围内,激光光束的口径,在100m的目标距离处光斑大小具有一定的可调节性。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

激光切割机的工作原理

激光切割机工作原理 2010年04月24日 一、事情原理 申明:激光雕刻机,激光割切机由激光电源、激光器、冷却系统、驱动电机、运动导轨、会聚镜和控制器等组成,事情时控制器指挥激光电源、激光管和步进电机等同近期国内外大事情,按照客户的要求在物体表面举行雕刻或者割切。 作为高科技的激光技能,自问世以来,就一直针对差别的社会需求开发出合适各行业的激光产品,如激光打印机,激光美容机,激光打标数字控制激光割切机机,激光割切机等产品,由于海内激光产业起步较晚,在技能开发上很洪流平掉队于一些发财国家,目前海内的激光产品生产厂家生产出来的激光产品,一些要害的零配件如激光管,驱动马达,振镜,会聚镜等还是接纳进品的。这就造成了成本的上升,也加重了消费者的承担。 最近几年来,跟着海内激光技能的进步,在整机及一些零配件的开发生产上已逐渐向国外进步先辈产品靠拢。在某些方面甚至优于国外产品,再加上介格的优势,在海内市场还是占据主导地位。可是在一些紧密加工及设备、不变性和耐性方面,国外进步先辈产品还是占据绝对的优势的。 1、不变性 海内我们说机器的不变性,首要指的是机器可连续事情的时间的恒久。海内激光雕刻机,激光割切机普及到某一行业那也是2002年的事,以前,零零散散的有某些行业的某些客户使用,可是尚无量化,且这些行业使用机器的频率不是很高,用的时间也不是很长,这就是留给了我们一些疑问:海内激光割切机的机能如何,不变性呢?可连续事情的时间有多长?零配件及耗材激光管的用度大不大?机器的寿命有多长等等连着串的问题,而这些问题肯定会使早期的用户支付一定的价钱。如今,经过这么多年的技能革新,已逐渐趋向不变。 国外因为国外激光产业发展得比较早,在海内还没意识到激光雕刻机,激光割切机的用途时,国外早就在衣服、工艺品、有机玻璃、木制品及动物熟皮制品等行业普及形成了激光割切机经过多年的考试与革新,除开激激光割切机在长时间事情因为皮带慢慢磨耗而要改换外,其他均无发现什么大问题,激光管的寿命更长达了3万个小时以上,同样道理,它的稳激光割切机配件定性是在长期不断革新和摸索中得来的。 2、耐用性 海内由于国产的试管激光雕刻机,激光割切机使用的是1万伏高压电源,除开不不变外另有一定的金属激光割切机价格伤害性,长时间事情电源容易老化,且对控制系统有很大的干扰,如操作不当容易烧坏主板,更易受电压的影响而损

激光扩束

题目:基于MATLAB的简易激光扩束系统设计

一、实习要求: 1、理解高斯光束q 参数; 2、能够熟练使用CCD 采集光强度图样并用MATLAB 分析信号; 3、学生可以讨论编写MATLAB 仿真程序; 4、能够使用MATLAB 软件分析光强图样; 二、实验仪器: 计算机、CCD 、偏振片、透镜、接收屏、氦氖激光器 三、实验原理: 1)普通球面波在自由空间的传输: 2)普通球面波通过透镜的变化规律: 3)描述高斯光束的方法 ①fz 参数:q(z)=z+if ②WR 参数: 1/q(z)=1/R(z)-i(λ/πw 2 (z)) R2=R1+L 1/R2=1/R1-1/F

q 参数: z f z z R f z f z w /2^)() /2^()(+=+= π λ (f=πw 0^2 /λ) 4)gaussian beam 的复参数q 表示: 复参数q 的定义为: 1/q(z)=1/R(z)-i(λ/πw 2(z)) 将波前的曲率半径R(z)和光斑半径w(z)代入上式: ] 2)^z /2^0w (1[)(2)^2 ^w0(10)(λππλ+=+=z z R z w z w z f z z R f z f z w /2^)()/2^(/)(+=+=πλ 5)高斯光束通过薄透镜的变换 : Q1 ?? ? ???D C B A q2 高斯光束经过透镜矩阵传输方程 D Cq B Aq q ++= 112 ]202 2020 0202 02202 02)(1[])( 1[)(])(1[])(1[])( 1[)(z z z z w z z R z z z z z w w z w z w +=+=+=+=+=λππλπλ 6)双凸透镜扩束法: 设透镜的焦距为F ,物距和象距分别为s01和s02,它们之间 的关系为: 1/s01+1/s02=1/F

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

激光扩束镜原理讲解

激光扩束镜原理 衍射 通常我们以光束的发散参数作为完美的高斯激光束的特征。发散是指光波在其空间传播过程中以一定角度展开。甚至完美的没有任何异常的光线也会由于衍射效应经历某些光束的发散。衍射是指光线在被不透明的物体,比如刀锋切断的时候产生的弯曲效应。展开(spreading)产生于在切断的边缘发出的次级波面阵。这些次级波和主波会发生干涉,同时相互也会产生干涉,在某些时候就会形成复杂的衍射图案。 衍射使得完美的校准光束成为不可能,或者不能够将光束聚焦到无限小的点。幸运的是衍射的效果是能够被计算的。因此存在着可以预知对于任何衍射极限的透镜光束被准直的程度和光斑大小的理论。 我们现在考虑一束这样由低功率TEM00气体激光器产生的光束,光腰为S0。这样我们就能够假定它能够达到衍射极限同时能够不用考虑任何热透镜效应。它将会显现出由于衍射引起的光腰的弯曲,或者说展开效应: S(x)=S0[1+(λx/πS0²)²]½ 在这里x是指离开光源的距离,λ是指激光波长,如果λx/πS0²»1,那么: S(x)≈λx/πS0² 利用这个近似值,我们可以写出光束由于衍射发散的角度: θ= S(x)/x=λ/πS0 θ我们都知道指的是远场发散角。 改善发散角 光束的远场发散定义了一个给定光束直径最好的准直效果。它也说明了光束的零发散角或者说最好的准直是不可能达到的,因为要做到这些需要有无穷大的光束直径。但是这个等式也表明了改善发散的可能性。 考虑一个已经准直的光束,发散角为θ光腰为S0,我们可以看到如果光束直径能够增大,远场发散角将会减小。这就是扩大光束的优点所在。另外,小的发散能够使高斯光束聚焦得更好。为了实现这些改善,在这里我们将描述几种对准直光束扩束的方法。 伽利略扩束镜 最通用的扩束镜类型起源于伽利略望远镜,通常包括一个输入的凹透镜和一个输出的凸透镜。输入镜将一个虚焦距光束传送给输出镜。一般的低倍数的扩束镜都

激光打标机常见故障处理方法及注意事项

激光打标机常见故障处理方法及注意事项 故障1:打标不均匀,导致打标不均匀的因素主要有7种: a、机台水平未调好:即振镜头或场镜镜头与加工台面不平行。 处理方法:将机台水平调好。 b、工件表面不在焦平面上。 处理方法:调整工件表面至焦点 c、激光输出光斑被遮挡:即激光光束经过振镜及场镜后光斑有缺,不够圆。处理方法:调节固定夹具与振镜。 d、振镜偏转镜片有损伤: 处理方法:更换镜片。 e、材料的原因:如材料表面的膜层厚度不一致或物理化学性质变化。 f、打标速度过快。 处理方法:放慢速度。 g、激光器使用年限过长,导致衰减。 处理方法:需要更换新的激光器。

故障2:激光强度下降,标记不够清晰 处理方法: a、激光谐振腔是否变化;微调谐振腔镜片。使输出光斑最好; b、声光晶体偏移或者声光电源输出能量偏低;调整声光晶体位置或者加大声光电源工作电流; c、进入振镜的激光偏离中心:调节激光器; d、若电流调到20A左右仍感光强不够:氪灯老化,更换新灯。 故障3:氪灯不能触发 解决方法: a、检查所有的电源连接线; b、高压氪灯老化,更换氪灯。 故障4、激光打标机激光输出光斑有闪烁现象: 处理方法:a、谐振腔调整是否精确; b、膜片架是否固定牢靠; c、聚光腔固定是否有问题; d、YAG晶体固定是否松紧适度。 注意事项: 1 、采用水冷的激光设备,要保持内循环水干净。定期清洗水箱并换干净去离子水或纯水。严禁无水或水循环不正常情况下启动激光电源和调Q电源; 2 、不允许Q电源空载工作(即调Q电源输出端悬空); 3、出现异常现象,首先关闭振镜开关和钥匙开关,再行检查; 4 、采用风冷方式冷却的激光设备,检查排风扇,仔细观察设备运行时排风扇是否运转正常、有无异样杂音或过热现象。 5、定期清除空气滤网的灰尘,一般2-4周清除一次,若污垢严重或滤网有破损,需更换过滤网。 6、搬动激光打标机时,注意不得拉伤激光传送管; 7、注意打标机幅面不得超过工作幅面; 8、要严格按照设备的启动步骤来操作,不要胡乱操作; 9、作业时在激光束边上需要按规定戴上防护用品;

激光扩束镜选择指南

激光扩束器选择指南 消色差系列伽利略式激光扩束镜 高功率系列伽利略式激光扩束镜 低功率系列伽利略式激光扩束镜 可变倍率系列伽利略式激光扩束镜 紫外波段伽利略式激光扩束镜 大光束大倍率开普勒式激光扩束镜

消色差系列伽利略式激光扩束镜 该设计使用一片平-凹单透镜来提供所需的发散度,以及经过优化设计的空气间隔透镜组来平衡像差和重准直光束。调节单透镜控制发散透镜的调节,分度为50微米。所有的设计均提供A (400-650纳米),B(650-1050 纳米)或C(1050-1620纳米)宽带增透膜。 ● 降低光束发散度 ● 提供衍射极限性能,引入的波前误差小于λ/4 ● 光洁度:20-10 ● 增透膜: R avg < 0.5% ● 抗损伤阈值:100W/cm 2 CW 2倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB ) BE02M-A ?8mm 350 - 650 1.035”-40 ¥2240 BE02M-B ?8mm 650 - 1050 1.035”-40 ¥2240 BE02M-C ?8mm 1050 - 1620 1.035”-40 ¥2240 典型波前畸变网格线图

3倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE03M-A?8mm 350 - 650 1.035”-40 ¥2650 BE03M-B?8mm 650 - 1050 1.035”-40 ¥2650 BE03M-C?8mm 1050 - 1620 1.035”-40 ¥2650 5倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE05M-A?4.5mm 350 - 650 1.035”-40 ¥2820 BE05M-B?4.5mm 650 - 1050 1.035”-40 ¥2820 BE05M-C?4.5mm 1050 - 1620 1.035”-40 ¥2820

YAG激光焊接的特点

YAG激光焊接机的工作原理 激光焊接是激光材料加工用的机器,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 激光焊接机的种类 激光焊接机又常称为激光焊机、雷射焊接机、镭射焊机、激光冷焊机、激光氩焊机、激光焊接设备等。按其工作方式常可分为激光模具烧焊机(手动激光焊接设备)、自动激光焊接机、首饰激光焊接机、激光点焊机、光纤传输激光焊接机、振镜焊接机、手持式焊接机等,专用激光焊接设备有传感器焊机、矽钢片激光焊接设备、键盘激光焊接设备。https://www.360docs.net/doc/952342995.html,/goods/list_1_2.html 适用于珠宝首饰、电池镍带、集成电路引线、钟表游丝、显像管、电子枪组装、传感器、钨丝、大功率二极管(三极管)、铝合金、笔记本电脑外壳、手机电池、模具、电器配件、滤清器、油嘴、不锈钢制品、高尔夫球头、锌合金工艺品等焊接。 可焊接图形有:点、直线、圆、方形或由AUTOCAD软件绘制的任意平面图形。 激光焊接机的工作原理 激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。它是一种新型的焊接方式,主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。 激光焊接机的种类 激光焊接机又常称为激光焊机、雷射焊接机、镭射焊机、激光冷焊机、激光氩焊机、激光焊接设备等。按其工作方式常可分为激光模具烧焊机(手动激光焊接设备)、自动激光焊接机、首饰激光焊接机、激光点焊机、光纤传输激光焊接机、振镜焊接机、手持式焊接机等,专用激光焊接设备有传感器焊机、矽钢片激光焊接设备、键盘激光焊接设备。https://www.360docs.net/doc/952342995.html,/goods/list_1_2.html 适用于珠宝首饰、电池镍带、集成电路引线、钟表游丝、显像管、电子枪组装、传感器、钨丝、大功率二极管(三极管)、铝合金、笔记本电脑外壳、手机电池、模具、电器配件、滤清器、油嘴、不锈钢制品、高尔夫球头、锌合金工艺品等焊接。

激光唱片机讲解

Unit 1 单词 激光唱片机 几个,若干 架子,搁板(复)已经 知识,学问知道院子,校园 脚步;走,踩,踏入 图书管理员图书馆很可能,大概 付款,给……报酬(过)难过地,悲哀地 书签 鼓励 一次 到国外,在国外 抄写(过) 屏幕 糟蹋(过) 短语和句子 你有……吗? 此刻,现在 你在某个地方看到过它吗? 向……借 把……借给某人 借(一段时间) 丢失的书 她的爱好是看书。 关于许多不同科目的 几天后 过去常常做 把……放下 走几步 想一会儿 忘记去做…… 把……忘在某地 去……,前往…… 离开某地 还没有,尚未 付钱迟早 更糟糕的是 找到,提出 认为,想起 在每本借来的书里 图书 把……归还给某人 鼓励某人做…… 取回来 捡起 与外国人交谈 乘飞机旅行 完成做…… 出国 别的某个人 作为一名图书管理员 Unit2 单词 冲浪 冲浪运动 冲浪者 浪,波浪 海滩(复) 两次,两倍 没人,没东西 滑水 乘独木舟 描写,叙述 尤其,特别 吸引 所谓的 可能的 业余的,兼职的 尽管,虽然 健康的,合适的 奖品 比赛 大事,事件 奥运会 这样的 失败,不及格 练习,实践 商业,生意忙的 海峡,频道 穿过,越过(动词) 大陆,本土 旅程,路程 在……当中 自豪的 自豪,骄傲 除非,如果不 真理,真相(形容词) 短语和句子 今天的冲浪怎么样? 想某人学习 不知道怎样冲浪 试一试 我们中没有一个人 几次 全世界 因……而出名 许多,大量的 ……的数量是…… 终年 无论天气怎么样? 如果可能的话 ……和…… 一天三次 一个21岁的人 休息一个晚上 放弃做…… 从那时起,此后一直 市冲浪比赛中 时间飞逝! 这么多乐趣。 考试不及格 练习做…… 因公出差 去过…… 去了…… 实现 出发 到目前为止 减速,减缓 继续做…… 又2个小时 一大群人 以……为自豪 高度称赞 不但……而且 Unit3 单词 倒,灌 废物 脏的(比较级) 成员 加入,参加(持续性动词) 环境 损害 垃圾 收集 无论什么时候 产生,生产 无论在哪里 四邻,街坊 垃圾,废物,乱扔 公共的,公众的 吐痰(现分) 保护 整洁的,整齐的 垃圾箱 再循环 贡献 猜想 附近 短语和句子 一家造纸厂 把……倒入 害怕 半年 一年半 我们应该做什么来改善环境? 一首美妙的音乐 外面有一辆垃圾车正在收集垃圾。 这是一种有助于保持我们城市干净的,令人愉快 的方法。

激光扩束系统设计

光学设计 Optical design 题目名称:准直扩束系统的设计学校:长春理工大学 学院:光电工程学院 专业:光电信息工程 学号: 姓名:魏松岩 目录 第一章绪论 (1) 引言 (1) 激光束及其准直扩束的原理 (1) 折射型扩束器基本结构 (4) 开普勒扩束镜 伽利略扩束镜 第二章光学设计软件ZEMAX概述 (5) 第三章激光准直扩束系统设计 (9) 准直扩束系统的参数确定 (9) 确定激光扩束系统的初始结构 (9) ZEMAX的优化 (11)

第一章绪论 引言 激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。 激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。 激光束及其准直扩束的原理 激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图,其半径为 其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得: 其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。 最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能的该扩束镜设计成小的球面相差、低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

激光振镜场镜原理(精)

Rdie aarlh doped siide-rrirMte core single-mode signal Multi-mode pumplighrt 光纤激光器原理: 光纤激光器主要由泵浦源,耦合器, 掺稀土元素光纤,谐振腔等部件构成。 泵浦源由一 个或多个大功率激光二极管阵列构成, 其发出的泵浦光经特殊的泵浦结构耦合入作为增益介 质的掺稀土元素光纤, 泵浦波长上的光子被掺杂光纤介质吸收, 形成粒子数反转,受激发射 的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好, 无需 庞大的制冷系统,具有高转换效率,低阈值,光束质量好和窄线宽等优点。并且,光纤激光 器的谐振腔内无光学镜片,具有免调节、 免维护、高稳定性的优点; 超长的工作寿命和免维 护时间,平均免维护时间在 10万小时以上。 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输岀的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如 说10 ns (纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用 t 表示。这种激光器可以发出一 连串脉冲,比如,1秒钟发出10个脉冲,或者有的就发出 一个脉冲。这时,我们就说脉冲重复 (频)率 前 者为10,后者为1,那么,1秒钟发出10个脉冲,它的脉冲重复周期为 0.1秒,而1秒钟发出1个 脉冲,那么,它的脉冲重复周期为 1秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为 E ,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如,E =50 mJ (毫焦),T = 0.1 秒,那么, 平均功率 P 平均=50 mJ/0.1 s = 500 mW 。 如果用E 除以t ,即有激光输出的这段时间内的功率,一般称作峰值功率 (peak power ),例如,在前面的 例子中 E = 50 mJ, t = 10 ns, P 峰值=50 X 10A (-3)/[10 X10A (-9)] = 5 X 10A 6 W = 5 MW (兆瓦),由于脉冲宽度 t 很小,它的峰值功率 很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间 T=1s/2k= ?秒 平均功率 P=E/T=0.001J/0.00005s=20W P 峰值功率 =E/t

激光振镜工作原理

激光振镜工作原理 激光打标设备的核心是激光打标控制系统和激光打标头,因此,激光打标的发展历程就是打标控制系统和激光打标头的发展过程。从1995年起,在激光打标领域就经历了大 幅面时代、转镜时代和振镜时代,控制方式也完成了从软件直接控制到上下位机控制到实时处理、分时复用的一系列演变,如今,半导体激光器、光纤激光器、乃至紫外激光的出现和发展又对光学过程控制提出了新的挑战,振镜式激光打标头(振镜式扫描系统)是最新产品。1998年,振镜式扫描系统在中国的大规模应用开始到来。所谓振镜,又可以称之为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计算机控制的-5V—5V或-10V-+10V的直流信号取代,以完成预定的动作。同转镜式扫描 系统相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电机所取代,在这套控制系统中,位置传感器的使用和负反馈回路的设计思路进一步保证了系统的精度,整个系统的扫描速度和重复定位精度达到一个新的水平。 振镜扫描式打标头主要由XY扫描镜、场镜、振镜及计算机控制的打标软件等构成。根据激光波长的不同选用相应的光学元器件。相关的选件还包括激光扩束镜、激光器等。其工作原理是将激光束入射到两反射镜(扫描镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有一定功率密度的激 光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记,聚焦的光斑可以是圆形或矩形,其原理如右图所示。在振镜扫描系统中,可以采用矢量图形及文字,这种方法采用了计算机中图形软件对图形的处理方式,具有作图效率高,图形精度好,无失真等特点,极大的提高了激光打标的质量和速度。同时振镜式打标也可采用点阵式打标方式,采用这种方式对于在线打标很适用,根据不同速度的生产线可以采用一个扫描振镜或两个扫描振镜,与前面所述的阵列式打标相比,可以标记更多的点阵信息,对于标记汉字字符具有更大的优势。

相关文档
最新文档