图论网络规划

图论网络规划
图论网络规划

图论练习

汪帆20 土规1202

1某城市要建立一个消防站,为该市所属的七个区服务,如图所示,问应设在那个区,才能使它至最远区的路径最短。

图城市点线模型图

解:分析:要求建立的消防站离最远区的路径最短,即要求出任意两点间最优路径,而后从最优路径中选取最大值中的最小值。具体方法则要运用Warshall-Foryd 算法求出该图的路由表,从而根据路由表中的最优路线,寻求V1-V7到每一点的最优路径,并比较各路径中最长路径的大小,择取最小值即为题中之所问。

(1),建立权矩阵:

A=[0 3 inf inf inf inf inf ;

3 0 2 inf inf;

Inf 2 0 6 2 inf inf ;

Inf inf 6 0 3 inf inf ;

Inf 2 3 0 4 inf;

Inf inf inf 4 0 ;

Inf inf inf inf inf 0]

(2),运用Warshall-Foryd算法,调用floyd(A)函数,求出该图的路由表(程序详见附录):

V1V2V3V4V5V6V7 V10357

V23024

V3520526

V45037

V52304

V6740

V77460

(3),结果分析:上述n n ij )V (V ?=矩阵为对称阵,主对角线为0,即消防站所建立的位置。其具体涵义为:消防站建立在V i 处时对应各个城市的最短路径,

如此可以建立表表 各点建立消防站的最远城市及其两者距离表

消防站点 最远城市 两者距离 V1 V4

V2 V2

V3 V7 6 V4 V7

V5 V7

V6 V5 7

从表可以看出,比较最远距离,不难看出,当消防站点选在V2城市时,其离最远城市的最优距离为最优:。故而,应将消防站建立在V2城市。

2某矿区有七个矿点,如图所示,已知各矿点每天的产矿量,现要从这七个矿点选一个来建造矿厂,问应选在哪个矿点,才能使各矿点所产的矿运到选矿厂所在地的总运力(千吨公里)最小。

图 矿区点线模型图

解:分析:总运力与两个因素有关:矿点与矿厂的距离、矿点产矿量,且都是正比的关系,故而应当把矿点与矿厂的距离L 和矿点产矿量X 的成绩当做运力,进而将运力当做权矩阵的元,运用Warshall-Foryd 算法求出该图的路由表,从而根据路由表中的最优路线,寻求V1-V7到每一点的最优路径,再将最优路径加总,进而寻求7个预设厂址中的最优路径总值的最小值的点即为所求矿厂点。

(1),距离矩阵:

L=???

???????

????????????0,5.1inf,inf,inf,inf,inf,5.1,0,4inf,inf,,4inf,inf ,4,0,1,2inf,inf,inf inf,,1,0,6inf,inf,inf inf,,2,6,0,2inf,inf ,4inf,inf,,2,0,3inf inf,inf,inf,,inf ,3,0 产量矩阵:

[]4,1,6,1,7,2,3=X

(2),权矩阵(运算程序见附录):

X i L *:).,(A = i=1:7

??????????

?

???????????=0 1.5000 Inf Inf Inf Inf Inf 6 0 24 Inf Inf 8 Inf Inf 4 0 1 14 Inf Inf Inf Inf 6 0 42 Inf Inf Inf Inf 12 6 0 4 Inf Inf 4 Inf Inf 14 0 9Inf Inf Inf Inf Inf 6 0A

(3),运用Warshall-Foryd 算法,调用floyd(A)函数,求出该图的路由表(程

序详见附录):

(4),结果分析

由表可知,厂址预设与该址到各个矿区的最优路径表清晰而明朗,并在表中最后一栏中的总运力可以观察出:当把V3设为矿厂时,其总运力最小,为57。故而应当选取V3矿区建立矿厂。

附录

function [D,R]=floyd(A)

D=A;n=length(D);

for i=1:n

for j=1:n

R(i,j)=i;

end

end

for k=1:n

for i=1:n

for j=1:n

if D(i,k)+D(k,j)

D(i,j)=D(i,k)+D(k,j);

R(i,j)=R(k,j);

end

end

end

hl=0;

for i=1:n

if D(i,i)<0

hl=1;

break;

end

end

if(hl==1)

fprintf('有负回路')

break;

end

end

求权矩阵。

n=7;

for i=n

A=[L(i,:).*X]

end

严蔚敏版数据结构课后习题答案-完整版

第1章绪论 1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。 解:数据是对客观事物的符号表示。在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 存储结构是数据结构在计算机中的表示。 数据类型是一个值的集合和定义在这个值集上的一组操作的总称。 抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。是对一般数据类型的扩展。 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。 解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。抽象数据

类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。 1.3 设有数据结构(D,R),其中 {}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r = 试按图论中图的画法惯例画出其逻辑结构图。 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。 解: ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={} 基本操作: InitComplex(&C,re,im) 操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C)

图论算法详解(C++版)

1.1、prim算法: 无向图的生成树就是从图的边集中选择一些边,使得这些边构成一个连通无环图,也就是树。如果给每一条边加一个权,所有生成树中权和最小的生成树称为最小生成树。 【Prim算法思想】 任意时刻的中间结果都是一棵树,每次花费最小的代价,用一条边把不在树中的结点加进来。【最小生成树算法实例】 现有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权代表公路造价。在分析了这张图后发现,任一对城市都是连通的。现在要求用公路把所有城市联系起来,如何设计可使得工程的总造价最少? 【输入】第一行两个数v(v<=200),e,分别代表城市数和边数以下e行,每行为两个顶点和它们之间的边权w(w<1000)。 【输出】连通所有城市的公路最小造价。 【输入样例】 6 10 1 2 10 1 5 19 1 6 21 2 3 5 2 4 6 2 6 11 3 4 6 4 5 18 4 6 14 5 6 33 【输出样例】50 原图 最小生成树 #include #include #include #include using namespace std; int i,j,k,n,m,mi,t,s,a[1000][1000]; void prim() { int mi,p,f,k,d[1000]; bool v[1000]; memset(v,false,sizeof(v)); f=1; for (i=2;i<=n;i++) {

d[i]=INT_MAX; } d[f]=0; s=0; for(i=1;i<=n;i++) { mi=INT_MAX; for (j=1;j<=n;j++) if ((v[j]==false) && (d[j]

数据结构课后习题答案

数据结构习题集答案 第1章绪论 1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。 解:数据是对客观事物的符号表示。在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。存储结构是数据结构在计算机中的表示。 数据类型是一个值的集合和定义在这个值集上的一组操作的总称。抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。是对一般数据类型的扩展。 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。 解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。抽象数据

类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。 1.3 设有数据结构(D,R),其中 {}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r = 试按图论中图的画法惯例画出其逻辑结构图。 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。 解:ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={} 基本操作: InitComplex(&C,re,im) 操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C) 操作结果:销毁复数C Get(C,k,&e) 操作结果:用e 返回复数C 的第k 元的值

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

数据结构课后习题详解(超完整,超经典)

第1章 绪论 1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。 解:数据是对客观事物的符号表示。在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 存储结构是数据结构在计算机中的表示。 数据类型是一个值的集合和定义在这个值集上的一组操作的总称。 抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。是对一般数据类型的扩展。 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。 解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。 1.3 设有数据结构(D,R),其中 {}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r = 试按图论中图的画法惯例画出其逻辑结构图。 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。 解: ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={} 基本操作: InitComplex(&C,re,im) 操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C) 操作结果:销毁复数C Get(C,k,&e) 操作结果:用e 返回复数C 的第k 元的值 Put(&C,k,e) 操作结果:改变复数C 的第k 元的值为e IsAscending(C) 操作结果:如果复数C 的两个元素按升序排列,则返回1,否则返回0

(完整版)数据结构详细教案——图

数据结构教案第七章图

第7章图 【学习目标】 1.领会图的类型定义。 2.熟悉图的各种存储结构及其构造算法,了解各种存储结构的特点及其选用原则。 3.熟练掌握图的两种遍历算法。 4.理解各种图的应用问题的算法。 【重点和难点】 图的应用极为广泛,而且图的各种应用问题的算法都比较经典,因此本章重点在于理解各种图的算法及其应用场合。 【知识点】 图的类型定义、图的存储表示、图的深度优先搜索遍历和图的广度优先搜索遍历、无向网的最小生成树、最短路径、拓扑排序、关键路径 【学习指南】 离散数学中的图论是专门研究图性质的一个数学分支,但图论注重研究图的纯数学性质,而数据结构中对图的讨论则侧重于在计算机中如何表示图以及如何实现图的操作和应用等。图是较线性表和树更为复杂的数据结构,因此和线性表、树不同,虽然在遍历图的同时可以对顶点或弧进行各种操作,但更多图的应用问题如求最小生成树和最短路径等在图论的研究中都早已有了特定算法,在本章中主要是介绍它们在计算机中的具体实现。这些算法乍一看都比较难,应多对照具体图例的存储结构进行学习。而图遍历的两种搜索路径和树遍历的两种搜索路径极为相似,应将两者的算法对照学习以便提高学习的效益。 【课前思考】 1. 你有没有发现现在的十字路口的交通灯已从过去的一对改为三对,即每个方向的直行、左拐和右拐能否通行都有相应的交通灯指明。你能否对某个丁字路口的6条通路画出和第一章绪论中介绍的"五叉路口交通管理示意图"相类似的图? 2. 如果每次让三条路同时通行,那么从图看出哪些路可以同时通行? 同时可通行的路为:(AB,BC,CA),(AB,BC,BA),(AB,AC,CA),(CB,CA,BC)

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

复杂网络基础2(M.Chang)

复杂网络基础理论 第二章网络拓扑结构与静态特征

第二章网络拓扑结构与静态特征 l2.1 引言 l2.2 网络的基本静态几何特征 l2.3 无向网络的静态特征 l2.4 有向网络的静态特征 l2.5 加权网络的静态特征 l2.6 网络的其他静态特征 l2.7 复杂网络分析软件 2

2.1 引言 与图论的研究有所不同,复杂网络的研究更侧重 于从各种实际网络的现象之上抽象出一般的网络几何 量,并用这些一般性质指导更多实际网络的研究,进 而通过讨论实际网络上的具体现象发展网络模型的一 般方法,最后讨论网络本身的形成机制。 统计物理学在模型研究、演化机制与结构稳定性 方面的丰富的研究经验是统计物理学在复杂网络研究 领域得到广泛应用的原因;而图论与社会网络分析提 供的网络静态几何量及其分析方法是复杂网络研究的 基础。 3

2.1 引言 静态特征指给定网络的微观量的统计分布或宏观 统计平均值。 在本章中我们将对网络的各种静态特征做一小结 。由于有向网络与加权网络有其特有的特征量,我们 将分开讨论无向、有向与加权网络。 4 返回目录

2.2 网络的基本静态几何特征 ¢2.2.1 平均距离 ¢2.2.2 集聚系数 ¢2.2.3 度分布 ¢2.2.4 实际网络的统计特征 5

2.2.1 平均距离 1.网络的直径与平均距离 网络中的两节点v i和v j之间经历边数最少的一条简 单路径(经历的边各不相同),称为测地线。 测地线的边数d ij称为两节点v i和v j之间的距离(或 叫测地线距离)。 1/d ij称为节点v i和v j之间的效率,记为εij。通常 效率用来度量节点间的信息传递速度。当v i和v j之间没 有路径连通时,d ij=∞,而εij=0,所以效率更适合度 量非全通网络。 网络的直径D定义为所有距离d ij中的最大值 6

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

数据结构总结

转载自South_wind的专栏 常见的数据结构运用总结 考虑到Obsidian三个成员的擅长领域,这段时间都在做杂题,算是学习各种算法吧,趁现在休息的时间,而且大家马上要备战今年的比赛了,写写自己专攻方面的一些心得吧 扯开线段树、平衡树这些中高级的东西,先说说基础的数据结构 栈 算是代码量最小的数据结构?出栈进栈都只有一句话而已 常见用途: 消去一个序列中的相同元素(做法大家应该都知道了吧,见过很多次了) 维护一个单调的序列(所谓的单调栈,dp的决策单调?) 表达式求值(经典的栈运用,如果使用的很熟悉的话,可以处理一元、二元运算,不过最近没见过类似的题目了) 用于辅助其他算法(计算几何中的求凸包) 队列 队列应该还是很常见的数据结构了,如果专攻图论的话,spfa应该是写烂了的 这里说到的队列,是狭义的普通的队列和循环队列,不包括后面讲的一些变形 注意循环队列的写法,尽量不要使用取模运算,不然的话,遇到不厚道的出题者,可以把取模的循环队列卡到死 常见用途: 主要用于辅助其他算法,比如说spfa,bfs等(建议习惯用stl的孩子手写queue,毕竟就几行代码而已,偷懒会付出代价的。。。) 双端队列 如果写dp写的多的话,这个东西应该还是算是比较基础的东西了,双端队列多用于维护一个满足单调性的队列 还是建议手写,stl的deque使用块状链表写的,那东西的复杂度是O(Nsqrt(N))的,不要被迷惑了。 常见用途: dp的单调性优化,包括单调队列优化和斜率优化,都要用到这个结构 计算几何中的算法优化,比如半平面交 树的分治问题中利用单调队列减少转移复杂度 链表Dancing Links 写图论的不要告诉我不会写这货,链表可以写单双向,循环非循环的,高级点儿的可以考虑十字链表,麻花链表 不过链表可以说是树形结构的基础,如果这个掌握的不好,那么树形结构写起来就会很纠结 链表的优势在于可以O(1)的插入删除,如果要求插入的位置只是在序列的两端的话,这个数据结构是最方便的了(无视双端队列) hash表就是用链表实现的,熟悉hash的同学可以试试看怎么使你的hash效率提高

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

图论及其算法

《图论及其算法》 --最短路问题 学院:通信学院 姓名:周旋 学号: S110131133 指导老师:陈六新

摘要 图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这些图形通常用来描述某些事物之间的特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有的关系。通过对《图论及其应用》中最短路问题的深入学习,本文利用Dijkstra算法来解决日常生活中寻找最短路的问题。同时也是对本学期学习知识的巩固。 关键词:最短路径 Dijkstra算法迭代

Abstract Graph theory is a branch of mathematics, it studies the object of picture. Graph theory graph is given by the number of points and lines connecting the two points of the graphic form. These graphics are often used to describe a specific relationship between certain things. And with the point on behalf of things, with the line connecting the two points that have a corresponding relationship between two things. Through the "Graph Theory and Its Applications," in-depth study of the shortest path problem. In this paper, we use The Dijkstra's algorithm not only to solve everyday life to find the shortest path problem, but also for the consolidation of the semester to learn the knowledge. Keyword: shortest path Dijkstra's algorithm Iteration

图论算法实例

1、最优连线问题 (最优连线问题)我国西部的SV地区共有1个城市(标记为1)和9个乡镇(标记为2--10)组成,该地区不久将用上天然气,其中城市1含有井源.现要设计一供气系统,使得从城市1到每个乡镇(2--10)都有一条管道相边,并且铺设的管子的量尽可能的少.图7-9给出了SV 地区的地理位置图,表7-7给出了城镇之间的距离. Lingo程序如下:model: data: n=10; enddata sets: cities/1..n/: F; roads(cities,cities)/ 1,2 1,3 2,4 2,5 2,6 3,4 3,5 3,6 4,7 4,8 5,7 5,8 5,9 6,8 6,9 7,10 8,10 9,10 /: D, P; endsets data: D= 6 5 3 6 9 7 5 11 9 1 8 7 5 4 10 5

9; enddata F(n)=0; @for(cities(i) | i #lt# n: F(i)=@min(roads(i,j): D(i,j)+F(j)); ); @for(roads(i,j): P(i,j)=@if(F(i) #eq# D(i,j)+F(j),1,0) ); end 结果: 2、任意两点间的最短路程问题: 某公司在六个城市c1, …,c6中有分公司,从ci到cj的直接航程票价记在下述矩阵中的(i,j) 位置上。(∞表示无直接航路),请帮助该公司设计一张任意两城 市间的票价最便宜的路线表。 0 50 ∞40 25 10 50 0 15 20 ∞25 ∞15 0 10 20 ∞ 25 ∞20 10 0 55 10 25 ∞25 55 0 Lingo程序如下:

数据结构图论学习报告

学习报告 报告题目:图论的前世今生 报告要求涵盖以下内容: 1.图论的起源 图论起源于著名的柯尼斯堡七桥问题。在柯尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来问题是要从这四块陆地中任何一块开始,通过每一座桥正好一次,再回到起点。然而无数次的尝试都没有成功。欧拉在1736年解决了这个问题,他用抽像分析法将这个问题化为第一个图论问题:即把每一块陆地用一个点来代替,将每一座桥用联接相应的两个点的一条线来代替,从而相当于得到一个“图”(如下图)。欧拉证明了这个问题没有解,并且推广了这个问题,给出了对于一个给定的图可以某种方式走遍的判定法则。这就是后来的欧拉路径和欧拉回路。这项工作使欧拉成为图论〔及拓扑学〕的创始人。 2.图论的发展 图论是数学领域中发展最快的分支之一,它以图为研究对象。图论中的图是有若干给定的点及连接两点的线所构成的图形,这种图形常用来描述某些事物之间的某种特定关系,用来代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图论本身是应用数学的一部分,因此,历史上图论曾经被好多位数学家各自独立的建立过。关于图论的文字记载最早出现在欧拉1736年的论文中,他所考虑的原始问题有很强的实际背景。 数学史上著名的七桥问题欧拉只用了一步就证明了不重复地通过7座桥的路线是根本不存在的!这是拓扑学研究的先声。图的染色问题一直是图论研究的焦点问题。数学家赫伍德成功地运用肯普的方法证明了五色定理,即一张地图能够用五种或者更少的颜色染色。美国伊利诺斯大学的黑肯和阿佩尔,经过四年的艰苦工作.终于完成了四色猜想的证明。正是上述那些似乎没有多大意义的游戏的抽象与论证的方法,开创了图论科学的研究。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯?格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图

数据结构习题集答案(C语言版严蔚敏)

保持平常心,营造好环境,扬起常笑脸,轻松迎高考。 第1章绪论 1.1 简述下列术语:数据 数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型 解:数据是对客观事物的符号表示 在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称 数据元素是数据的基本单位 在计算机程序中通常作为一个整体进行考虑和处理 数据对象是性质相同的数据元素的集合 是数据的一个子集 数据结构是相互之间存在一种或多种特定关系的数据元素的集合 存储结构是数据结构在计算机中的表示 数据类型是一个值的集合和定义在这个值集上的一组操作的总称 抽象数据类型是指一个数学模型以及定义在该模型上的一组操作 是对一般数据类型的扩展 1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别 解:抽象数据类型包含一般数据类型的概念 但含义比一般数据类型更广、更抽象 一般数据类型由具体语言系统内部定义 直接提供给编程者定义用户数据 因此称它们为预定义数据类型 抽象数据类型通常由编程者定义 包括定义它所使用的数据和在这些数据上所进行的操作 在定义抽象数据类型中的数据部分和操作部分时 要求只定义到数据的逻辑结构和操作说明 不考虑数据的存储结构和操作的具体实现 这样抽象层次更高 更能为其他用户提供良好的使用接口 1.3 设有数据结构(D R) 其中

试按图论中图的画法惯例画出其逻辑结构图 解: 1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数) 解: ADT Complex{ 数据对象:D={r i|r i为实数} 数据关系:R={} 基本操作: InitComplex(&C re im) 操作结果:构造一个复数C 其实部和虚部分别为re和im DestroyCmoplex(&C) 操作结果:销毁复数C Get(C k &e) 操作结果:用e返回复数C的第k元的值 Put(&C k e) 操作结果:改变复数C的第k元的值为e IsAscending(C) 操作结果:如果复数C的两个元素按升序排列 则返回1 否则返回0 IsDescending(C) 操作结果:如果复数C的两个元素按降序排列 则返回1 否则返回0 Max(C &e) 操作结果:用e返回复数C的两个元素中值较大的一个 Min(C &e) 操作结果:用e返回复数C的两个元素中值较小的一个

离散数学基本知识

离散数学基本知识 01 什么是“数据结构”? 这里我就不说那些“官方的定义”,简单谈谈自己的理解吧。 数据结构是一种抽象的封装。 好像还是有点绕脑,不过没关系,我们继续往下看。 说简单点就是,把一堆基本的数据,按照某种顺序给揉成一坨。 相信大家都吃过饭吧? 做一道菜需要放各种调料,如盐、味精,还有肉等,把它们混在一起就做成了一道菜。 口水鸡是我最喜欢的一道菜,这里我们就以口水鸡为例,来讲一讲什么是数据结构。下图是百度百科中口水鸡的做法。

好,下面我就用程序来表示一下,我写的是伪码,大家能懂就好哈。先来抽象一下“口水鸡”:

对,上述这个结构体就是一个自定义的数据结构,将很多种不同的东西融合在一起;而计算机中的数据结构,则是把一些基本的数据类型,如int、double等融合成一些复杂的数据结构,如map、队列。 抽象完口水鸡再来抽象“你”吧: 然后再来抽象一下“厨师”:

这里的抽象有点随意,不过大家理解就好,我们把一堆很基本的元素抽象成了3个数据结构,这三个元素就是所谓的数据结构。 而平时我们说的链表无非就是把一些基本元素和指针做了融合,树、图也是把指针和一些基本元素融合后再外加一些流程,如函数。 比如python的dict,dict的key,value就是两种相同或者不同的数据类型;dict还提供了一些函数,譬如get(),set()。dict就是一个典型的被封装的数据结构。 所以我说数据结构是一种抽象的封装,当然,数据结构并没有我们举的例子那样简单,但是原理是一样的。 我们平时写程序都是直接去调用这些数据结构,而没有去想它们的内部实现是怎样的。数据结构这门课就是要告诉我们常见的数据结构是如何实现的,比如Vector,map的实现。我们常常听到的譬如平衡二叉树,红黑树,大顶堆等词汇就是出自数据结构这门课。具体了解数据结构后,我们就可以知道队列的内部实现是什么样,词典的内部实现又是什么样。

图论基础知识汇总(适合建模)

图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决 这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。 图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。 我们首先通过一些例子来了解网络优化问题。 例1 最短路问题(SPP -shortest path problem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两

相关文档
最新文档