全自动便携式光合作用测定系统

全自动便携式光合作用测定系统
全自动便携式光合作用测定系统

CIRAS-1全自动便携式光合作用测定系统

主要性能及技术指标:

1.以开放式气路系统原理设计的光合作用测定系统,可以在开放和密闭气路之间转换,利用密闭气路系统测定土壤呼吸速率及群体光合;

2.仪器测定参数与指标:

(1) 通过红外仪测定大气CO2浓度、大气湿度(水汽浓度),探头测定大气温度、叶片温度、光合有效辐射(光强度)等参数。经过计算可得到光合速率、蒸腾速率、气孔导度、细胞间隙CO2浓度。

(2) 该仪器除了进行上述参数和结果测定外,还可以方便的进行光—光合响应曲线、CO2—光合响应曲线、温度—光合响应曲线、湿度—光合响应曲线等各种响应曲线的测定,并且可以通过这些响应曲线计算出RuBP 羧化效率、表观量子产量、光补偿点、光饱和点、CO2补偿点、CO2饱和点、温度补偿点、RuBP最大再生速率以及光合作用气孔限制值等一些非常有用的生理生态参数;

3.CO2/H2O红外线分析仪具有4个红外线分析气室,测定参比气体CO2、H2O的浓度,差分测量分析气体,是真正的差分测定红外仪。红外仪系统设计了自动恒温装置,红外气室的温度维持在55℃,保证仪器工作期间不受环境温度变化的干扰;

4.CO2浓度在0-2000ppm范围内精确控制和测量,测定的最高浓度达9999ppm,由内置式CO2钢瓶提供CO2

气体,在0-2000ppm范围内可以任意调节CO2的浓度。也可以选择大气CO2浓度在完全自然条件下进行测定,满足多用途的需要。高浓度的CO

2测定功能特别适合测定大

棚内CO2浓度;

5.H2O测量范围在0-75 millibar(露点);

6.测量精度:

测量精度

CO2在0ppm为0.2ppm H2O在0mb为0.03mb

在300ppm为0.2ppm 在75mb为0.06mb

在2000ppm为0.7ppm

7.电信号反映时间≤0.5秒;显示/输出反映时间小于或等于

1.5秒;

8.具有自动调节零点和差分平衡校正功能。当仪器零点发生

漂移时,自动监测进行零点调节,人工改变CO2浓度对两气

室自动进行平衡调节。

9.能够通过键盘输入自动控制CO2、H2O、光强度和同化室的温度,进行控制条件下光合参数的测定和响应曲线的测定;

10.系统配有遥控软件,与计算机连接使用(普通计算机和笔记本电脑均可,用户自己配),可自动制作Pn-Ci,Pn-PAR,Pn-Ca及Pn-VPD响应曲线,使用非常方便。数据可以存储在计算机中。

11.供气流量200-470cm3/min;

12.独一无二的叶室设计,用户可根据叶片形状和大小更换叶片窗口,无需增加额外费用,有圆形(直径18mm)、宽形(25mm×18mm)、水稻形(25mm×7mm)3种,能够满足各种植物材料的测定。

13.叶室配有小巧的白色日光型光源,光强度可达到全日照(2000μmol·m-2·s-1),可通过键盘在0-2000μmol·m-2·s-1范围内随意控制光强;

14.空气温度探头:热敏电阻,线性范围0-60℃,精确度在25℃±0.3℃。

15.叶温探头:红外辐射探头和能量平衡计算两种方法。

16.PAR传感器:类型:带滤光片的硒光电池;范围:0~3000μmolm-2s-1;精度:±10μmolm-2s-1;响应波长:400~700nm;

17.叶室温度控制:能在低于大气温度12℃到50℃的范围内随意控制;

18.叶室湿度控制:可以从0到饱和湿度范围内随意增加和降低湿度;

19.叶片温度测定有内置红外辐射和能量平衡两种方式;线性范围0-50℃,精确度在25℃±0.3℃。

20.光合作用测定系统能够与计算机连接,通过遥控软件能够自行设定控制程序,自动进行CO2、H2O、光强度和同化室温度控制,自动进行各种响应曲线的测定,使用灵活方便;

21.具有手动采集数据和自动采集数据功能,自动采集数据可以选择间隔时间在1-250min;

22.可以配备土壤呼吸室,非常方便的与主机连接进行土壤呼吸速率的测定;

23.可以配备群体光合室,测定植物群体的光合速率;

24.RS232 输出:存贮或输出当前数据,标准ASCII格式,1200波特;数据直接传输到计算机中。

25.数据存储:32K的RAM,能够存储820页记录;

26.电源:12V充电电池,一块电池使用2h,一套系统带有2块电池,可以额外订购电池。使用外接电源可以连续工作;

27.主机重量3.5Kg,叶室重0.885Kg,总重4.385Kg,整套系统结构紧凑、重量轻,便于田间携带。

产地:英国

CCM-200手持式叶绿素仪

原理:

通过在红光和兰光两个波段激发光源时的光学吸收率,测量被测物的叶绿素相对含量。

用途:

精确测量植物和作物的相对叶绿素含量,广泛应用于氮肥管理,除草剂应用,研究叶衰老,环境胁迫研究。

特点:

快速精确测量

不损坏被测物

自带数据存储

重量清,手持设计

防水设计

独立操作,无需计算机辅助

参数:

测量区域:直径3/8 英寸(0.95cm)

精度:±1 CCI unit

(CCI=Chlorophyll Content Index 叶绿素相对含量指标)

响应时间:2-3秒

光源:两个LED

探头:两个温度补偿硅光电二极管

内存容量:4096个数据显示屏:16 x 2 液晶 (小数点后一位) 计算机接口:RS-232

操作温度:0 - 50℃

键盘:4键

电池:9V碱性电池

重量:180g (含电池)

尺寸:150 × 82 × 25mm

产地美国

FMS2利用调制荧光技术把作用光信号与荧光信号区分开,在测定时,给植物材料施加一个脉冲调制光束,该脉冲光使植物叶片产生一个脉冲的荧光信号,当有自然光存在时,FMS2的滤光系统只允许三种形式的光信号到达检测器。1. 具有荧光波长的自然光;2. 由自然光诱导出的非脉冲荧光信号;3. 由脉冲调制光束诱导出的脉冲荧光信号。

荧光参数,并

该系统具有温度补偿式电子系统,可更换

产地:英国

光合仪模式使用说明

LI-6400便携式光合仪的使用说明 1. 仪器使用功能 LI-6400并非单一用于研究植物光合作用,他同时包括光合、呼吸(分为植物呼吸和土壤呼吸)、蒸腾、荧光等多项测量功能,多项功能的完全集成使得LI-6400成为生态学研究领域上重要的必不可少的基础研究设备。其测量参数包括:净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Ts)、细胞间隙CO2浓度(Ci)、大气CO2浓度(Ca)、光量子通量密度(PFD)、叶温(TL)、相对空气湿度(RH)。如果配备6400-40叶绿素荧光叶室,可测试以下参数:最大荧光(Fm)、初始荧光(Fo)、可变荧光(Fv)、光化学猝灭(qP)、非化学猝灭(qN)。此外,进行自动测量的基础上还可以进一步计算饱和点、补偿点等多项重要生理生态指标。 表1 LI-6400参数表 (主机显示屏测量菜单显示的参数说明,A-L是行号)

3. 仪器使用流程 3.1仪器安装连接,并连接好进气管缓冲瓶。 3.2打开位于主机右侧的电源开关。 3.3仪器在启动后将显示 “Is the IRGA connected?(Y/N)”选择Y 3.4叶室配置选择: 选择目前安装的叶室配置,如已经安装了标准叶室,请选择Factory default,然后回车。 如果安装了荧光叶室,请选择6400-40 Default Flurometer,然后回车。 如果安装了土壤叶室,请选择6400-09 soil Chamber,然后回车。 其他叶室方法相同,只需要选择不同的叶室就可以了。 3.5调零 向SCRUB方向拧紧碱石灰管和干燥管上端的螺母。关闭叶室,即压下黑色手柄,并旋紧固定螺丝即可。 在主菜单按F3按钮选“Calib Menu”项 ①选“Flow Meter Zero”项(调气流量为零),回车 等待流速的电压读数基本稳定,用F1、F2上下调节,至读数基本稳定,且在-0.5—0.5范围内,按EXIT按钮退出。 ②选“IRGA Zero”(红外线气体分析仪探头调零),回车 等待CO2浓度和H2O浓度的下降,至读数基本稳定(一般在20分钟左右),按F3“Auto All ”进行自动调节,结束后“Exit ”退出。 ③选“View Store Zeros Spans”,回车后按F1“Store”来保存,按“Y”来确定后按F5“Exit ”退出。按“escape”,回到主菜单。 3.6手动测量 按F4“New Measurements”菜单进入测量菜单。 设定文件:按F1“Open Logfile”建立新文件。回车后输入自己设定的文件名。当显示屏出现提示“Enter Remark”时,输入需要的标记(英文,用于标记样地、植物种类、样品号等)。继续回车,文件设置结束。在夹入叶片之前如果光合值大于0.5或小于-0.5,那么应该按F5“Match”进行匹配。 测量:选取需要测量的植物叶片(3-5次重复)。测量时间请尽量选择晴朗的天气条件,上午10:00-11:30左右最好,如果您的植物叶片是处于温室内、室内或生长箱内,由于其叶片气孔没有完全开放,需要先用饱和光强来进行气孔诱导,方法可以是采用大瓦数的灯泡来照射(大致需要20分钟的时间),或者在室外

光合作用速率测定方法

光合作用速率测定方法 谭家学(湖北省十堰市郧阳区第二中学442500) 光合作用强度的大小直接影响植物的生长,可以设置装置来测定植物的光合作用强度。 一、光合作用速率的表示方法 1.净光合速率表示方法:单位时间内单位面积叶片CO2的吸收量或O2的释放量或有机物积累量。 2.真正光合速率表示方法:单位时间内单位面积叶片CO2的固定量或O2的产生量或有机物生产量。光合速率测定时,在黑暗(遮光)条件下测呼吸速率,在光下测净光合速率,真正光合速率等于呼吸速率加净光合速率。 3.看清这些词语是准确解题的关键:CO2是“消耗量”还是“吸收量”, O2是“产生量”还是“释放量”,有机物是“生产量”还是“积累量”,因为CO2的消耗量等于呼吸作用CO2释放量加从外界CO2吸收量;O2的产生量等于呼吸作用消耗的O2量加释放到外界环境O2量;有机物的生产量等于呼吸作用消耗有机物量加净积累量。 二、光合作用速率的测定方法 1.测定方法:将右图装置的广口瓶中加入碳酸氢钠稀溶液,给予适宜光照,光合作用消耗的CO2由碳酸氢钠稀溶液提供,玻璃管红色液滴右移的数值(记作S1)表示光合作用释放的O2 再用一套装置,不给予光照,其它条件均相同,玻璃管红色液滴左移的数值(记作 S 2 )表示呼吸作用消耗O2量。 2.结果分析:净光合作用速率等于光照条件下单位时间内O2的释放量(即S1);真正光合作用强度等于光照条件下单位时间内O2的释放量与呼吸作用O2消耗量之和(S1+ S2)。 3.物理误差的校正:由于装置的气体体积的变化也可能会由温度等物理因素所引起,为使测定结果更趋准确,应设置对照实验,以校正物理膨胀等因素对实验结果造成的误差。此时,对照实验与该装置相比,应将所测生物灭活,而其他各项处理应与实验组完全一致。 三、典例引领 【例】某转基因作物有很强的光合作用强度。某中学生物兴趣小组在暑假开展了对该转基因作物光合强度测试的研究课题,设计了如下装置。请你利用下列装置完成光合作用强度的测试实验,并分析回答有关问题: A.为开关 B.为玻璃钟罩 被研究的生物

植物光合作用测定用什么仪器

植物光合作用测定用什么仪器 很多人只知道光合作物对植物的生长有着重要的作用,却不知道光合作用到底是什么,简单的说,光合作用是植物所特有的生命现象,它是以太阳光能为动力,把二氧化碳和水合成为有机物,并释放出氧气的过程。随着科技的发展,进行光合作用测定的方式也在不断的变化和进步,那么,植物光合作用测定需要用什么仪器呢?现在利用植物光合作用仪检测是快速有效科学的一种检测方式。 植物光合作用仪可以测定CO2浓度、叶片温度、光合有效辐射、叶室温湿度,通过科学计算可得出叶片光合速率、叶片蒸腾速率、细胞间CO2浓度、气孔导度、水分利用率等光合作用指标。并且该仪器的使用方法非常简单,只需要用仪器轻轻夹住叶片,按确定键开始测量就可以了,等待25秒后仪器会显示出数据,用户按确定键保存数据即可。这也是此款仪器比较突出的一项优势了。 除此之外呢,一般在野外测定植物光合作用、呼吸作用和蒸腾作用时,常常由于条件的限制并不能够及时准确地测定出作用大小,这对于野外作物生长是及其不利的。而托普云农3051D植物光合作用仪,外形小巧轻便,便于随身携带,它可以随时随地地对作物的光合作用、呼吸作用以及蒸腾作用进行测定。可以说极大的满足的用户的需求。便携式光合蒸腾仪主要应用于农林业、园艺、微生物、昆虫等专业行业及科学试验中。 在我们现在的生活中,绿色植物占了很大一部分,其中的绿色植物的光合作用为我们带来了源源不断的氧气,保证了人们的正常生活,所以,绿色植物必不可少,同样的光合作用也必不可少。同样的在农业生产过程中,光合作用也具有重要的意义,通过植物光合作用仪对植物光合作用指标的测量,可以极大限度地满足农作物光合作用对水、无机盐、温度、光照等方面的要求,促进农作物高产量产。

光合测定仪使用方法

光合测定仪使用方法 植物光合作用是指植物在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳和水转化为有机物,并释放出氧气的生化过程,可以说,光合作用是植物生长的重要环节。因此,在研究植物生长的过程中,研究植物光合作用是必不可少的一项内容,这时候我们就需要用到专业仪器光合测定仪来测定植物的光合作用。并且随着科技的发展,越来越多的人更喜欢使用光合测定仪去检测植物的光合作用,因为该仪器使用方便,而且可以在几分钟的时间之内即可完成对光合作用相关参数的检测。 那么,如何规范使用光合测定仪呢? 1、首先,因为测定植物的光合作用是必须要有光参与的,因此在使用光合测定仪开展实验之前,一定要确保天气情况良好,因此需要注意查看天气变化; 2、开始使用光合测定仪测定植物光合速率前,植物一定要在光下进行充分的光适应。 3、为了方便野外操作,光合测定仪采用的是电池供电,因此使用前,一定要确保仪器的电池充满电。 4、查看仪器的吸收管是否变质,如果变质请及时更换。 5、仪器防强烈的阳光直射:高温下测定应尽量用阳伞遮蔽主机,避免阳光直射,否则会造成增温过高仪器工作不正常。 6、保持叶室干净,经常擦洗叶室表面,保持良好的透光性。 7、注意仪器的保养,轻拿轻放,信号线尽量保持伸展,勿扭曲。 托普云农生产的3051D光合测定仪有多年历史,曾为各大院校和研究院所提供了大量的高精度的植物光合作用测定仪,其中一部分用于光合和呼吸研究,但由于只是单一的气体分析仪,使用时不方便,为了方便用户,经过几年的努力,我们研究出了集笔记本计算机和气体分析于一体的光合测定仪,利用微机强大的计算功能与存贮功能结合红外线CO2分析仪、温湿度传感器及光照传感器,对植物的光合、呼吸、蒸腾等指标测量和计算。

光合速率测定方法

植物的光合速率测定-----改良半叶法 光合作用是绿色植物特有的生理功能,是绿色植物吸收光能将CO2和H20合成为有机物质并释放O2的过程。光合作用及其有关过程的测定是植物生理学实验的重要组成部分。 光合作用是由原初反应、同化力形成和二氧化碳同化3个主要阶段组成。原初反应包括光合色素对光能的吸收、光能的传递和光化学反应,主要与叶绿素和其它光合色素有关;而同化力(ATP和NADPH2)的形成主要与膜的特性有关,二氧化碳同化除受同化力供应影响外,还受与暗反应有关酶活性的影响。光合作用强弱与环境条件变化密切相关。 光合速率是植物生理性状的一个重要指标,也是估测植株光合生产能力的主要依据之一。光合速率可根据植物对CO2的吸收量,O2的释放量或干物质(有机物质)的积累量来进行测定。随着光合作用研究的深入,光合作用测定技术的水平也在不断提高,方法和手段也越来越多。本次实验学习光合速率测定最经典的方法之一-----改良半叶法。 [原理] 植物叶片的主脉两侧对称部分叶面积基本相等,其形态和生理功能也基本一致。用物理或化学方法处理叶柄或茎的韧皮部,保留木质部,以阻断叶片光合产物的外运,同时保证正常水分供应。然后,将对称叶片的一侧取下置于暗中,另一侧留在植株上保持光照,继续光合作用。一定时间后,测定光下和暗中叶片的干重差,即为光合作用的积累的干物质量。通过公式计算出光合速率。乘以系数后还可计算出C02的同化量。 [材料、仪器、药品] 1.材料:任选户外一种植物。 2.仪器及用品:(1) 剪刀;(2) 4块湿纱布;(3)带盖磁盘;(4) 30个小纸牌,去户外之前用铅笔编号(1~15;1~15);(5) 镊子;(6) 打孔器;(7)铅笔;(8)记号笔;(9) 12个称量瓶;(10) 烘箱;(11) 分析天平;(12)干燥器。 3.药品:5%三氯乙酸。 [方法] 1.取样:在户外选择较绿和较黄的同种植物叶片各15片,要注意叶龄、叶色、着生节位、叶脉两侧和受光条件的一致性。绿叶和黄叶分别用纸牌编号(例如绿叶为1、2、3~15,黄叶为1`、2`、3`~15`)。增加叶片的数目可提高测定的精确度。 2.处理叶柄:为阻止叶片光合作用产物的外运,可选用以下方法破坏韧皮部。 (1) 环割法:用刀片将叶柄的外层(韧皮部)环割0.5cm左右。为防止叶片折断或改变方向,可用锡纸或塑料套管包起来保持叶柄原来的状态。 (2) 烫伤法:用棉花球或纱布条在90℃以上的开水中浸一浸,然后在叶柄基部烫半分钟左右,出现明显的水浸状就表示烫伤完全。若无水浸状出现可重复做一次。对于韧皮部较厚的果树叶柄,可用融熔的热蜡烫伤一圈。

光合速率的测定方法及应用

光合速率的测定方法及应用 阮庆华 光合作用是高考的重要考查内容之一,在全国各地历年高考中出现的频率较高.考查的角度涉及光合作用场所.过程.物质变化.能量转化.及其在生产生活实践中的应用.常以实验为载体,多与呼吸作用生态系统的功能相联系进行考查。本节选取光合速率的测定来突破其难点之一. 实验测得的光合速率是表观 光合速率或净光合速率,是指单位 时间、单位叶面积的CO2的吸收量 或者是O2的释放量;也可以用单 位时间、单位叶面积干物质积累数 表示。通常以每小时每平方分米叶 面积吸收二氧化碳毫克数表示 (mg/ dm2·h),若能测出其呼吸 速率,把它加到表观光合速率上去, 则可得到真正光合速率。 真正光合速率=表观光合速率+呼吸速率。 光合速率常见的测定方法有哪些呢?光合速率又是如何计算的呢?请看以下几种光合速率的测定方法。 1、“半叶法”---测光合作用有机物的生产量,即单位时间、单位叶面积干物质积累数 例1 某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。其原理是:将对称叶片的一 部分(A)遮光,另一部分(B)不做处理,并采用适当 的方法(可先在叶柄基部用热水、或热石蜡液烫伤 或用呼吸抑制剂处理)阻止A,B两部分的物质和能 量转移。在适宜光照下照射6小时后,在A、B的对 应部位截取同等面积的叶片,烘干称重,分别记为 M A、M B,获得相应数据,则可计算出该叶片的光合作 用强度,其单位是mg/(dm2·h)。 问题:若M=M B-M A,则M表 示。 解析本方法又叫半叶称重法,常用大田农作物的光合速率测定。 如图1所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。 题中:M B表示6小时后叶片初始质量+光合作用有机物的总产量-呼吸作用有机物的消耗量,M A表示6小时后初始质量-呼吸作用有机物的消耗量,

植物的光合速率测定-----改良半叶法

植物的光合速率测定-----改良半叶法 一、植物的光合速率测定-----改良半叶法 光合作用是绿色植物特有的生理功能,是绿色植物吸收光能将CO2和H20合成为有机物质并释放O2的过程。光合作用及其有关过程的测定是植物生理学实验的重要组成部分。 光合作用是由原初反应、同化力形成和二氧化碳同化3个主要阶段组成。原初反应包括光合色素对光能的吸收、光能的传递和光化学反应,主要与叶绿素和其它光合色素有关;而同化力(ATP和NADPH2)的形成主要与膜的特性有关,二氧化碳同化除受同化力供应影响外,还受与暗反应有关酶活性的影响。光合作用强弱与环境条件变化密切相关。 光合速率是植物生理性状的一个重要指标,也是估测植株光合生产能力的主要依据之一。光合速率可根据植物对CO2的吸收量,O2的释放量或干物质(有机物质)的积累量来进行测定。随着光合作用研究的深入,光合作用测定技术的水平也在不断提高,方法和手段也越来越多。本次实验学习光合速率测定最经典的方法之一-----改良半叶法。 [原理] 植物叶片的主脉两侧对称部分叶面积基本相等,其形态和生理功能也基本一致。用物理或化学方法处理叶柄或茎的韧皮部,保留木质部,以阻断叶片光合产物的外运,同时保证正常水分供应。然后,将对称叶片的一侧取下置于暗中,另一侧留在植株上保持光照,继续光合作用。一定时间后,测定光下和暗中叶片的干重差,即为光合作用的积累的干物质量。通过公式计算出光合速率。乘以系数后还可计算出C02的同化量。 [材料、仪器、药品] 1.材料:任选户外一种植物。 2.仪器及用品:(1) 剪刀;(2) 4块湿纱布;(3)带盖磁盘;(4) 30个小纸牌,去户外之前用铅笔编号(1~15;1~15);(5) 镊子;(6) 打孔器;(7)铅笔;(8)记号笔;(9) 12个称量瓶;(10) 烘箱;(11) 分析天平;(12)干燥器。 3.药品:5%三氯乙酸。 [方法] 1.取样:在户外选择较绿和较黄的同种植物叶片各15片,要注意叶龄、叶色、着生节位、叶脉两侧和受光条件的一致性。绿叶和黄叶分别用纸牌编号(例如绿叶为1、2、3~15,黄叶为1`、2`、3`~15`)。增加叶片的数目可提高测定的精确度。 2.处理叶柄:为阻止叶片光合作用产物的外运,可选用以下方法破坏韧皮部。 (1) 环割法:用刀片将叶柄的外层(韧皮部)环割0.5cm左右。为防止叶片折断或改变方向,可用锡纸或塑料套管包起来保持叶柄原来的状态。 (2) 烫伤法:用棉花球或纱布条在90℃以上的开水中浸一浸,然后在叶柄基部烫半分钟左右,出现明显的水浸状就表示烫伤完全。若无水浸状出现可重复做一次。对于韧皮部较厚的果树叶柄,可用融熔的热蜡烫伤一圈。 (3)抑制法:用棉花球蘸取5%三氯乙酸或0.3mol/L的丙二酸涂抹叶柄一周。本实验统一使用三氯乙酸。注意勿使抑制液流到植株上。 选用何种方法处理叶柄,视植物材料而定。一般双子叶植物韧皮部和木质部容易分开宜采用环割法;单子叶植物如小麦和水稻韧皮部和木质部难以分开,宜使用烫伤法;而叶柄木质化程度低,易被折断叶片采用抑制法可得到较好的效果。 3.剪取样品:叶柄处理完毕后即可剪取样品,并开始记录时间,进行光合作用的测定。首先按编号次序(绿叶和黄叶交替进行)剪下叶片对称的一半(主脉留下),并按顺序夹在湿

LI-6400系列便携式光合作用测量系统

LI-6400系列便携式光合作用测量系统由美国LI-COR公司生产,是国内外研究植物光合生理生态的权威仪器,广泛应用于植物生理学、农学、林学、生态学等领域的研究中。下面以LI-6400P型便携式光合作用测量系统为例对其功能、构造、使用等内容作一简单介绍。 一、功能 LI-6400系列便携式光合作用测量系统最基本的功能是研究植物光合作用,同时还具有呼吸、蒸腾、荧光等多项测量功能。可以测量的光合与水分生理指标主要有:净光合(呼吸)速率、蒸腾速率、气孔导度、胞间CO2浓度等。 二、构造 LI-6400P型便携式光合作用测量系统主要由IRGA分析器即红外线气体分析器、操作控制台和两者之间的连接电缆三部分组成。 红外线气体分析器包括标准叶室、有效光合辐射传感器、叶片温度热电偶、发光二极管(LED)红/蓝光源、H2O/CO2分析器等构件。其中标准叶室为长方形,长宽分别为3和2cm,也有其他规格叶室可替换。叶室上面装有外置光量子传感器,下面可根据需要连接野外用支架。 操作控制台主要由系统控制器组成,系统控制器硬件配置为512K RAM(随机存储器),6M硬盘,4行/每行40字符的显示屏,66键的键盘;软件为LI-6400的操作系统,操作系统有多个版本,本机为4.03版本。另外,控制台电池仓内装有两节可充电蓄电池,边上装有一个水分干燥管,内装硅胶用于吸收水分、一个碱石灰管,用于吸收CO2,及一个CO2注入系统,底下有支架。 连接电缆由25针和9针RS-232C线缆组成。 三、使用 LI-6400P型便携式光合作用测量系统的使用大致包括仪器连接、程序加载、仪器校正、数据测量、数据传输、关闭仪器等六个步骤,下面分别来做一个介绍。 第一个步骤:仪器连接 测量之前首先要看一看仪器是否连接好,要将仪器连接好后再进入后面的步骤。仪器的连接主要包括连接电缆与操作控制台之间、连接电缆与IRGA之间的连接,但这些步骤最好由对仪器比较熟悉的人员来完成,一般操作人员最好不随意拆卸和连接。下面只讲一下叶室的闭合、蓄电池的安装、CO2缓冲系统的安装。IRGA叶室连接好后要轻压手柄将其关闭,并确定叶室密闭合适,其方法是先通过调节螺丝使上下叶室刚刚接触到,然后再张开叶室,调紧螺丝半圈,最后再关上叶室,这样松紧正好,既不会过松而漏气,也不会过紧而影响叶室泡沫垫的使用寿命。 电池在安装前要保证有足够电量,否则要先进行充电。一般两块充满电的电池可供野处测量用使用3~5小时,具体使用时间与电池本身容量及使用过程有关。装电池时将电源输出口朝外,用另一端将电池仓上面的弹簧卡朝上顶,然后将电池朝里推,直到听到“咔”的一声即表示电池已安装到位,待两个电池全部装入电池仓后将电源输出口插入到操作控制台的接口中。 仪器带有CO2注入系统,但有时测量时只需利用大气中的CO2即可,因外界环境中的CO2浓度易受到植物光合、呼吸,气体流动,操作者呼吸等影响,为了保证进入叶室的CO2浓度的稳定性,一般需接入一个气体缓冲系统。气体缓冲系统可找一个较大的塑料瓶(如可乐瓶),在瓶盖上打两个小孔,小孔孔径与连接用的塑料管粗细相宜,然后将塑料管一端插入塑料瓶内,伸入底部,另一端接到操作台一侧(电池仓上端右侧)的进气口中,测量时将塑料瓶挂入高处,以减少环境变化的影响。 第二个步骤:程序加载 仪器连接好后就进入了第二个步骤,即开机加载OPEN程序的过程。 OPEN程序是LI-6400的操作系统,类似于计算机的WINDOWS系统。通过这一程序,用户能够完成各种操作。OPEN程序有不同的版本,各台机上装的版本不相同,本机上装的是4.03版本。 开机即打开电源开关后仪器即开始进行OPEN程序安装,这需要有十几分钟左右,并且在程序安装过程中需用户进行以下两项选择,用户可用控制台表面的箭头键上下移动进行选择。 1.配置文件的选择

光合作用速率的测定方法

光合作用速率的测定方法 一、“半叶法”-测光合作用有机物的生产量。即单位时间、单位叶面积干物质的量 【例1】某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理(见图1),并采用适当的方法(可先在叶柄基部用热水或热石蜡液烫伤,或用呼吸抑制剂处理)阻止两部分的物质和能量转移。在适宜光照下照射6h后,在A、B的对应部位截取同等面积的叶片。烘干称重,分别记为M A—M B,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg (dm2·h)。 问题:若M=M B—M A,则M表示____ 。 【解析】如图l所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。 设初始质量为a,呼吸作用消耗质量为b,净光合质量为b,则:M A=a—b,M B=a+c,所以:M=M B -M A=c+b,即M表示总光合作用质量。 这样,真正光合速率(单位:mg/dm2.h)就是M值除以时间再除以叶面积。 【答案]B叶片被截取部分在6h内光合作用合成的有机物总量 二、气体体积变化法—一测光合作用O2产生(或CO2消耗)的体积 【例2】某生物兴趣小组设计了如图2所示的装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。 (1)测定植物的呼吸作用强度:在该装置的小烧杯中放入适宜浓度的NaOH溶液适量;将玻璃钟罩遮光处理,放在适宜温度的环境中;th后记录红墨水滴移动的方向和刻度,得X值。

(2)测定植物的净光合作用强度:在该装置的小烧杯中放入NaHCO3缓冲溶液适量;将装置放在光照充足、温度适宜的环境中;1h后记录红墨水滴移动的方向和刻度,得Y值。 请你预测在植物生长期红墨水滴最可能移动的方向并分析原因,并将结果填入表中:项目红墨水滴移动原因分析 测定植物呼吸作用 a. C. 测定植物净光合作 b. d. 【解析】(1)测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用。植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体体积减小,压强减小。红色液滴向左移动,向左移动的距离X就代表植物进行有氧呼吸消耗的O2量,即有氧呼吸产生的CO2量。 (2)测定植物的净光合作用强度:装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中。又处在植物的生长期,其光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致使装置内气体量增加,红色液滴向右移动,向右移动的距离Y就代表表观光合作用释放的O2量,也就是表观光合作用吸收的CO2量。 故,依据实验原理:真正光合速率=呼吸速率+表观光合速率,就可以计算出光合速率。 【答案】a.向左移动c.将玻璃钟罩遮光处理,绿色植物只进行呼吸作用,植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体压强减小,红色液滴向左移动b.向右移动d.装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中,在植物的生长期,光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致装置内气体量增加,红色液滴向右移动 三、黑白瓶法——测溶氧量的变化 【例3】某研究小组从当地一湖泊的某一深度取得一桶水样,分装于6对黑白瓶中,从剩余的水样中测得原初溶解氧的含量为10 mg/L,白瓶为透明玻璃瓶.黑瓶为黑布罩住的玻璃瓶。将它们分别置于6种不同的光照条件下,分别在起始和1h后以温克碘量法测定各组培养瓶中O2的含量,记录数据如表所示: 光照强度(klx) 黑暗 a b C d e 白瓶溶氧量(mg/L) 3 IO 16 24 30 30 黑瓶溶氧量(mg/L) 3 3 3 3 3 3 (1)黑瓶中溶解氧的含量降低为3 mg/L的原因是。该瓶中所有生物细胞呼吸消耗的O2量为mg/L·h。 (2)当光照强度为c时,白瓶中植物光合作用产生的O2量为mg/L·h。 (3)光照强度至少为(填字母)时,该水层产氧量才能维持生物正常生活耗

pam-2100——野外光合作用研究的首选仪器

pam-2100——野外光合作用研究的首选仪器 schreiber教授因发明pam系列调制叶绿素荧光仪而获得首届国际光合作用协会(ispr)创新奖 1983年,walz公司首席科学家、德国乌兹堡大学的ulrich schreiber教授设计制造了全世界第一台调制荧光仪——pam-101/102/103,使在自然光下测量叶绿素荧光成为现实,解决了科学界近50年的技术瓶颈。pam-101/102/103迅速在植物生理、生态、农学、林学、水生生物学等领域得到广泛应用,出版了大量高水平研究文献。但该仪器比较笨重,不易带到野外。 1992年,walz公司首席科学家、调制荧光仪发明人、德国乌兹堡大学的ulrich schreiber教授设计制造了全世界第一台便携式调制荧光仪——pam-2000,并且在植物生理生态学等科研领域得到广泛应用,此后十几年中成为全球最畅销的调制荧光仪。 2003年,walz公司在保留pam-2000所有功能和优点的基础上,结合最新技术,将pam-2000升级到了pam-2100。 系统描述 pam-2100采用了独特的调制技术和饱和脉冲技术,从而可以通过选择性的原位测量叶绿素荧光来检测植物光合作用的变化。pam-2100的调制测量光足够低,可以只激发色素的本底荧光而不引起任何的光合作用,从而可以真实的记录基础荧光fo。pam-2100具有很强的灵敏度和选择性,使其即使在很强的、未经滤光片处理的环境下(如全日照甚至是10000 μmol m-2 s-1的饱和光强下)也可测定荧光产量而不受到干扰。因

此,pam-2100不但适合在实验室人工控制的环境下测量,还可以在自然环境中甚至是强烈的全光照条件下开展野外科学研究。 pam-2100是非常便携、强大的测量系统,它将各种光学和电子元件组装在一个24 cm×10.5 cm×11 cm的外壳中。测量光由655 nm的发光二极管(led)发出,可在低频(600 hz)和高频(20 khz)间自动切换。光化光(光合生物实际可吸收利用进行光合作用的可见光)由卤素灯(白光)或红光led(655 nm)提供。远红光(735 nm,促进光系统i迅速消耗掉在pq处累积的电子)由led发出。 pam-2100的按键操作非常简单。基础测量只需单健操作。数据在内置电脑中自动分析、存储并且在显示屏上显示。除了“参数窗"外,在“动力学窗"还可显示曲线的实时变化。 pam-2100利用光纤进行信号传输。光适应叶夹2030-b(专利产品)上配备微型光量子/温度传感器,可在记录荧光信号的同时,同步记录光合有效辐射(par)和温度变化。 pam-2100内设10个标准run(预先编好的间隔一定时间并按一定顺序执行特定命令的程序),用户只需一次按键就可进行复杂的实验。用户还可对这些标准run进行编辑得到自己的user-run(数量不限),来满足特殊的实验需要。 pam-2100主机可以直接连接电脑(圆口)键盘,在野外现场,可以根据实验需要,不需电脑就可以进行特殊程序的编辑。 pam-2100还可以设定单机操作软件da-2100自动间隔一定时间执行某个run或user-run,而run是可以无限扩展的,因此,可以说pam-2100的功能几乎可以无限扩展。只要将主机和叶夹(均可固定在三角架上)固定好,按一次按键,(人不在现场看守)仪器可以自动进行非常复杂的测量过程。 此外,pam-2100主机还可以连接电脑显示器或投影仪放大显示,非常适合进行教学使用。 特点 1) 声誉卓著的pam-2000的升级版 2) 精巧、准确、迅速、操作简便的高级光合作用检测设备 3) 可单机操作(采用内置电脑,da-2100软件记录),可连接外置电 脑操作(windows操作软件pamwin) 4) 便携式设计,带大屏幕液晶显示屏(可显示曲线变化)和20个按 键 5) 强大的数据收集、分析和存贮功能 6) 可以预先编写和设定程序,进行特殊研究目的测量 7) 内置锂电池可满足长时间野外工作需要,并可连接外置12 v电 池 8) 多种叶夹可供选择,专利设计的光适应叶夹2030-b可同时记录par和温度变化 9) 光源选择:自然光,内置光源(提供测量光、光化光、饱和脉冲和远红光),可选外置卤素灯光源(特别适合野外研究) 功能

LI-6400便携式光合作用测定仪使用说明

LI-6400便携式光合作用测定仪使用说明 连接(气管连接黑色对应)并关闭IRGA叶室,确定叶室密闭合适(叶室上下刚刚接触到,再张开叶室,调紧螺丝半圈)。接上电池(电源),开机。 当显示: “Is the IRGA connected?(Y/N)” Press “Y” 正确连接并放置缓冲瓶,预热二十分钟以上。 1、调零:选“Calib Menu”(Open F3)项: ①选“Flow Meter Zero”项(流量计调零) 当读数基本稳定,且在±1mv范围内,按F5 退出 ②红外分析仪调零“I RGA Zero” 旋紧碱石灰管和干燥管上端的调节螺母指向Full SCRUB方向,即全虑除状态→清空并关闭叶室(叶室上下刚刚接触到,再张开叶室,调紧螺丝半圈。)。 确定CO2R or CO2S 的最大波动范围在0.1,稳定,则按F1 (AutoCO2),这时,CO2R or CO2S均在“0”附近; 确定H2OR or H2OS 的最大波动范围在0.01 ,稳定,且等待至少一刻钟以上,然后,按F2 (AutoH2O),这时,H2OR or H2OS均在“0”附近; 如果是希望对CO2和H2O 都同时调零,则,这时按F3 (AutoAll). 按F5(Quit)退出。 进入“View, Store Zero_Span”,按F1 “ Store ”,保存本次校准数据。 2.安装LED光源 选“Config Menu ”项(主菜单F2)——选“Light Source Control”项;-——选取“Pick Source”;——选取人工光源“Lightsource=6400-02B……”,Press F5 “Done”—— 进入“Config Menu ”第一项“Config Status”, 选择F3 “saveAs”,保存光源设置。按“escape”进入主菜单( O pen )。 3.测量

(三)测定光合速率的常用方法及实验设计

测定光合速率的常用方法及实验设计 一.测定光合速率的常用方法 1.利用液滴移动装置测定植物光合速率与呼吸速率 ①将植物(甲装置)置于黑暗中一定时间,记录红色液滴移动的距离,计算呼吸速率。 ②将同一植物(乙装置)置于光下一定时间,记录红色液滴移动的距离,计算净光合速率。 ③根据呼吸速率和净光合速率可计算得到真正光合速率。

指标相对量的变化。下列说法不正确的是( ) A.图甲装置在较强光照下有色液滴向右移动,再放到黑暗环境中有色液滴向左移动 B.若将图甲中的CO2缓冲液换成质量分数为1%的NaOH溶液,其他条件不变,则植物幼苗叶绿体产生NADPH 的速率将不变 C.一定光照条件下,如果再适当升高温度,真光合速率会发生图乙中从b到a的变化,同时呼吸速率会发生从a到b的变化 D.若图乙表示甲图植物光合速率由a到b的变化,则可能是适当提高了CO2缓冲液的浓度 2.叶圆片称重法 测定单位时间、单位面积叶片中淀粉的生成量,如图所示以有机物的变化量测定光合速率(S为叶圆片面积)。 净光合速率=(z-y)/2S; 呼吸速率=(x-y)/2S; 总光合速率=净光合速率+呼吸速率=(x+z-2y)/2S。 例2.某同学欲测定植物叶片叶绿体的光合速率,做如图所示实验:在叶柄基部做环剥处理(仅限制叶片有机物的输入和输出),于不同时间分别在同一叶片上陆续取下面积为1 cm2的叶圆片烘干后称其重量,M处的实验条件是下午4时后将整个实验装置遮光3小时,则测得叶片叶绿体的光合速率是(单位:g·cm-2·h -1,不考虑取叶圆片后对叶片生理活动的影响和温度微小变化对叶片生理活动的影响)( ) A.(3y-2z-x)/6 B.(3y-2z-x)/3 C.(2y-x-z)/6 D.(2y-x-z)/3 3.叶圆片上浮法 用打孔器在某植物的叶片上打出多个叶圆片,再用气泵抽出气体直至叶片沉入水底,给予一定的光照,测量叶圆片上浮至液面所用的平均时间,可以用来作为指标判断净光合速率的大小。 例3.如下图为研究光合作用的实验装置。用打孔器在某植物的叶片上打出多个叶圆片,再用气泵抽出气体直至叶片沉入水底,然后将等量的叶圆片转至含有不同浓度的NaHCO3溶液中,给予一定的光照,测量每个培养皿中叶圆片上浮至液面所用的平均时间,以研究光合作用速率与NaHCO3溶液浓度的关系。有关分

光合仪

1、适用范围: 研究光合作用机理,各种环境因子(光、温、营养等)对植物生理生态的影响、植物抗逆性(干旱、冷、热、UV、病毒、污染等)、植物的长期生态学变化等。在植物生理学、植物生态学、植物病理学、农学、林学、园艺学、水生生物学、环境科学、毒理学、微藻生物技术等领域有着广泛的应用。 2、原理: 仪器通过光源提供测量光、光化光及饱和脉冲光,采用独特的脉冲-振幅-调制技术,检测植物在光合作用过程中所产生的微弱荧光,根据荧光的变化通过适当的仪器参数反映植物的光合特性,进而研究植物的光合作用。 3.测定参数: Fo、Fm、F、Ft、Fm’、Fv/Fm、ΔF/Fm’、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶片温度等。 MINI-PAM采用了独特的调制技术和饱和脉冲技术,从而可以通过选择性的原位测量叶绿素荧光来检测植物光合作用的变化。MINI-PAM的调制测量光足够低,可以只激发色素的本底荧光而不引起任何的光合作用,从而可以真实的记录基础荧光Fo。MINI-PAM具有很强的灵敏度和选择性,使其即使在很强的、未经滤光片处理的环境下(如全日照甚至是10000 μmol m-2 s-1的饱和光强下)也可测定荧光产量而不受到干扰。MINI-PAM是野外光合作用研究的强大工具。 超便携式调制叶绿素荧光仪MINI-PAM的特点在于快速、可靠的测量光合作用光化学能量转换的实际量子产量。此外,MINI-PAM秉承了WALZ公司PAM系列产品的一贯优点,通过应用调制测量光来选择性的测量活体叶绿素荧光。基于创新性的光电设计和高级微处理器技术,MINI-PAM在达到超便携设计的同时可以得到灵敏、可靠的结果。同时,MINI-PAM的操作非常简单。 测量光合量子产量只需一个按键(START)操作即可,仪器会自动测量荧光产量(F)和最大荧光(Fm),并计算光合量子产量(Y=ΔF/Fm),得到的数据会在液晶显示屏上显示同时自动存储。此外MINI-PAM还有许多模式(MODE)菜单,包括荧光淬灭分析(qP、qN和NPQ)和记录光响应曲线等,以满足用户的特殊需要。 连接光适应叶夹2030-B后,可以测量光合有效辐射(PAR)、叶片温度和相对电子传递速率(rETR)。内置电池可以满足1000次量子产量测量的需要,仪器内存可以存储4000组数据。 Windows操作软件WinControl可以进行数据传输、数据分析和遥控操作。 标准版的MINI-PAM采用红光作为测量光。根据用户需要,我们也可提供以蓝光(470 nm)作为测量光的MINI-PAM。 功能编辑 1)可测荧光诱导曲线并进行淬灭分析(Fo, Fm, Fv/Fm, F, Fm', ΔF/Fm’, qP, qN, NPQ, rETR, PAR和叶温等) 2)可测光响应曲线和快速光曲线(RLC) 3)51个内置模式菜单,方便参数设置和标准测量 4)可在线监测植物、微藻、地衣、苔藓等的光合作用变化 5)功能强大,特别适合野外操作,实验室内利用WinControl控制时可自编程序 4 常用荧光参数 4.1 Fo、Fm和Fv/Fm Fo和Fm分别为暗适应样品的最小和最大荧光,当光系统II的所有反应中心均处于开放态时得到Fo,均处于关闭态时得到Fm。Fv/Fm反映了(在最适条件下经过暗适应后的)PS II的最大量子产量,其计算公式如下: Fv/Fm=(Fm-Fo)/Fm 生理状态处于最佳状态并且经过充分暗适应的高等植物样品,其Fv/Fm一般在0.8-0.85左右,相当于比值Fm/Fo在5-6左右。“暗适应”不一定非得是严格的长时间黑暗。对Fo而言,背景光应当很低,这样才不至于因还原态光系统II的累积而引起荧光上升。可以通过用黑布盖住样品来检验(若盖住后Fo下降说明背景光太强)。在600 Hz的调制频率下,即使测量光强度设置在最高时,也仅引起Fo的轻微上升。对Fm而言,选择的暗适应就不那么简单了。有几种机制引起光照下的Fm淬灭,它们暗驰豫的速率不同。实际上,中等强度的光强(如室内光强20~40 μmol?m-2?s-1)可能会促进部分驰豫。在野外实验中,Fo和Fm的测定最好在清早太阳尚未直接照射到叶片上时进行。

叶片光合作用强度测定的两种方法

叶片光合作用强度测定的两种方法 一、沉叶浮起法 为了验证叶片光合作用受到光质的影响,可用所给出的特殊光质,按下列实验步骤进行实验设计,并对实验预期进行分析。 例:用沉叶浮起法测定叶片光合作用强度。 1.实验材料与用具:小烧杯3只(对照实验用)、三棱镜(产生不同的单色光:如红光、黄光、绿光)、打孔器(选取同样大小的圆形叶片)、注射器(制备无空气的植物叶片)、40W灯泡(提供照明)、烧杯(提供模拟环境)、富含CO2的NaHCO3稀溶液(提供CO2)、新鲜菠菜叶片。 实验过程中O2和CO2在水中的溶解量可忽略不计。 2.实验步骤 (1)取生长旺盛的菠菜叶,用直径为1cm的打孔器打出小圆片30片(打孔时要避开叶脉较大的部位) (2)将圆形叶片置于注射器内,并让注射器吸入清水,待排出注射器内的空气后,用手堵住注射器前端的小孔并缓缓拉动活塞,使小圆片内的气体逸出。这一步骤可重复N次。 (3)将内部气体逸出的小圆片放入黑暗处盛有清水的浇杯中待用(这样的叶片因为细胞间隙充满清水,所以全部沉水底)。 (4)分组对照实验 ①分为三个组:取三只小落杯编号为甲、乙、丙。各倒入20mL的富含CO2的NaHCO3的稀溶液,并分别向3只小烧杯中各随机放入10片菠菜叶圆片。 ②用40W的灯泡照射三棱镜,三棱镜将光散射成红光、黄光、绿光分别作用用于3只小烧杯甲、乙。丙 ③观察并记录同一时间段内各实验装置中小圆片浮起的数量(叶片完全浮起的观察时间相同,浮起的状态相同) 3.预测结果 单位时间内红光作用的小烧杯内的小圆片浮起的数量最多,绿光作用下的小圆片浮起的数量最少。 4.结果分析 因为绿叶中的色素吸收红光和蓝紫光的能力最强,吸收绿光的能力最弱。因此在红光照射时产生的O2增加最快,叶片上浮的速度也就最快,相反绿光照射的烧杯中和叶片上浮最慢。 5.单色光强度对结果的影响 增强单色光强度能对实验结果产生影响。 二、半叶干重法 测定叶片光合作用速率的方法——半叶干重法,实验过程如下: (注:1.总光合作用速率=净光合速率+呼吸速率;2.光合速率可用单位面积叶片在单位时间内固定的CO2的量或合成有机物的量来表示) 1.选择同一植株上生长状态良好、发育程度相似的叶片若干,叶片主脉两侧对称。 2.在叶柄处经过特殊处理使筛管的运输能力受阻、导管功能正常(即让叶柄可运输水分、无机盐而不能运输有机物。讨论最终结果),保证光合作用和呼吸作用能正常进行。 3.剪取叶片下半部叶片,立即保存于暗处(此叶片简称为暗片),另一半叶片同主脉保留在枝条上给予正常光照(此叶片简称光片)。控制光叶和暗叶的温度、湿度一致,开始记录时间。 4.数小时后剪下光叶。从光叶和暗叶上各切取相同大小的叶块,立即烘干至恒重,分别用分析天平称重,将结果记录在数据表中。通过相关计算和数据处理,可以测定光合作用的速率大小。 (1)将生长状态良好和发育程度相近的叶片作为实验材料的理由:叶片的发育状况不同,它的光合作用和呼吸作用就会不同。将会影响测定的准确度。 (2)阻止筛管运输功能的目的是防止叶片合成的有机物向外运输(从而避免影响实验结果)。如果处理不当使叶脉中的导管也受到损伤,叶片将会出现萎蔫现象。 (3)光叶与暗叶的呼吸作用速度从实验操作来看应该是基本相同或没有明显差异的。 (5)光合作用速度计算 光合作用速度(X)=叶块干重差(光叶干重-暗叶干重(mg)/(叶块面积(cm2)×光照时间(h))。

光合作用测定系统的测定方法及使用注意事项

光合作用测定系统的测定方法及使用注意事项 随着科学研究的深入和现代化光合测定系统的推广,越来越多的植物生理学和植物生态学以及农学、林学、园艺学和遗传学的研究均涉及叶片光合作用的测定。用于叶片光合测定的仪器种类和数量越来越多。这类仪器的使用简便、快捷,几乎人人都能使用,即使对光合作用一无所知的人也可以用它在2 min内测得一组光合速率及有关的参数。然而,尽管使用这类仪器的人很多,但能利用所得资料写出高水平科学论文的人却很少。其中的原因主要的可能是使用者缺乏足够的有关光合作用的背景知识和测定及研究经验,测定方法不当,所得结果不可靠;或者实验设计不合理,难以说明问题;或者是对相关研究现状不清楚,不能明确地提出科学问题;或者是对光合作用的基础知识知之太少,不能对所得结果作出恰当的分析与解释。这几种情况也许兼而有之。为了充分发挥这类现代化但价格昂贵的仪器的作用,将光合作用研究推向深入,这里将光合测定与研究中一些常见的问题提出来,以引起初学者们的注意。 1测定方法 光合作用的一个突出特点是对植物自身生理状态和外界环境条件的变化高度敏感。这一特点,决定了测定方法的复杂性、多样性和灵活性,也决定了测定结果的多变性以及解释这些结果时了解植物状态、测定条件、环境条件、背景知识和研究经验的重要性。 测定时间在田间测定时,不仅要选择无云或少云的晴天,以便保证在太阳光强

相对稳定的条件下进行,而且要注意选择合适的日时段。众所周知,在晴天,光强和温度等环境条件从早到晚都呈现规律性变化,上午逐渐增高,中午达到最高值,然后逐渐降低。叶片的光合作用速率也发生类似的变化。光合速率之所以在中午前后才达到最高值,一是因为上午早些时候光强和温度比较低,二是因为光合作用还处在逐步增高的光合诱导期中。因此,在作不同处理或品种的对比测定时,一定要在光合作用的诱导期结束、光合作用达到稳态之后进行,否则会得到不可靠、不可比、甚至错误的结果。为了避免可能发生的中午光合作用明显降低(“午睡”或“午休”,Xu 和 Shen 2005)对测定结果可比性的影响,以在10:00~ 12:00 和14:00~16:00 之间进行测定较为适宜。除了光合作用日变化的观测以外,过早开始和过晚结束测定,都不合适。为了尽量缩小测定期间环境条件变化的影响,比较类实验的测定时间要尽量短,处理或品种的数目要尽可能少,最好相互交替进行(许大全 2002),以便避免较长时间内环境因素变化对测定结果可比性产生的不良影响。在较长时间阴雨天之后,叶片的光合活力往 往很低,不宜在转晴后立即测定。至少在转晴半天或 1 d 后开始测定。有研究表明,前几天的天气不同(阴雨或晴天),所得观测结果也不同(Yong 等2006)。特别是在观测叶片光合作用的发育变化或季节变化时,更要注意这一点。观测叶片发育期间光合作用的变化,最好在环境因素可控制的条件下例如人工气候室内进行, 以便避免环境因素变化的干扰。 在室内测定时,要注意光合作用的诱导期 (光合速率逐步增高)是否已经结束(光合速率达到稳定不变的状态,即稳态) 的问题,在将植物或叶片从黑暗中转移到光下或从弱光下转移到强光下的时候,测定

相关文档
最新文档