知识点一(极限与连续)

知识点一(极限与连续)
知识点一(极限与连续)

求极限的常用方法

③ 利用两个重要极限

01 、由重要极限及变量替换可以求下列极限:

0sin ()

lim 1,()x x x x ??→=01()

lim 1

()

,

x x x x e

()()

lim 1

()

.

g x x A x

x x e

1

()(()1)()

()1

lim ()

lim[1()1]

.

g x f x g x A f x x x x x f x f x e ??--→→=+-=

其中

lim ()(f(x)1).

x x g x A →-=.

④ 利用无穷小的性质和等价无穷小替换求极限

1~ln (0,1)x a x a a a ->≠;()11~(0x x α

α

α+-≠的常数),等等.

⑥ 利用极限的和、差、积、商运算法则.

lim n

n a n

→∞

+

+=2

lim n n a →∞

=3、 连续函数

(1)函数)(x f 在0x 处连续定义的三种不同表达形式是 ①000

lim lim[()()]0;x x y f x x f x →→?=+?-=

②0

0lim ()();x x f x f x →=

③0,0>?>?δε,使当δ<-||0x x 时,ε<-|)()(|0x f x f .

(2)连续函数的和、差、积、商在它们共同有定义的区间仍为连续函数. (3)连续函数的复合函数仍为连续函数. (4)单调连续函数有单调连续的反函数. (5)一切初等函数在其定义区间内都连续.

(6)闭区间]b a,[上的连续函数)(x f 有下列重要性质:

①)(x f 必在]b a,[上有界且取得最大值M 与最小值m (有界、最大、最小值定理) ②)(x f 必在]b a,[上取得介于)a (f 与)b (f 之间的任何值(介值定理); ③)(x f 必在]b a,[上取得最大值M 与最小值m 之间的任何值;

④如果0)b ()a (

典型例题:

例2. 收敛,并求其极限。 证明:设该数列通项为

n

x ,则

2n x +=,令

()f x =,

f(2)=2

()()()22,22n n n n x f x x f x f ++=-=-,由拉格朗日中值定理得:

存在ξ介于x ,2之间,使得

()()()()'22f x f f x ξ-=-,

(

)1

f

x =、

()()()'2222n n n n x f x f f x ξ+∴-=-=-,由题意得

07n x <<,

(

)07,1

n n f ξξ∴<<=

<

<、 即()'n f α

ξ=,则222,01n n x x αα+-=-<<

12222,k k x x α-∴-=-

由122022k k x x α-≤-=-且12lim 20k k x α-→∞

-=,

由夹逼定理得2lim

20k k x →∞

-=即2lim 2n n x →∞

=,同理可得21lim 2n n x -→∞

=

练习:

1、 利用极限四则运算法则

1 20x → 43

2 sin 2

01sin cos ,0

()0,0x t dt x f x x

x ?≠?=??=?

? 讨论它的连续性 不连续 2、 利用两个重要极限求极限

1、20lim(lim cos

cos ...cos )222

n x n x x x

→→∞ 1

2、当常数 0a ≠,lim(

)n

n n a n a

→∞+- 2a 3、21lim(sin cos )x x x x

→∞+ 2

e

3、利用洛必达法则求未定式极限

1、2

2301lim sin 2x x x e x x -→-- 116

-

2

、0

1

)ln(1)

x x →+ 12-

3、2

10arctan lim(

)x x x x

→ 13e -

4、21lim(sin )n n n n

→∞ 16

e -

4、利用等价无穷小

1、2222

0ln(sin )lim ln()x x x x e x x e x →+-+- 1

2

、4

0x x → 4

5、利用左右极限的关系求极限

1、11011lim arctan 1x x

x e e x →+- 2

π

2、(00数一5)1402sin lim(

)1||

x x x e x

e x →+++ 1 3

、12

,0()0,00

x e x x f x x x -?>?==?< 1

2

6、利用函数的极限求极限 1、ln lim

n n

n

→∞ 0

2

、lim n (1)a > 0

7、利用夹逼法则求极限 1、111...1121n x n n n n

=

++++++ 求极限 1 2、设0i a > 求11

lim (

)k

n n

i

n i a

→+∞

=∑和11

lim ()k

m m i m i a →-∞

=∑ 答案:1max i i k a ≤≤ 1min i i k

a ≤≤

3、1

lim

()n n x f x dx →∞?

其中 ()f x 在 [0,1]上连续 0

8、利用导数的定义求极限 1、()lim

x a

f x b A x a →-=-,求sin ()sin lim x a f x b

x a

→-- cos A b

2、()f x 在x a =处可导,()0f a >,求(1)lim (

)()

n

n f a n f a →+∞

+ e

3、01lim [()()]x x x f t f t x a a →+-- 2

()f t a

' 9、利用定积分求和式的极限

1

、1lim n n

→∞

π

2、2sin sin sin lim[

...]1121n n

n n n n n n n πππ

→∞++++++ 2π

3、111

lim[

...]12n n n n n

→∞

++++++ ln 2 10、利用单调有界准则求极限 1

、0(1,2,...)n x a n =

>= 求极限

12

+ 11、利用泰勒公式求极限 1

、0

(cos )sin x x e x →- 112

-

2、222246

1lim

[cos sin (1)]x x x x x x →-- 2245

练习提高:

1、(08数学一 9)40[sin sin(sin )]sin lim x x x x x →- (提示:用等价无穷小代换或洛必达法则 )1

6 ;

2、(06数一)

0ln(1)

lim

1cos x x x x

→+- (提示:用等价无穷小代换) 2 3、(06数一数二 12)数列{}n x 满足110,sin n n x x x π+<

<=,(1)证明{}n x 极限存在,并求之;(2)

求2

11lim(

)n x n n n

x x +→∞

(提示:1、利用单调有界公理,2、利用重要极限)1、0,2、16e - 4、(03数一4)21ln(1)

lim(cos )

x x x +→ (提示:先写成指数形式)

5、(00数一12)1402sin lim(

)1||

x x x e x

e x →+++ (提示:讨论左右极限) 1 6、(07数三 4)323

1

lim

(sin cos )2x x x x x x x →+∞++++ 0

7、(06数三4)

(1)1lim(

)n

n n n

-→∞+ 1

8、(05数三12)011lim()

1x x x e x -→+-- (提示:用洛必达法则) 3

2 9、(05数三4)0sin lim (cos )5x x x

x b e a

→-=-,则a= b= 1,4-

10、(04数三9)

22201cos lim()sin x x x x →- 4

3

11

、设1103,1,2,...)n x x n +<

<==,证明数列{}n x 的极限存在,并求极限。

(提示:用单调有界公理,

3a a =- 3

2

a =

) 12、求极限sin sin sin lim(

)sin x

t x t x t x

-

→,求极限()f x ,并指出其间断点的类型。 (

sin ()x x

f x e = ,0x =可去间断点,()x k k Z π=∈为第二间断点)

13、11

lim ln x x x x x

→- 1

14、30

12cos lim

[()1]3x x x x →+- 1

6

-

15(08数三4)设函数21,()2,x x c

f x x c x ?+≤?

=?>??

在(,)-∞+∞内连续,则c = . 1

16、(08数三10)求极限20

1sin lim

ln

x x

x x

→. 解: 220

01sin 1sin lim

ln lim ln 11x x x x x x x x →→??=+- ???

300sin sin 1

lim lim 66x x x x x x x →→-==-=- 17、(05数三4)极限12sin lim 2+∞→x x

x x = 2

18、(05数三9) 求).1

11(lim 0x

e x x x --+-→ 32

题型一 无穷小及其阶

1、(09数1,2,3)(1)当0x →时,()sin f x x ax =-与2

()ln(1)g x x bx =-等价无穷小,

(A )11,6a

b ==-

(B )11,6a b ==(C )11,6

a b =-=- (D )1

1,6

a b =-=

(A ) 2、当0x →时,函数sin 20

()sin x

f x t dt =

?

与34()g x x x =+比较是 ( )的无穷小

(A )等价 (B )同阶非等价 (C )高阶 (D )低阶 (B )

3、设0,0αβ>>为任意正数,当x →+∞时,将1,1ln ,x

x x e

α

β

-按从低阶到高阶的顺

序排列。 答案:1ln ,1,x

x x e β

α

- 4、当0x →时,213

(1)ax +与cos 1x -是等价无穷小,则a =________ 32-

5、(07数一4)当0x +

→时,

等价的无穷小量是 应选(B).

(A)

1-

(B) .

(C) 1.

(D) 1- 【 】

6、(04数一4)把+

→0x 时的无穷小量2

cos ,x

t dt α=

?

,2

,x β=?

30t dt

γ=使排在后面的是前一个的高阶无穷小,则正确的排列次序是

(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ]

题型三 讨论函数的连续性与间断点的类型

1、 求函数 tan(4)

()(1)

x

x f x x π-=+在(0,2)π内的间断点,并判断类型2、

2、 (09数二,数三)函数3

()sin x x f x x

π-=的可去间断的个数,则 ( )

(A )1

(B )2

(C )3

(D )无穷多个 【答案】(C

3、2,1()1,1x x f x x x ?≤=?->?,,2()2(1),253,5

x x g x x x x x ≤?

?

=-<≤??+>?

讨论(())y f g x =的连续性并指出间断

点的类型 答案:1x = 是第一间断点

4、(08数三4) 设函数()f x 在[1,1]-上连续,则0x =是0

()()x

f t dt

g x x

=

?的

(A )跳跃间断点 (B )可去间断点 (C )无穷间断点 (D )震荡间断点 【答案】B 5、(07数一 4)设函数f (x )在x =0处连续,下列命题错误的是: 【答案】 应选(D).

(A) 若0()lim

x f x x →存在,则f (0)=0. (B) 若0()()

lim x f x f x x

→+-存在,则f (0)=0.

(C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()()

lim x f x f x x

→--存在,则(0)f '存在

极限与连续基础练习题含解答

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.468 2, ,,357 极限为1 2.1111 1,,,,,2345 --极限为0 3.21 2212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞ x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x + → 无极限,趋于-∞ 二、设2 221, 1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 2 1 1 lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x -- →→=+= 22 2 lim ()lim(1)3x x f x x ++ →→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 11x f x e = +,求 0x →时的左、右极限,并说明0x →时极限是否存在.

lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1 sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当 0x →时,1sin 0x x →;当1x →时,1 sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 22 1 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x , k Z ∈ ()2x k ππ-→+时,tan x →+∞,则ln tan x →+∞,从而+1 0ln tan x →为无穷小量; x k π+→时,tan 0x +→,则ln tan x →-∞,从而1 0ln tan x -→为无穷小量; 4x k ππ→+时,tan 1x →,则ln tan 0x →,从而1 ln tan x →∞为无穷大量; 三、当0+ →x 时,2 x ,阶的无穷小量分别是谁? 2 00lim lim 01x x x ++→→==,所以当0+→x 时,2x 22 300lim lim 0 1 x x x x ++→→==,所以当0+→x 时,2x 的高阶无穷小量。

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限” 说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,能够出选择题也能够出填 空题,更能够出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极 限的形式给出的。 第一,极限的定义。理解数列极限和函数极限的定义,记住其定义。 第二,极限的性质。性,有界性,保号性和保不等式性要理解, 重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的 本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在 做题目的时候能够看看什么情况下利用了极限的保号性,例如:题目 中有一点的导数大于零或者小于零,或者给定义数值,能够根据这个 数值大于零或小于零,像这样的情况,就能够写出这个点的导数定义,利用极限的保号性,得出相对应的结论,切记要根据题目要求来判断 是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。 第三,极限的计算。这个部分是重中之重,这也是三大计算中的 第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会 计算不同类型的极限计算。首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹 逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定 义求极限。其次还要掌握每一种极限计算的注意事项及拓展,比如: 四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷 形式的,分别抓分子和分母的次计算结果即可),等价无穷小替换中要 掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换 公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第 二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替

高考一轮复习极限知识点归纳总结

高考一轮复习极限知识点归纳总结对于极限的复习是否还有所不熟,今天的编辑为考生们带来的极限知识点,希望给大家以帮助。 考试内容:教学归纳法,数学归纳法应用,数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. 13. 极限知识要点 1. ⑴第一数学归纳法:①证明当取第一个时结论正确;②假设当 ( )时,结论正确,证明当时,结论成立. ⑵第二数学归纳法:设是一个与正整数有关的命题,如果 ①当 ( )时,成立; ②假设当 ( )时,成立,推得时,也成立. 那么,根据①②对一切自然数时,都成立. 2. 函数极限; ⑴当自变量无限趋近于常数 (但不等于 )时,如果函数无限趋进于一个常数,就是说当趋近于时,函数的极限为 .

记作或当时, . 注:当时,是否存在极限与在处是否定义无关,因为并不要求 .(当然,在是否有定义也与在处是否存在极限无关. 函数在有定义是存在的既不充分又不必要条件.) 如在处无定义,但存在,因为在处左右极限均等于零. ⑵函数极限的四则运算法则: 如果,那么 特别地,如果C是常数,那么 注:①各个函数的极限都应存在. ②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限: ② (0 ( 1) 4. 函数的连续性: ⑴如果函数f(x),g(x)在某一点连续,那么函数在点处都连续. ⑵函数f(x)在点处连续必须满足三个条件: ①函数f(x)在点处有定义;② 存在;③函数f(x)在点处的极限值等于该点的函数值,即 . ⑶函数f(x)在点处不连续(间断)的判定: 如果函数f(x)在点处有下列三种情况之一时,则称为函数f(x)的不连续点.

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

考研数学极限知识点全解

2017考研数学极限知识点全解 来源:文都图书 极限是高数中的重要知识点,也是考研数学的重要考点,我们一起来了解一下极限在考研大纲中的相关考点,及其题型等。 一、极限在考研数学中的要求 根据考研大纲,极限需要理解和掌握的是:极限的概念,函数左右极限的概念以及函数极限存在与左右极限的关系,极限的性质及四则运算法则,极限存在的两个准则,利用两个重要极限计算极限的方法,无穷小量、无穷大量的概念,无穷小的比较方法。 要求会求和了解的是:利用极限存在的两个准则求极限,用等价无穷小量求极限。 二、极限是高等数学的基础 1、极限是高数三大基本工具(极限、微分、积分)中最基本的工具,也是微分与积分的基础。另外高等数学中很多概念都是通过极限来定义的,如连续的概念,导数的概念,定积分的概念以及级数的概念都是通过极限来定义的。考研数学虽然大多数题目是计算题,但是只记住计算步骤,死记硬背,是万万不行的。要想考高分,需要对基本概念的理解到位,否则你学的知识就如同浮光掠影,很难取得好成绩。因此,我们从最基础的极限开始就要学习到位,基本概念理解好,极限计算要熟练,为以下各章节的学习打好基础。 2、考研中的很多题目也间接与极限有联系,尤其是极限的计算一定要过关,因为很多题目的计算都会用到极限的计算。如判断函数的连续性,找函数的间断点的类型,求渐近线,求函数一点数的导数,级数的敛散性的判别,求幂级数的收敛半径和收敛域,这些问题都会用到极限,如果极限不会求这些题目就无法做出来。所以考生在复习极限这章的时候一定要到位,计算尤其要过关,否则后患无穷。 三、极限在考研数学中的常见题型

极限这部分不计间接命题,直接命题的分值一般是一道小题(4分)和一道大题(10分左右),足见本章内容的重要性。 直接命题常见题型: (1)考查极限的概念,常见于选择题; (2)求极限式中的未知参数; (3)直接计算函数的极限; (4)考查极限的概念,常见于选择题; (5)利用收敛准则,求数列极限,常见于数一、数二。 (6)结合无穷小的比较考查极限的计算; 上面总结归纳了考研数学极限知识点的相关知识点,并且对题型进行了分析,考生们认真学习吧,希望对你们的备考有帮助,汤家凤编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书按照考研大纲所编写,并且附有相关练习题,基础、强化、巩固一体,可以好好利用哦,加油。

高考数学主要考查哪些知识点

2019年高考数学主要考查哪些知识点 第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计。这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 第七,解析几何。是高考的难点,运算量大,一般含参数。 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”

为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧

极限知识点

高中数学第十三章-极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1) 理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2) 了解数列极限和函数极限的概念. (3) 掌握极限的四则运算法则;会求某些数列与函数的极限. (4) 了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. § 13.极限知识要点 1. ⑴第一数学归纳法:①证明当n取第一个m时结论正确;②假设当n k ( k N ,k 时,结论 n0)正确,证明当n k 1时,结论成立. ⑵第二数学归纳法:设P(n)是一个与正整数n有关的命题,如果 ①当n n0 ( n0N )时,P(n)成立; ②假设当n k (k N ,k no)时,P(n)成立,推得n k 1时,P(n)也成立. 那么,根据①②对一切自然数n n0时,P(n)都成立. 2. ⑴数列极限的表示方法: ①lim a n a n ②当n 时,a n a . ⑵几个常用极限: ①lim C C ( C为常数) n a 1 ........ ②lim w 0 (k N,k是常数) n n k ③对于任意实常数, 当|a| 1 时,lim a n 0 n 当 a 1 时,若 a = 1,贝U lim a n 1 ;若a 1,贝U lim a n lim ( 1)n不存在 当a 1时,lim a n不存在n ⑶数列极限的四则运算法则: 如果lim a n a, lim b b b,那么n n ①lim (a n b n) a b n ②lim (a n b n) a b n ③lim 色a(b 0) n b n b 特别地,如果C是常数,那么 lim (C a n) lim C lim a n Ca. n n n ⑷数列极限的应用: 求无穷数列的各项和,特别地,当q 1时,无穷等比数列的各项和为S —(q 1). (化循环小数为分数方法同上式)

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

(完整版)极限与连续

第二章 极限与连续 本章教学内容 本章介绍了数列极限与函数极限的概念、基本知识和基本理论以及函数连续性的基本知识. 微积分是一门以变量(函数等)作为研究对象、以极限方法作为基本研究手段的数学学科,无论是微分学、积分学、还是无穷级数问题都需以极限为工具进行研究,整个微积分学就是建立在极限论的基础之上的. 连续性是函数的一个重要的分析性质,本章运用极限引入函数连续性的概念. 在微积分学中讨论的函数,主要是连续型的函数,它有许多良好的性质,它是本课程的主要研究对象. 教学思路 1. 学习微积分的一个直接的重要的目的是掌握研究函数的微观性态和宏观性态的方法.这一点无论对学术研究能力的培养还是对研究生入学应试,都是非常重要的.当然,学习微积分的目的还有其更重要的另外一面,那就是培养和训练思维与思考问题的模式,掌握学习未知世界的方法与技巧,不管你将来是否从事数学及其相关学科,如能达到上述境界,则必会长期受益. 2.极限的思想、概念与方法是分析数学问题的基本工具和语言.数列极限和函数极限都是高等数学重要的基础,但相对而言,前者是训练和培养极限思维模式的基础.对数列极限的有关概念和方法,站到较高台阶上去思考,将有助于全部微积分内容的学习.因此,极限的基本概念要讲透,使学生能接受并理解其深刻的内涵.要使学生会熟练地求极限.可让学生适当地多做一些练习题. 3.用“N -ε”、“δε-”语言定义极限不能省略,不要求学生会做有关的习题,但要领会,以便理解有关的定理的证明. 4.函数的连续性作为承上(极限理论与方法)启下(微分、积分概念)的重要环节,它是用极限等工具研究函数局部性质与整体性质的开始.函数在一点处连续的概念描述了函数的局部性质,而在一个区间上的连续性则描述了一个函

大学高等数学知识点

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =;*1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞;*lim ()x f x →∞ (含x →±∞);*0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

极限与连续部分基本概念(20200511213748)

极限与连续(包含第三章集合映射和函数) § 1函数及其特性 基本概念 1. 集合集合的表示方法集合的关系及运算(见书中概念) 2 ?映射 3. *函数定义域值域 函数的两要素:定义域对应法则 4. 反函数y=f(x) y= f_1(x) 注意(1)不是任一函数都存在反函数,反函数存在的条件; (2) 一个函数y=f(x)与它的反函数y= f _1(x)互为反函数; (3) y=f(x)与y二f'(x)图像关于直线y=x对称; (4) y = f (x)的定义域即为y二f」(x)值域,而y二f(x)的值域即为y二f '(X)的定义域。 5. 函数的基本性质 (1)有界性 界是不唯一的;函数的有界性与区间有关(如函数y二丄在区间(1, 2) x 有界,但在(0, 1)无界); (2)单调性函数的单调性在后面的导数应用中还会用到 函数的单调性也与区间有关(如函数y二x2在(」:,0)上是减函数, (0/ )上是增函数);如一函数在某区间是严格增函数(或减函数),则其必有 反函数。 (3)奇偶性(函数要定义在一对称区间上) 偶函数的图像关于y轴对称,奇函数的图像关于坐标原点对称且f(0)=0;判断一函数的奇偶性只需验证f(x)与f(-x)关系. (4)周期性 f (x)= f (x+T)= f (x+ 灯) k 为整数 三角函数的周期性。 6. 幕函数,指数函数,对数函数

常用的指数函数:y二e x,常用的对数函数:y = In x ;指数函数与对数函

数互为反函数。 7. 基本初等函数 幕函数,指数函数,对数函数,三角函数,反三角函数统称为基本初等函数。 对于基本初等函数的图形及其基本特性必须熟练掌握。 8. 复合函数 掌握两个(或多个函数)是如何复合构成新函数的(即复合函数是如何复合而成的)。 9. 初等函数 10. 分段函数 分段函数不是两个或多个函数,它是一个函数,只是自变量在不同的取值范围其函数表达式不同。 分段函数在分段点处极限的存在性,连续性,可导性等都是难点。 § 2数列极限 基本概念 1. 数列极限 数列极限是一常数,是随着数列项数的增加通项的一种变化趋势 2. 数列极限的四则运算 数列极限的四则运算的前提两个数列极限都存在。 § 3函数极限 一、基本概念 1. 函数极限 自变量的变化趋势共有6种情形: f (x)在(a,=)上有定义; f (x)在(- :,a)上有定义; f (x)在(-,-a)一(a,二)上有定义; 结论:limf(x)=A二lim f(x)= lim f(x) = A X ?二x、二X W 曲型: (a) lim arctan x ,lim arctan x - XT讼 2 i q 2 (1) lim f (x)二A XT讼 (2) lim f (x)二A X T-°O (3) lim f(x)二A X T^O

极限知识点(2020年10月整理).pdf

高中数学第十三章-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim

高中数学知识点专题复习-极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1,21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高考数学极限知识点总结及解题思路方法

高考数学极限知识点总结及解题思路方法 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当 k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim

②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01lim 是常数k N k n k n ∈=∞ → ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞→∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞ →lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim ③)0(lim ≠= ∞ →b b a b a n n n 特别地,如果C 是常数,那么 Ca a C a C n n n n n =?=?∞ →∞ →∞ →lim lim )(lim . ⑷数列极限的应用: 求无穷数列的各项和,特别地,当1 q 时,无穷等比数列的各项和为 )1(11 q q a S -= . (化循环小数为分数方法同上式) 注:并不是每一个无穷数列都有极限. 3. 函数极限; ⑴当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限

高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 0''' ' 1' 'x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

(完整版)函数极限与连续习题含答案

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限 (2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续 (3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续 (4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若a x f x x =→)(lim 0 ,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0 C 、)(x f 在0x x =处可以无意义 D 、x 可以只从一侧无限趋近于0x 3、下列命题错误的是( D ) A 、函数在点0x 处连续的充要条件是在点0x 左、右连续 B 、函数)(x f 在点0x 处连续,则)lim ()(lim 0 0x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00 x f x f x x =→ 4、已知x x f 1)(=,则x x f x x f x ?-?+→?)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B ) A 、1lim 0=→x x x B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→x b ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和 7、已知,2)3(,2)3(-='=f f 则3 )(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x a x a x ( D )

(完整版)高中极限基本知识点

极限 基础知识: 1.特殊数列的极限 (1)0||1lim 11||11n n q q q q q →∞? L L 不存在 . (3)()111lim 11n n a q a S q q →∞-==--(S 无穷等比数列}{ 11n a q - (||1q <的和). 2. 函数的极限定理 0lim ()x x f x a →=?00 lim ()lim ()x x x x f x f x a -+→→==. 3.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤; (2)00 lim (),lim ()x x x x g x a h x a →→==(常数), 则0 lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立. 4.几个常用极限 (1)1lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,00 11lim x x x x →=. 5.两个重要的极限 (1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞??+= ??? (e=2.718281845…). 6.函数极限的四则运算法则 若0lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????; (3)()()()0lim 0x x f x a b g x b →=≠.

高等数学课件-- 极限与连续(可编辑)

第一节极限的定义二、两个重要极限三、无穷小的比较二、初等函数的连续性三、闭区间上连续函数的性质五、函数连续性的定义***** 六、函数的间断点间断点分类: 例如: 内容小结练习备用题确定函数间断点的类型. 2. 求三、极限3. 无穷小例6. 求下列极限:令例7. 确定常数a , b , 使显然为其可去间断点. (4) (5) 为其跳跃间断点. 左连续右连续第一类间断点可去间断点跳跃间断点左右极限都存在第二类间断点无穷间断点振荡间断点左右极限至少有一个不存在在点间断的类型在点连续的等价形式⑸利用分子、分母消去共同的非零公因子求形式的极限;⑹利用分子,分母同除以自变量的最高次幂求形式的极限;⑺利用连续函数的函数符号与极限符号可交换次序的特性求极限;⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4. 定理左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性, 极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系初等函数的连续性,闭区间上连续函数的性质. 二、学法建议1 .本章的重点是极限的求法及函数在一点的连续的概念,特别是求极限的方法,灵活多样.因此要掌握这部分知识,建议同学自己去总结经验体会,多做练习.2 .本章概念较多,且互相联系,例如:收敛,有界,单调有界;发散,无界;无穷大, 极限,无穷小,连续等.只有明确它们之间的联系,才能对它们有深刻的理解,因此同学们要注意弄清它们之间的实质关系.3 .要深刻理解在一点的连续概念,即极限值等于函数值才连续.千万不要求到极限存在就下连续的结论; 特别注意判断分段函数在分段点的连续性.三、例题精解例1 求下列极限: (1) (2) (3) (4) (5) 例2 设问当为何值时,

相关文档
最新文档