北京丰台区第二中学数学分式解答题(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学分式解答题压轴题(难)
1.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20
天,而甲工厂每天加工的数量是乙工厂每天加工的数量的2
3
,公司需付甲工厂加工费用为
每天 80 元,乙工厂加工费用为每天 120 元.
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.
【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.
【解析】
【分析】
(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.
(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.
【详解】
(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,
则:解得:x=16
经检验,x=16 是原分式方程的解
∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品
(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天
需要的总费用为:60×(80+15)=5700 元
方案二:乙工厂单独完成此项任务,则
需要的时间为:960÷24=40 天
需要的总费用为:40×(120+15)=5400 元
方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则
16a+24a=960
∴a=24
∴需要的总费用为:24×(80+120+15)=5 160 元
综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.
【点睛】
本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方
案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案. 2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:
(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x
+的最大值为__________. (2)当0x >时,求2316x x y x
++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x
>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x
++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;
(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.
【详解】
解:(1)当x >0时,112x x x x +
≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝
⎭ ∵()1122x x x x ⎛⎫--≥-⋅-= ⎪⎝⎭
∴12x x ⎛
⎫---≤- ⎪⎝⎭
∴当0x >时,1x x +的最小值为2;当0x <时,1x x
+的最大值为-2; (2)由2316163x x y x x x
++==++ ∵x >0,
∴163311y x x =+
+≥= 当16x x
= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9
则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD
∴x :9=4:S △AOD
∴:S △AOD =36x
∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.
3.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?
【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天 (2)工程预算的施工费用不够用,需追加预算8万元
【解析】
试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;
(2)首先求出两队合作需要的天数,进而求出答案.
试题解析:解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23
x 天.