多级轴流压气机内部噪声测试及频谱演化特征分析

多级轴流压气机内部噪声测试及频谱演化特征分析
多级轴流压气机内部噪声测试及频谱演化特征分析

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波 一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

噪声测试及频谱分析

噪声测试及频谱分析 实验步骤及内容 1)启动服务器,运行DRVI主程序,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“ DRVI采集仪主卡检测(USB)”进行服务器和数据采集仪之间的注册。 联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服 务器”,开始监听8500端口。 2)打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对 话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服 务器之间的认证。 3)因为该实验的目的是了解噪声信号的测量方法,并且要实现服务器端的数据共享功能,需要分别设计服务器端和客户端的实验脚本。对于服务器端,首先需要将 数据采集进来,DRVI中提供了一个8通道的USB数据采集芯片,用于完成对外部信号的数 据采集,实际使用中,可以插入一片“ USB数据采集卡”芯片空来完成;数据采集仪的 启动采用一片“0/1按钮”芯片来控制;要完成噪声值的计 算,首先必须计算出信号的功率谱,所以需选择一片“频谱计算”芯片」,然后 再插入一片“倍频程”芯片匚』,采用FFT算法来计算并显示声音信号的倍频程谱,并将 计算出的声音信号的分贝值存储于输出数组的第1位,再使用一片 “VBScript脚本”芯片妙,在其中添加脚本文件将“倍频程”芯片输出数组中的第1位 数据(即噪声值)取出,并通过“数码LED”芯片口显示出来;另外选择一片“波形/频谱 显示”芯片用于显示声音信号的时域波形;再加上一些 文字显示芯片;殂和装饰芯片二L ,就可以搭建出一个“噪声测量”服务器端的实验,所 需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图 1.2 所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属 性窗中相应的连线参数就可以完成该实验的设计和搭建过程。 1※说明:红线和虚线表示单变量数据线,蓝线和实线表示数组型数 据线,箭头代表数据或信号在软件总线中的流动方向。 图1.2噪声测量实验参考设计原理图

压气机性能实验报告

天津市高等教育自学考试 模具设计与制造专业 热工基础与应用 综合实验报告 (一)压气机性能实验 主考院校: 专业名称: 专业代码: 学生姓名: 准考证号:

一、活塞式压气机概述 1.活塞式压气机结构及工作原理 (1)活塞式压气机结构 压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。 本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。 活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。 图1.1 活塞式压气机机构简图 图1-2 三维仿真示意图

(2)活塞式压气机工作原理: 电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。 具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。当缸内压力高于输出空气管道内压力p后,排气阀打开。压缩空气送至输气管内,这个过程称为排气过程。 这种结构的压缩机在排气过程结束时总有剩余容积存在。在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。且由于剩余容积的存在,当压缩比增大时,温度急剧升高。特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。压力超过 0 . 6MPa ,各项性能指标将急剧下降。故当输出压力较高时,应采取分级压缩。分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。 活塞式空压机有多种结构形式。按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。按压缩级数可分为单级式、双级式和多级式三种。按设置方式可分为移动式和固定式两种。按控制方式可分为卸荷式和压力开关式两种。其中,卸荷式控制方式是指当贮气罐内的压力达到调定值时,空压机不停止运转而通过打开安全阀进行不压缩运转。这种空转状态称为卸荷运转。而压力开关式控制方式是指当贮气罐内的压力达到调定值时,空压机自动停止运转。 二、实验内容 1.实验目的 (1)压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。 (2)掌握指示功、压缩指数和容积效率的基本测试方法。 (3)对使用电脑采集、处理数据的全过程和方法有所了解。 2.实验装置及测量系统 本实验仪器装置主要由:压气机、电动机及测试系统所组成。 测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机, 压气机型号:Z—0.03/7 汽缸直径:D=50mm 活塞行程: L=20mm 连杆长度:H=70mm,转速:n=1400转/分

实验二 压气机的性能

实验二压气机的性能 压气机在工程上应用广泛,种类繁多但其工作原理都是消耗机械能(或电能)而获得压缩气体,压气机的压缩指数和容积效率等是衡量其性能优劣的重要参数,本实验是利用微机对压气机的有关参数进行实时动态采集,经计算处理,得到展开的和封闭的示功图,从而获得其平均压缩指数n、容积效率η ,指示功W c、指示功率P等性能参数。 v 一、实验目的 1.掌握用微机检测指示功,指示功率,压缩指数和容积效率等基本操作测试方法; 2.掌握用面积仪测量不同示功图的面积,并计算指示功,指示功率,压缩指数和容积效率。 3.对微机采集数据和数据处理的全过程和方法有所了解。 二、实验装置及测量系统 本实验装置主要由压气机和与其配套的电动机以及测试系统所组成,测试系统包括压力传感器,动态应变仪,放大器,A/D板,微机,绘图仪及打印机,详见图2-1所示。 1

压气机的型号:Z——0.03/7 气缸直径:D=50mm,活塞行程:L=20mm 连杆长度:H=70mm,转速:n=1400转/分 为获得反映压气机性能的示功图,在压气机气缸上安装了一个应变式压力传感器,供实验时输出气缸内的瞬态压力信号,该信号经桥式整流以后送至动态应变仪放大;对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄转角信号的同步,这二路信号经放大器分别放大后送入A/D板转换为数值量,然后送到计算机,经计算机处理便得到了压气机工作过程中的有关数据及展开示功图和封闭的示功图,详见图2-2和图2-3。 三、实验原理 1.指示功和指示功率 指示功——压气机进行一个工作过程、压气机所消耗的功W c,显然其值就是P—V图上工作过程线cdijc所包围的面积,即 W W=W?W1?W2×10?5(kgf—m) 式中S——测面仪测定的P—V图上工作过程线所围的面积(mm2) K1——单位长度代表的容积(mm3/mm);即 W1=WWW2 4WW 1

噪声测试及频谱分析

噪声测试及频谱分析 一. 实验步骤及内容 1)启动服务器,运行DRVI主程序,然后点击DRVI快捷工具条上的“联机注册”图 标,选择其中的“DRVI采集仪主卡检测(USB)”进行服务器和数据采集仪之间 的注册。联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服 务器”,开始监听8500端口。 2)打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具 条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对 话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端 和服务器之间的认证。 3)因为该实验的目的是了解噪声信号的测量方法,并且要实现服务器端的数据共享 功能,需要分别设计服务器端和客户端的实验脚本。对于服务器端,首先需要将 数据采集进来,DRVI中提供了一个8通道的USB数据采集芯片,用于完成对外 部信号的数据采集,实际使用中,可以插入一片“USB 数据采集卡”芯片来完 成;数据采集仪的启动采用一片“0/1按钮”芯片来控制;要完成噪声值的计 算,首先必须计算出信号的功率谱,所以需选择一片“频谱计算”芯片,然后 再插入一片“倍频程”芯片,采用FFT算法来计算并显示声音信号的倍频程 谱,并将计算出的声音信号的分贝值存储于输出数组的第1位,再使用一片 “VBScript 脚本”芯片,在其中添加脚本文件将“倍频程”芯片输出数组中的 第1位数据(即噪声值)取出,并通过“数码LED ”芯片显示出来;另外选 择一片“波形/频谱显示”芯片,用于显示声音信号的时域波形;再加上一些 文字显示芯片和装饰芯片,就可以搭建出一个“噪声测量”服务器端的实 验,所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图1.2 所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属 图1.2 噪声测量实验参考设计原理图

应用Matlab对含噪声语音信号进行频谱分析及滤波

一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。 分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,

画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp =3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

噪声测量和频谱分析仪器

噪声测量和频谱分析仪器 概述:噪声测量和频谱分析仪器,本底噪声低,动态范围大;模块化设计,配置不同硬件和软件模块,使仪器分别具有噪声频譜分析、积分采集、统计分析、24h测量、脉冲噪声测量、混响时间测量等不同的功能。仪器采用数字检波和开关电容滤波技术,具有精度高、稳定性好、可靠性高等特点。测量和分析结果可以保存、打印、送入计算机。适用于各种工业噪声测量和频谱分析、环境噪声监测,以及建筑物内混响时间测量。 特点:◎超大容量储存;◎大屏幕LCD显示,有背光; ◎F型和G型内置倍频程滤波器;◎D型可测脉冲噪声。 系列产品模块选择和组合及用途,如下表: 模块配置 频谱分析 统计分析 主要技术性能: 模块型号 用途 积分采集和脉冲噪声测量 统计分析和24h测量 统计分析、频谱分析和混响时间测量 符合标准 GB/T3785 1型,JJG188-2002 1级,IEC 61672-1:2002 1级 2级 传声器 AW A14423型预极化测试电容传声器(1/2”),标称灵敏度50mV/Pa AW A14421 本机噪声 小于18dB(A),23dB(C),28dB(F) 小于23dB(A) 测量上限 130dB

频率范围 10 Hz~20 kHz 20Hz~12.5kHz 频率计权 A,C,Flat (平直响应) 时间平均 F,S,I及线性平均 指数平均(有效值) F,S及线性平均 量程 10~80,20~90,30~100,40~110,50~120,60~130 线性工作范围 70dB 内置滤波器 —— 1/1倍频程滤波器, 中心频率: 31.5 Hz~16 kHz 1/1倍频程滤波器, 中心频率: 31.5 Hz~8 kHz 测量方式 Lp,Leq,Lmax,Lmin,LAE,E Lp,Leq,Lmax,Lmin,LAE,E,L5,L10,L50,L90,L95和24h测量采样时间间隔 31ms(脉冲测量7.8ms) 31ms 31ms(Tr测量16ms) 积分时间

离心式压气机的工作原理

航空发动机原理

压气机的工作原理 根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。此外还有轴流式与离心式压气机混合而成的混合式压气机。目前使用最广泛的是轴流式压气机,以下将作重点介绍。 轴流式压气机的基本组成,由静子和转子组成。静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。 轴流式压气机的叶轮和整流环是交错排列的。一个叶轮和后面相邻的整流环构成了压气机的一级。单级压气机增压比不高。一般约为1.2-1.8。为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。 有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。空气在压气机中的流动 从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。

所以空气在基元级中的流动可看成压气机工作的缩影。把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。 目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。在20世纪40年代末和50年代初、涡喷发 动机也曾采用离心式压气机。 离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能,速度下降, 压力和温度都上升。导气管:使气流变为轴向, 将空气引入燃烧室。 离心式压气机属于叶片机械,其工作原理是以高速气流与工作叶轮和固定叶片的相互动力作用为基础,与容积式压气机相比离心式压气机的优点是:消耗同样的功率时,比容积式压气机的效率高,并能得到较高的增压压力,一般能达到0.147~0.196MPa以上;结构简单紧凑,重量轻,金属消耗量少。目前离心式压气机在内燃机增压方面获得广泛的应用。离心式压气机的缺点是随着转速的降低,增压压力便急剧下降。空气经滤清器进入气道,进气道的断面沿气流方向逐渐缩小,以便提高气流的稳定性。进气道一定要能保证在流动损失为最小的情况下,把空气均匀地导向工作轮。工作轮装装花链轴上,尺寸小的可安装在光轴上。工作轮可由曲轴通过机械驱动,也可直接由涡轮机驱动。 空气沿进气道进入工作轮随工作轮一起旋转,受到离心力的作用沿着工作轮上叶片所构成的通道流动,使空气受到压缩,这时压力从P1增加到P2,气流速度从c1增加到c2,驱动工作轮的机械功转化为空气在工作轮中获得的动能,和以压力形式表现的势能。工作轮出口处的功能一般为气流总能量的一半,因此,

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

含噪声的语音信号分析与处理设计

课程设计任务书 学生姓名:苗强强专业班级:电信1204 指导教师:阙大顺沈维聪工作单位:信息工程学院 题目: 程控宽带放大器的设计 初始条件: 程控宽带放大器是电子电路中常用模块,在智能仪器设备及嵌入式系统中有广 泛的应用。因此对于电子信息专业的技术人员来说,熟练掌握该项技术很有必要。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求) (1)输入阻抗>1KΩ,单端输入,单端输出,放大器负载电阻为600Ω; (2)3dB通频带10kHz~6MHz,在20kHz~5MHz频带内增益起伏<1dB。 (3)增益调节范围10 dB~40 dB,(通过键盘操作调节)。 (4)发挥部分:当输入频率或输出负载发生变化时,通过微处理器自动调节,保持 放大器增益不变。 (5)电路通过仿真即可。 时间安排: 1. 任务书下达,查阅资料 1天 2. 制图规范、设计说明书讲解 2天 3. 设计计算说明书的书写 5天 4. 绘制图纸 1天 5. 答辩 1天 指导教师签名:年月日 系主任(或责任教师)签名:年月日

滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB IIR滤波器 FIR滤波器

HS6288B型噪声频谱分析仪技术说明书

HS6288B型噪声频谱分析仪技术说明书 一、概述 HS6288B型噪声频谱分析仪是一种袖珍式的智能化噪声测量仪器,它集积分、噪声统计、噪声采集等几种功能于一体,主要性能指标符合IEC61672标准和JJG188-2002声级计检定规程对2级声级计的规定要求。 HS6288B具有大屏幕液晶显示、时钟设置、自动测量并存储测量数据等特点,最多可存储500组单组数据、4组整时数据和50组滤波器自动测量数据,并且可以通过RS-232C口把数据传输给HS4784打印或传输给计算机进行处理,在设计上有许多创新,能满足多种测量要求。 本仪器结构紧凑、造型美观、功能多、自动化程度高,可广泛应用于环保、工厂、学校、科研等部门进行噪声测量及分析。 二、主要技术指标 1.传声器:1/2英寸驻极体测试电容传声器(HS14423) 2.测量范围:35dB~130dB(A、C); 40dB~130dB(Lin) 3.频率计权:20Hz~10kHz 4.时间计权:F( 快 )、 S( 慢 ) 5.滤波器:1/1倍频程 6.自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。 7.测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。 8.时钟:年、月、日、时、分、秒设置运行。 9.测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。 10.接口:分析仪通过RS-232C将数据传输给HS4784打印或传输给计算机处理。 11.校准:使用HS6020校准至93.8dB。 12.显示器:使用专门为噪声测量仪器设计的LCD显示器。 13.电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。

第三章 轴流压气机工作原理

第三章 轴流压气机的工作原理 压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、 高温气体。根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机 和离心式压气机。本章论述轴流式压气机的基本工作原理,重点介绍压气机基元级和压气机 一级的流动特性及工作原理。 第一节 轴流压气机的增压比和效率 轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转 子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。转子上的叶片称为动叶,静子上的叶片称为静叶。每一排动叶(包括动叶安装盘)和紧随其后的一排静叶(包括机匣)构成轴流式压气机的一级。图3-1为一台10级轴流压气机,在第一级动叶前设有进口导流 叶片(静叶)。 图3-1 多级轴流压气机 压气机的增压比定义为 ***=1p p k k π (3-1) *k p :压气机出口截面的总压;*1p :压气机进口截面的总压;*号表示用滞止参数(总参数)来定义。 依据工程热力学有关热机热力循环的理论,对于燃气涡轮发动机来讲,在一定范围内, 压气机出口的压力愈高,则燃气涡轮发动机的循环热效率也就愈高。近六十年来,压气机的 总增压比有了很大的提高,从早期的总增压比3.5左右,提高到目前的总增压比40以上。 图3-2 压气机的总增压比发展历程

压气机的绝热效率定义为 ** *=k adk k L L η (3-2) 效率公式定义的物理意义是将气体从*1p 压缩到*2p ,理想的、无摩擦的绝热等熵过程 所需要的机械功* adk L 与实际的、有摩擦的、绝热熵增过程所需要的机械功k L * 之比。 p 1*p k *1k ad k L *k L *ad k s h * 图3-3 压气机热力过程焓熵图 由热焓形式能量方程(2-5)式、绝热条件、等熵过程的气动关系式)1(1 1)(k k adk adk p p T T -****=和R k k c p 1 -=可以得到 )1(1)(111--=-=-****k k k adk p adk RT k k T T c L π (3-3) )1(1)(1 11--=-=******T T RT k k T T c L k k p k (3-4) 将(3-3)和(3-4)式代入到(3-2)式,则得到 11 11--=**-**T T k k k k k πη (3-5) 效率公式(3-5)式可以用来计算多级或单级压气机的绝热效率,也可以用来计算单排 转子的绝热效率,只要*k p 和*k T 取相应出口截面处值即可。压气机静子不对气体作功,静子 的性能不能用效率公式(3-5)式衡量,静子的气动品质用总压恢复系数*23σ反映,*23σ= p *静子出口/ p * 静子进口 。 压气机的效率高,说明压缩过程中的流阻损失小,实际过程接近理想过程。或者说, 压气机效率愈高,达到相同增压比时,所需要外界输入的机械功愈少。目前,单级轴流压气 机的绝热效率可以达到90%以上,高增压比的多级轴流压气机的绝热效率也可以达到85% 以上。

压气机特性曲线多项式回归拟合方法

2018/3 机电设备 58 cademic Research 技术交流 A 压气机特性曲线多项式回归拟合方法 代 星1,赵元松1,岳永威2,吴 垚3 (1. 91054部队,上海 200235;2. 中国航空综合技术研究所,北京 100028; 3. 92602部队,上海 201900) 摘 要:燃气轮机仿真对于压气机特性曲线的精度要求较高,曲线拟合的质量直接影响仿真的效果。根据压气机曲线形状相近、变化趋势固定的特点,运用二步多项式拟合同转速下压比、流量和转速的关系。分析结果表明:该方法原理简单、可行性强,能够满足燃气轮机的计算要求,具有一定的实用价值。 关键词:燃气轮机;压气机;特性曲线;曲线拟合;多项式回归 中图分类号:TK472 文献标志码:A DOI :10.16443/https://www.360docs.net/doc/955799810.html,ki.31-1420.2018.03.015 Polynomial Regression Fitting Method for Characteristic Curve of Compressor DAI Xing 1, ZHAO Yuansong 1, YUE Yongwei 2, WU Yao 3 (1. The 91054 Unit of PLA, Shanghai 200235, China; 2. Aero-Polytechnology Establishment, Beijing 100028, China; 3. The 92602 Unit of PLA, Shanghai 201900,China) Abstract: High accuracy is required for the compressor characteristic curve while building the simulation model of gas turbine. The quality of curve fitting affects the simulation result directly. According to the characteristics of proximate curve shape and the change regularity of compressor characteristic curves, the two-step polynomial fitting is used to fit the relationship between the pressure ratio, flow rate and rotation speed under the same speed. The analysis results show that the method is simple, feasible, and can meet the calculation requirements of gas turbine. It has certain practical value. Key words: gas turbine; compressor ; characteristic curve; curve fitting ; polynomial regression 0 引言 舰用燃气轮机作为舰船动力系统的核心装置,其起动、调节、变速的特性在很大程度上影响着舰船的运行。压气机是燃气轮机的主要部件,其特性对于仿真结果有显著影响。在实际使用过程中,压气机不可能固定在额定工况下工作,舰船运行时复杂的变化(如负荷降低、温度或压力变化、叶片结垢或磨损导致的零部件性能变化等)都会造成压气机偏离原稳定工况,因此了解压气机关键参数的变化规律对于把握压气机的性能十分重要。但是,通过试验获取压气机特性的 方法不仅费用较高,而且难以全面反映所有转速特性;实际中仅能够获得部分工况的数据,且这些数据多以离散点或者曲线图的形式存在。如何由有限的数据和图表模拟及预测压气机未知运行状态成为了一个难点。 由于压气机特性表现出较强的非线性,采用常规的线性插值方法模拟往往导致模拟结果精度较差,因此,国内外学者提出了一些模拟压气机特性的方法,如神经网络算法[1-3]、 模糊辨识法[4]、滑动最小二乘法[5]和偏最小二乘法[6]等。这些算法能够较好地逼近压气机特性曲线,但仍存在一些不足。神经网络法能够在理 作者简介:代星(1983—),男,博士。研究方向:船舶动力装置,计算力学,船舶动力仿真。

风机噪声频谱特性的测量及分析

风机噪声频谱特性的测量及分析 一、试验目的 1.了解噪声的危害及声传播特性 2.掌握普通声级计的工作机理、组成结构和使用方法 3.掌握噪声频谱特性分析 4.掌握噪声频谱图的绘制与应用 二、试验项目 1.室内风机噪声的A 声级的测量 2.风机噪声的1/1倍频程或1/3倍频程声压级测量 3.画出室内风机的噪声频谱图并进行频谱分析 三、实验原理 1.噪声的测量 1.1 A 计权声级 A 计权的频率相应与人耳对宽频带的声音的灵敏度相当,目前A 计权已被所有的管理机构和工业部门的管理条例所普遍采用,成为最广泛应用的评价参量,所以把测得的频带声压级转换成A 计权声压级。用A 计权网络测得的声级,用L A 表示,单位dB(A)。 当噪声的倍频程的声压级或1/3倍频程声压级为已知时,相应的A 计权声级可以由下面的公式进行转换: 式中L pi ――第i 个倍频程的声压级。 ΔL Ai ――相应的A 计权网络的修正值,简称A 修正。 1.2 等效声级 A 声级虽然能较好地反映人耳对噪声强度和频率的主观感觉,但只适用于连续 而稳定宽频带的噪声评价,但是噪声通常是无规律的,起伏不定或者时断时续的,是非稳态的,这是采用A 声级显然是不合适的。等效连续A 声级定义为某时段内的非稳态噪声的A 声级,用能量平均的方法,以一个连续不变的A 声级来表示该时段内的噪声声级,用公式表示为: 式中:A L ――时间t 内的A h 或min ; 在相等的采样时间间隔下,若时间划分的段数为N ,则测量时段内的等效连续A 声级表达式为: 式中: L Ai ――――第i 个A 计权声级,dB (A ); N ―――测试数据个数 不等采样时间间隔下,则测量时段内的等效连续L eq A 声级可通过以下表达式计 ] 10lg[101)(1.0∑=?+=n i L Lpi A Ai L

相关文档
最新文档