硅光电池论文

硅光电池论文
硅光电池论文

贵州民族学院

《光电探测与信号处理》课程小论文

《硅光电池实验》

学院计算机与信息工程学院

专业光信息科学与技术(1班)

年级 2009级

姓名肖松

学号200907040043

指导教师李林福

硅光电池实验

肖松

摘要:学习掌握硅光电池的工作原理,学习掌握硅光电池的基本特性,掌握硅光电池基本特性测试方法,了解硅光电池的基本应用。

关键词:硅光电池伏安特性光谱特性

1.1 实验器件简介

硅光电池是一种直接把光能转换成电能的半导体器件。它的结构很简单,核心部分是一个大面积的PN结,把一只透明玻璃外壳的点接触型二极管与一块微安表接成闭合回路,当二极管的管芯(PN结)受到光照时,你就会看到微安表的表针发生偏转,显示出回路里有电流,这个现象称为光生伏特效应。硅光电池的PN结面积要比二极管的PN结大得多,所以收到光照是产生的电动势和电流也大得多。

1.2 实验原理

1. PN结的形成及单向导电性原理

采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成空间电荷区称PN结。

PN结:一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称。PN结有同质结和异质结两种。用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。在P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距

离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区。P 型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N 型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导性。

2.光电池的工作原理

光电转换器件主要是利用物质的光电效应,即当物质在一定频率的照射下,释放出光电子的现象。当光照射金、金属氧化物或半导体材料的表面时,会被这些材料内的电子所吸收,如果光子的能量足够大,吸收光子后的电子可挣脱原子的束缚而溢出材料表面,这种电子称为光电子,这种现象称为光电子发射,又称为外光电效应。

3. 硅光电池的基本结构

(1)目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。

零偏反偏正偏

图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区

图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材

料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。

(2)硅光电池的工作原理

硅光电池是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器和光电池,被广泛用于太空和野外便携式仪器等的能源。

光电池的基本结构如图2-2,当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,入射光子将把处于介带中的束缚电子激发到导带,激发出的电子空穴对在内电

场作用下分别飘移到N 型区和P 型区,当在PN 结两端加负载时就有一光生电流流过负载。流过PN 结两端的电流可由式1确定式(1)中Is 为饱和电流,V 为PN 结两端电压,T 为绝对温度,Ip 为产生的光电流。从式中可以看到,当光电

池处于零偏时,V=0,流过PN 结的电流I=Ip ;当光电池处于反偏时(在本实验中取V=-5V ),流过PN 结的电流I=Ip-Is ,因此,当光电池用作光电转换器时,光电池必须处于零偏或反偏状态。光电池处于零偏或反偏状态时,产生的光电流Ip 与输入光功率Pi 有以下关系: (3)硅光电池的基本特性

1) 短路电流

(1 )1(p kT eV

s I e I I +-=(2)

i p RP I =图 2-2.光电池结构示意图

电极

(a )

(b )

图2-3 硅光电池短路电流测试

如图2-3所示,不同的光照的作用下, 毫安表如显示不同的电流值。即为硅光电池的短路电流特性。

2)开路电压

电极

(a)

(b)

图2-4 硅光电池开路电压测试

如图2-4所示,不同的光照的作用下, 电压表如显示不同的电压值。即为硅光电池的开路电压特性。

3) 光照特性

光电池在不同光照度下, 其光电流和光生电动势是不同的,它们之间的关系就是光照特性,如图2-5。

图2-5 硅光电池的光照电流电压特性

0.3 0.2 0.1 0

生 电 流

/ m A

0.6 0.4 0.2 0

2 000 4 000

短路电流 开路电压

光 生

电 压 /

V

光照度

/Lx

4)伏安特性

如图2-6,在硅光电池输入光强度不变时,测量当负载一定的范围内变化时,光电池的输出电压及电流随负载电阻变化关系曲线称为硅光电池的伏安特性。

5)负载特性(输出特性)

光电池作为电池使用如图2-7所示。在内电场作用下,入射光子由于内光电效应把处于介带中的束缚电子激发到导带,而产生光伏电压,在光电池两端加一个负载就会有电流流过,当负载很小时,电流较小而电压较大;当负载很大时,电流较大而电压较小。实验时可改变负载电阻RL的值来测定硅光电池的负载特性。

在线性测量中,光电池通常以电流形式使用,故短路电流与光照度(光能量)呈线性关系,是光电池的重要光照特性。实际使用时都接有负载电阻RL,输出电流IL随照度(光通量)的增加而非线性缓慢地增加,并且随负载RL的增大线性范围也越来越小。因此,在要求输出的电流与光照度呈线性关系时,负载电阻在条件许可的情况下越小越好,并限制在光照范围内使用。光电池光照与负载特性曲线如图2-8所示。

6) 光谱特性

一般光电池的光谱响应特性表示在入射光能量保持一定的条件下,光电池所产生短路电流与入射光波长之间的关系。一般用相对响应表示,实验中硅光电池的响应范围为400~1100nm,峰值波长为800~900nm,由于实验仪器所提供的波长范围为400~650nm,图2-8 硅光电池光照与负载特性曲线因此,实验所测出的光谱响应曲

线呈上升趋势,

1

如图2-8所示硅光电池频率特性曲线。 图2-9 硅光电池的光谱曲线

1.3 实验结果分析

1、硅光电池短路电流特性测试

光生电流(A )

11

500 600 700 800 900 1000

光照度(Lx )

2、硅光电池开路电压特性测试

光生电压(v )

光照度(Lx )

2468101214500

600

700

800

900

1000

1100

1200

3.硅光电池光谱特性测试

1.4 实验总结

通过此次实验,我们了解到了光敏电阻,光电池,光电二极管等光电器件的结构,特性,和工作原理,认识到了光电器件在不同环境下的性质变化以及他们的基本运用,掌握了不少光电探测器件使用的知识。

1.5 实验心得体会

经过一个学期对《光电探测与信号处理》这门课程的努力学习和在老师的精心辅导下,使我明白了它的重要性、广泛使用性,这对我们在以后生活中、学习中都有帮助的。

本书对各章内容的学习要求、重点难点、知识脉络、学习方法和注意事项作了简要说明,并对一些较为典型的例题和问题进行了较为详细的分析和求解,对课程中某些重要问题作了适当拓展延伸。在编写中注意了内容的启发性、科学性、实践性和趣味性。

在此感谢李老师的指导和教诲,我们一定会继续努力学好光电探测,多动脑筋多思考,多动手多实践,认真学习理论知识,以应对社会的发展,满足企业的需要,争取做出成绩来,回馈母校,回报社会!

参考文献:

1. 光电探测与信号处理/安毓英,曾晓东编著.----北京:科学出版.

2.周秀云.光电检测技术及应用[J].电子工业出版社,2002:72-78.

硅光电池特性及其应用

硅光电池的特性及其应用 一、实验目的 1、初步了解硅光电池机理 2、测量硅光电池开路电动势、短路电流、内阻和光强之间关系 3、在恒定光照下测量光电流、输出功率与负载之间关系 二、实验原理 在P 型半导体上扩散一薄层施主杂质而形成的p-n 结(如右图),由于光照,在A 、B 电极之间出现一定的电动势。在有外电路时,只要光照不停止,就会源源不断地输出电流,这种现象称为光伏效应。 实验表明:当硅光电池外接负载电阻L R ,其输出电压和电流均随L R 变化而变化。只有当L R 取某一定值时输出功率才能达到最大值m P ,即所谓最佳匹配阻值LB L R R ,而LB R 则取决于硅光电池的内阻Ri= SC OC I V ,因此OC V 、SC I 和i R 都是太阳能电池的重要参数。 FF 是表征硅光电池性能优劣的指标,称为填充因子。 FF 越大,硅光电池的转换效率越高。 FF= VocIsc Pm (1) 图b 是硅光电池的等效电路,在一定负载电阻L R 范围内硅光电池可以近似地视为一个电流源PS I 与内阻i R 并联,和一个很小的电极电阻S R 串联的组合。 三、实验内容 图a 开路电动势、短路电流 与光强关系曲线 图b 太阳能电池等效电路

1、测量开路电动势OC V 与光强D I 的关系,将数据记录表1,并绘制并绘制D I ~OC V 曲线。(将功能开关切换到OC V ) 2、短路电流SC I 的测量 将功能开关切换到SC I ,调节DC 0-1V 电源S U 输出,使微安表读数0I 为10.00-18.00μA (建议取10.00μA )。 在某一光强D I 下,改变可调电阻R ,使流过检流计(G )的电流G I 为零。此时AB 两点之间和AC 两点之间的电压应相等,即AB V =AC V 。因而I R=00r I ,即短路电流 SC I =I = R r I 0 0 (r 0为微安计内阻,为10K Ω) 测量不同光强下,短路电流SC I 与光强D I 的关系,将数据记入表2,并绘制SC I ~D I 曲线。 测量开路电压OC V 线路图 测量短路电流SC I 线路图

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

硅光电池特性研究

综合设计实验小论文 硅光电池特性研究

摘要:当今世界能源日益短缺,开发太阳能资源成为世界各国能源发展的主要课题。硅光电池可将太阳能转换为电能,实现太阳能的利用。本实验的目的主要是探讨太阳能电池的基本特性,测量太阳能电池下述特性:1、在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。2、测量太阳能电池在光照时的输出特性并求得它的短路电流( I SC)、开路电压( U OC)、最大输出功率 P m及填充因子 FF,填充因子是代表太阳能电池性能优劣的一个重要参数。3、光照效应:(1)测量短路电流 I SC和相对光强度J /J0之间关系,画出 I SC与相对光强J /J0之间的关系图。(2)测量开路电压U OC和相对光强度J /J0之间的关系,画出U OC与相对光强J /J0之间的关系图 关键字:硅光电池 PN结相对光强开路电压短路电流 1 实验原理 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深入学习硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池的机理。 1.1 PN结的形成及单向导电性 如果采用某种工艺,使一块硅片的一边成为P型半导体,另一边为N型半导体,由于P区有大量空穴(浓度大),而N区的空穴极少(浓度小),因此空穴要从浓度大的P区向浓度小的N区扩散,并与N区的电子复合,在交界面附近的空穴扩散到N区,在交界面附近一侧的P区留下一些带负电的三价杂质离子,形成负空间电荷区。同样,N区的自由电子也要向P区扩散,并与P区的空穴复合,在交界面附近一侧的N区留下一些带正电的五价杂质离子,形成正空间电荷区。这些离子是不能移动的,因而在P型半导体和N型半导体交界面两侧形成一层很薄的空间电荷区,也称为耗尽层,这个空间电荷区就是PN结。正负空间电荷在交界面两侧形成一个电场,称为内电场,其方向从带正电的N区指向带负电的P区,如图1所示。空间电荷区的内电场一个方面对多数载流子的扩散运动起阻挡作用,另一方面对少数载流子(P区的自由电子和N区的空穴)起推动作用,使它们越过空间电荷区进入对方区域。少数载流子在内电场作用下的定向运动称为漂移运动。在一定条

硅光电池特性的研究实验报告2

硅光电池基本特性的研究 太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。 [实验目的] 1.测量太阳能电池在无光照时的伏安特性曲线; 2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压 U OC、最大FF 3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系; [实验原理] 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,

实验五十二硅光电池特性的研究(精)

234 实验五十二 硅光电池特性的研究 一、实验目的 1.掌握PN 结形成原理及其工作机理; 2.了解LED 发光二极管的驱动电流 和输出光功率的关系; 3.掌握硅光电池的工作原理及其工 作特性。 二、仪器设备 1.TKGD ―1型硅光电池特性实验仪; 2.信号发生器; 3.双踪示波器。 三、实验原理 1.引言 目前半导体光电探测器在数码摄像﹑光通信﹑太 阳电池等领域得到广泛应用,硅光电池是半导体光电 探测器的一个基本单元,深刻理解硅光电池的工作原 理和具体使用特性可以进一步领会半导体PN 结原理 ﹑光电效应理论和光伏电池产生机理。 图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗 尽区,当P 型和N 型半导体材料结合时,由于P 型材 料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的 电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个 势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。 2.LED 的工作原理 当某些半导体材料形成的PN 结加正向电压时,空 穴与电子在PN 结复合时将产生特定波长的光,发光的 波长与半导体材料的能级间隙E g 有关。发光波长λp 可由下式确定: 式(1)中h 为普朗克常数,c 为光速。在实际的半导体 材料中能级间隙E g 有一个宽度,因此发光二极管发出 光的波长不是单一的,其发光波长半宽度一般在25~ 40nm 左右,随半导体材料的不同而有差别。发光二极 管输出光功率P 与驱动电流I 的关系由下式决定: 式(2)中,η为发光效率,E p 是光子能量,e 是电荷常数。 输出光功率与驱动电流呈线性关系,当电流较大时由于PN 结不能及时散热,输出光功率可能会趋向饱和。本实验用一个驱动电流可调的红色超高亮度发光二极管作为实验用光源。系统采用的发光二极管驱动(1) (2) g p E hc /=λe I E p p /η= 零偏 反偏 正偏 图 1. 半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区 图 3. LED 发光二极管的正弦信号调制原理

硅光电池伏安特性

实验 项目: 硅光电池伏安特性(综合设计 2-1) 实验 目的: 了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。 实验 仪器: DH-CGOP 型光敏传感器实验仪(包括灯泡盒,硅光电池 PHC,直流恒压源 DH-VC3,九孔板实验箱,电阻箱,导线) 实验 原理: 硅光电池的工作原理 光电转换器件主要是利用物质的光电效应,即当物质在一定频率的照射下,释放出光电子的现象。当光照射金属、 金属氧化物或半导体材料的表面时,会被这些材料内的电子所吸收,如果光子的能量足够大,吸收光子后的电子可 挣脱原子的束缚而溢出材料表面,这种电子称为光电子,这种现象称为光电子发射,又称为外光电效应。有些物质 受到光照射时,其内部原子释放电子,但电子仍留在物体内部,使物体的导电性增强,这种现象称为内光电效应。 光电二极管是典型的光电效应探测器,具有量子噪声低、响应快、使用方便等优点,广泛用于激光探测器。外加反 偏电压与结内电场方向一致,当 PN 结及其附近被光照射时,就会产生载流子(即电子-空穴对)。结区内的电子-空 穴对在势垒区电场的作用下,电子被拉向 N 区,空穴被拉向 P 区而形成光电流。同时势垒区一侧一个扩展长度内的 光生载流子先向势垒区扩散,然后在势垒区电场的作用下也参与导电。当入射光强度变化时,光生载流子的浓度及 通过外回路的光电流也随之发生相应的变化。这种变化在入射光强度很大的动态范围内仍能保持线性关系。 硅光电池是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器 和光电池,被广泛用于太空和野外便携式仪器等的能源。 光电池的基本结构如图 1 所示,当半导体 PN 结处于零偏或负偏时,在它们的结合面耗尽区存在一内电场。
图 1 光 电池结 构示意 图
图1
光电池结构示意图

硅光电池特性的研究

硅光电池特性的研究 一、实验目的 1.掌握PN 结形成原理及其工作机理; 2.掌握硅光电池的工作原理及其工作特性。 二、仪器设备 MD-GD-3型硅光电池特性实验仪; 三、实验原理 1.引言 目前半导体光电探测器在数码摄像﹑ 光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光伏电池产生机理。 图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区, 耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反 偏时,外加电场与内电场方向一致,耗尽区在外电场作用 下变宽,使势垒加强;当PN 结正偏时,外加电场与内电 场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使 载流子扩散运动继续形成电流,此即为PN 结的单向导电 性,电流方向是从P 指向N 。 2.硅光电池的工作原理 硅光电池是一个大面积的光电二极管,它被设计用于 把入射到它表面的光能转化为电能,因此,可用作光电 探测器和光电池,被广泛用于太空和野外便携式仪器等 的能源。 光电池的基本结构如图2,当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,硅光电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 零偏 反偏 正偏 图 1. 半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区 图 2.光电池结构示意 硅光零偏 图 3.光电池光电信号接

硅光电池特性研究实验

硅光电池特性研究实验 【实验原理】 在p 型硅片上扩散一层极薄的n 型层,形成pn 结,再在该硅片的上下两面各制一个电极(其中光照面的电极成“梳状”,并在整个光照面镀上增透膜,利于光的入射),这样就构成了硅光电池,如图5.7.1(a)所示。光电池的符号见图5.7.1(b)。 当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子一空穴对。它们在运动中一部分重新复合,其余部分在到达pn 结附近时受pn 结内电场的作用,空穴向p 区迁移,使p 区显示正电性,电子向n 区迁移,使n 区带负电,因此在pn 结上产生电动势。如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。 硅光电池(以下简称光电池)的简化等效电路如图5.7.2所示。 (1)在无光照时,光(生)电流0ph I =,光电池可以简化为二极管如图5.7.3。根据半导体理论,流 经二极管的电流d I 与其两端电压的关系符合以下经验公式 0(1)V d I I I e β==- (5.7.1) 式中:β和0I 是常数。 (2)有光照时,ph I >o ,光电池端电压与电流的关系为

0(1)V d ph ph I I I I e I β=-=-- (5.7.2) 由式(5.7.2),可以得到以下结论: ①当外电路短路时,短路电流sc ph I I =-,光电流全部流向外电路。 ②当外电路开路时,开路电压1ln 1ph oc o I V I β??= +????即1ln 1sc oc o I V I β??=+????,开路电压oc V 与短路电流sc I 满足对数关系;如果sc I 与光通量(或照度)有线性关系,则oc V 与光通量也满足对数关系。 由于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大。因此,在入射光能量不变化的情况下,要从光电池获取最大功率,负载电阻要取恰当的值。 【预习要求】 (1)通过预习,了解硅光电池的工作原理,大致了解实验内容。 (2)写预习报告,按要求在数据记录纸上画好待填表格。 【实验报告要求】 (1) 记录实验过程,包括实验步骤、各种实验现象和数据处理等。 (2)分析各实验结果并要得到结论。可就实验中涉及的、你感兴趣的1~2个问题作较深入讨论。 (3)实验曲线可用计算机绘制(推荐用Excel 软件),也可手画。 ①用原始数据表5.7.1的数据,画出InI~v 曲线。如果是直线,计算β和O I (利用条件I>>O I ),写出在没有光照情况下光电池的端电压(正向偏压)与电流之间的经验公式,由此可以间接验证经验公式(5.7.1)。 ②利用数据表5.7.2的数据,作出Isc 与光通量?的关系曲线,设?与1/L2的比系数等于1,由曲线得到什么结论? ③根据表5.7.3,画出sc I α-曲线,它是什么曲线? ④根据表5.7.4、5.7.5,在一张图上分别画出光电池输出电压与负载电阻、输出电流与负载电阻的关系曲线,并由此在同一图上得到负载电阻与输出功率的关系;确定光电池的最大输出功率Pm 以及最大输出功率时的负载电阻Re(最佳匹配电阻)。 ⑤利用表5.7.6、5.7.7、5.7.8、5.7.9,在一张图上分别画出上下两片光电池的伏安特性以及它们串、并联后的伏安特性,从四条曲线能得到什么结论? ⑥根据表5.7.10,画出sc I λ-关系图,此图说明什么? 【思考题】 (1)光电流与短路电流有什么关系? (2)对实验中所用滤光片的透射曲线应有什么要求? (3)严格地说,本实验得到的光电池光谱特性并不能准确描述光电池对入射光中各频率分量的响应特性,或者说,这样得到的光谱特性,还包含了其他因素的影响,这些影响因素是什么? (4)通过实验,对光电池总体有什么认识? (5)硅光电池是一种半导体元件,人们在研究半导体元件的外特性时,通常要研究它们的温度

硅光电池特性测试实验

硅光电池特性测试实验 一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负.载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1只 3、硅光电池封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏

图4-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN结的单向导电性,电流方向是从P指向N。 2、硅光电池的工作原理 硅光电池是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器和光电池,被广泛用于太空和野外便携式仪器等的能源。 光电池的基本结构如图3,当半导体PN结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,入射光子将把处于价带中的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘移到N型区和P 型区,当在PN结两端加负载时就有一光生电流流过负载。流过PN结两端的电流可由式1确定

硅光电池特性测试实验报告

硅光电池特性测试实验报 告 系别:电子信息工程系班级:光电08305 班组长:祝李组员:贺义贵、何江武、占志武实验时间:2010年4月2日指导老师:王凌波 目录

一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1学习掌握硅光电池的工作原理 2、 学习掌握硅光电池的基本特性 3、 掌握硅光电池基本特性测试方法 4、 了解硅光电池的基本应用 二、实验内容 1硅光电池短路电路测试实验 2、 硅光电池开路电压测试实验 3、 硅光电池光电特性测试实验 4、 硅光电池伏安特性测试实验 5、 硅光电池负载特性测试实验 6、 硅光电池时间响应测试实验 7、 硅光电池光谱特性测试实验 设计实验1硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1 硅光电池综合实验仪 1 个 2、 光通路组件 1 只 3、 光照度计 1 台 4、 2#迭插头对(红色, 50cm ) 10 根 5、 2#迭插头对(黑色, 50cm ) 10 根 6、 三相电源线 1 根 7、 实验指导书 1 本 8 20M 示波器 1 台 四、实验原理 1硅光电池的基本结构 目前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到广泛应用, 硅光电池 是半导体光电探测器的一个基本单元, 深刻理解硅光电池的工作原理和具体使用特性可以进 一步领会半导体 PN 结原理、光电效应理论和光伏电池产生机理。 图2-1.半导体PN 结在零偏、反偏、正偏下的耗尽区 图2-1是半导体PN 结在零偏、反偏、正偏下的耗尽区,当 P 型和N 型半导体材料结合 时,由于P 型材料空穴多电子少,而 N 型材料电子多空穴少,结果 P 型材料中的空穴向 N 型材料这边扩散,N 型材料中的电子向 P 型材料这边扩散,扩散的结果使得结合区两侧的 P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的 继续进行, 当两者达到平衡时,在 PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流 零偏 反偏 正偏

硅光电池特性

硅光电池特性及应用研究 一、 实验目的 1. 了解和研究硅光电池的主要参数和基本特性。 2. 测量太阳能电池板的负载特性及短路电流SC I 、开路电压OC U 并计算最大输出功率m p 和填充因子FF 。 二、 实验仪器 硅光电池,太阳能电池板,光学导轨及支座附件,光源,电源,光功率计,聚光透镜,5 图1 三、 实验原理 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸汽驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。本实验通过对太阳能电池的电学性质和光学性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。 硅光电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1(-=U o e I I β, (1) (1)式中,o I 和β是常数。 由半导体理论,二极管主要是由能隙为E C -E V 的半导体构成,如图2所示。E C 为半导体导电带,E V 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。 图2

假设硅光电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图3所示。 图3 图3中,ph I 为硅光电池在光照时该等效电源输出电流,d I 为光照时,通过硅光电池内部二极管的电流。由基尔霍夫定律得: 0)(=---+sh d ph s R I I I U IR , (2) (2)式中,I 为硅光电池的输出电流,U 为输出电压。由(2)式可得, d sh ph sh s I R U I R R I --=+ )1(, (3) 假定∞=sh R 和0=s R ,硅光电池可简化为图4所示电路。 图4 这里,)1(0--=-=U ph d ph e I I I I I β。 在短路时,U =0,sc ph I I =; 而在开路时,I =0,0)1(0=--oc U sc e I I β; ∴ ]1l n [1 += I I U sc OC β, (4) (4)式即为在∞=sh R 和0=s R 的情况下,硅光电池的开路电压OC U 和短路电流SC I 的关系式。其中OC U 为开路电压,SC I 为短路电流,而0I 、β是常数。可看出开路电压OC U 与

硅光电池特性的研究

实验九 硅光电池特性的研究 光电池是一种很重要的光电探测元件,它不需要外加电源而能直接把光能转换成电能.光电池的种类很多,常见的有硒,锗,硅,砷化镓等.其中最受重视的是硅光电池,因为它有一系列优点:性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等.同时,硅光电池的光谱灵敏度与人眼的灵敏度较为接近,所以很多分析仪器和测量仪器常用到它.本实验仅对硅光电池的基本特性和简单应用作初步的了解和研究. 【实验目的】 1.研究硅光电池的主要参数和基本特性; 2.利用硅光电池设计一项具体应用. 【实验原理】 1.硅光电池的照度特性 硅光电池是属于一种有PN 结的单结光电池.它由半导体硅中渗入一定的微量杂质而制成.当光照射在PN 结上时,由光子所产生的电子与空穴将分别向P 区和N 区集结,使PN 结两端产生光生电动势.这一现象称为光伏效应. (1)硅光电池的短路电流与照度关系 当光照射硅光电池时,将产生一个由N 区流向P 区的光生电流I Ph ,同时由于PN 结二极管的特性,存在正向二极管管电流I D ,此电流方向从P 区到N 区,与光生电流相反,因此实际获得电流I 为 ??????????????????=?=1n exp 0T k qV I I I I I B Ph D Ph (1) 式中V 为结电压,I 0为二极管反向饱和电流,I Ph 是与入射光的强度成正比的光生电流,其比例系数与负载电阻大小以及硅光电池的结构和材料特性有关.n 为理想系数是表示PN 结特性的参数,通常在1-2之间,q 为电子电荷,k B 为波尔茨曼常数,T 为绝对温度.在一定照度下,当光电池被短路(负载电阻为零),V = 0,由(1)式可得到短路电流 Ph SC I I = (2) 硅光电池短路电流与照度特性见图1. (2)硅光电池的开路电压与照度关系 当硅光电池的输出端开路时,I = 0, 由(1)与(2)式可得开路电压 ????????+=1ln 0I I q T nk V SC B OC (3) - 47 -

硅光电池特性测试实验

硅光电池特性测试实验 1 实验目的 通过测试太阳能电池的短路电流、开路电压,绘制I-V特性曲线并计算填充因子,理解太阳能电池的工作原理及基本特性。 2实验原理 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深入学习硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池的机理。 2.1硅光电池的工作原理 光电转换器件主要是利用物质的光电效应,即当物质在一定频率的照射下,释放出光电子的现象。当光照射金、金属氧化物或半导体材料的表面时,会被这些材料内的电子所吸收,如果光子的能量足够大,吸收光子后的电子可挣脱原子的束缚而溢出材料表面,这种电子称为光电子,这种现象称为光电子发射,又称为外光电效应。有些物质受到光照射时,其内部原子释放电子,但电子仍留在物体内部,使物体的导电性增强,这种现象称为内光电效应。光电 1

2 二极管是典型的光电效应探测器。当PN 结及其附近被光照射时,就会产生载流子(即电子-空穴对)。结区内的电子-空穴对在势垒区电场的作用下,电子被拉向N 区,空穴被拉向P 区而形成光电流。同时势垒区一侧一个扩展长度内的光生载流子先向势垒区扩散,然后在势垒区电场的作用下也参与导电。当入射光强度变化时,光生载流子的浓度及通过外回路的光电流也随之发生相应的变化。在入射光强度的很大动态范围内这种变化能保持较好的线性关系。 2.2 硅光电池的伏安特性 硅光电池是一个大面积的光电二极管,其基本结构如上图所示,当半导体PN 结处于零偏或负偏时,在它们的结合面耗尽区存在一内电场。当没有光照射时,光电二极管相当于普通的二极管。其伏安特性是 1eV kT s I I e ??=- ??? (1)

硅光电池特性实验(共三个实验) (1)

第一章硅光电池综合实验仪说明 一、内容简介 光电池是一种不需外加偏置电压,就能将光能直接转换成电能的PN结光电器件。按光电池的用途可分为两大类:太阳能光电池和测量光电池。太阳能光电池主要用做电源,对它的要求是效率高、成本低。由于它具有结构简单、体积小、质量轻、可靠性高、寿命长、能直接利用太阳能转换成电能的特点,因而它不仅成为航天工业上的重要电源,还被广泛地应用于供电困难的场所和人们的日常生活中。测量光电池的主要功能是作光电检测用,即可在不加偏置电压的情况下将光信号转换成电信号,对它的要求是线性范围宽、灵敏度高、光谱响应合适、稳定性好和寿命长,因而它被广泛应用在光度、色度、光学精密计量和测试中。 GCSIDC-B型硅光电池综合实验仪从了解和熟悉硅光电池的角度出发,讨论关于硅光电池的主要技术问题,主要研究硅光电池的基本特性,如短路电流、光电特性、光谱特性、伏安特性、及时间响应特性等等,以及硅光电池的简单应用。 本实验仪电路PCB板与光通路组件各占一部分置于箱体内,这样不仅可以让学生对整个实验系统的光通路一目了然,增强学生对系统的理解,而且外观美观大方,携带存放方便。在电路PCB板部分,模块化设计,配有独立的电压表、电流表和独立照度计,各表头显示单元和各种调节单元都放在面板上,学生做实验时只需要简单连线即可实现相应的功能。连线、调节、观察和记录都很方便。实验箱还配备有200欧至500千欧不同阻值的电阻,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。 二、实验仪说明 1、电子电路部分结构分布 说明: (1)电压表:独立电压表,可切换三档,200mV,2V,20V,通过拨段开关进行调节,白色所指示的位置即为所对应的档位。 “+”“-”分别对应电压表的“正”“负”输入极。 (2)电流表:独立电流表,可切换四档,200uA,2mA,20mA,200mA通过拨段开关进行调节,白色所指示的位置即为所对应的档位。 “+”“-”分别对应电流表的“正”“负”输入极。 (3)照度计电源:红色为照度计电源正极,黑色为照度计电源负极。

硅光电池特性测试实验

实验系列四、硅光电池特性测试实验 光通路组件 图2 硅光电池光通路组件 功能说明: 分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。 一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区

2、硅光电池的工作原理 硅光电池是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器和光电池,被广泛用于太空和野外便携式仪器等的能源。 当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,入射光子将把处于介带中的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘移到N 型区和P 型区,当在PN 结两端加负载时就有一光生电流流过负载。流过PN 结两端的电流可由式1确定 式(1)中Is 为饱和电流,V 为PN 结两端电压,T 为绝对温度,Ip 为产生的光电流。 从式中可以看到,当光电池处于零偏时,V=0,流过PN 结的电流I=Ip ;当光电池处于反偏时(在本实验中取V=-5V ),流过PN 结的电流I=Ip-Is ,因此,当光电池用作光电转换器时,光电池必须处于零偏或反偏状态。光电池处于零偏或反偏状态时,产生的光电流Ip 与输入光功率Pi 有以下关系: 3、硅光电池的基本特性 (1) 短路电流 不同的光照的作用下, 毫安表如显示不同的电流值。即为硅光电池的短路电流特性。 (2)开路电压 (a) (b) 硼扩散层 SiO2膜 P N 型硅片 不同的光照的作用下, 电压表如显示不同的电压值。即为硅光电池的开路电压特性。 (3) 光照特性 光电池在不同光照度下, 其光电流和光生电动势是不同的, (4)伏安特性 在硅光电池输入光强度不变时,测量当负载一定的范围内变化时,光电池的输出电压及电流随负载电阻变化关系曲线称为硅光电池的伏安特性。 (5)负载特性(输出特性) 在内电场作用下,入射光子由于内光电效应把处于介带中的束缚电子激发到导带,而产生光伏电压,在光电池两端加一个负载就会有电流流过,当负载很小时,电流较小而电压较大;当负载很大时,电流较大而电压较小。实验时可改变负载电阻RL 的值来测定硅光电池的负载特性。 (5) 光谱特性 一般光电池的光谱响应特性表示在入射光能量保持一定的条件下,光电池所产生短路电流与入射光波长之间的关系。一般用相对响应表示,实验中硅光电池的响应范围为400~1100nm ,峰值波长为800~900nm ,由于实验仪器所提供的波长范围为400~650nm ,因此,实验所测出的光谱响应曲线呈上升趋势 五、实验步骤 1、硅光电池短路电流特性测试 ) (1 )1(p kT eV s I e I I +-=(2) i p RP I =( b )

硅光电池特性研究

硅光电池特性研究 【实验目的】 1.了解硅光电池工作原理 2.掌握硅光电池的工作特性。 【实验原理】 硅光电池是根据光伏效应而制成的将光能转换成电能的一种器件,它的基本结构就是一个P-N 结。硅光电池P-N 结的制造,一般是在P 型硅片上扩散磷形成N 型薄层,是N/ P 型电池。也可在N 型硅片上扩散硼形成P 型薄层,形成P/N 型电池。光电池是在N(P)型硅基底上扩散P(N)型杂质并作为受光面,构成个P-N 结后,再经过各种工艺处理,分别在基底和光敏面上制作输出电极,涂上二氧化硅作保护膜(一方面起防潮保护作用,另一方面对入射光起抗反射作用),即成硅光电池(图1 所示)。 图 1 硅光电池结构 1、P-N 结偏置特性 当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒。由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,使势垒削弱,使载流子扩散运动继续形成电流,这就是PN 结的单向导电性,电流方向是从P 指向N。图2 所示是半导体PN 结在零偏、反偏、正偏下的耗尽区。

(a)零偏(b) 反偏(c) 正偏 图 2 硅光电池PN 结在零偏,反偏和正偏下的耗尽区 2、光伏效应 当硅光电池PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,电池对光子的本征吸收和非本征吸收都产生光生载流子,但能引起光伏效应的只能是本征吸收所激发的少数载流子。入射光子将把处于价带中的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘移到N 型区和P 型区,当在PN 结两端加负载时就有一光生电流流过负载。基于光伏效应,硅光电池的应用分为两类。一类是作为能源,如把太阳光的能量转换为电能,为太阳能电池,是利用太阳能的重要元件。另一类是作为光电信号转换器,可用于光探测器。 3、 (1)伏安特性 在一定光照下,在光电池两端加一个负载就会有电流流过,当负载很大时,电流较小而电压较大;当负载很小时,电流较大而电压较小。如图3 所示,硅光电池的伏安特性曲线由二个部分组成: 1)无偏压工作状态,光电流随负载变化很大。 2)反偏压工作状态,光电流与偏压、负载几乎无关(很大的动态范围内)。 伏安特性曲线在横轴上的截距为开路电压U OC ,在纵轴上的截距为短路电流I sc 。 图 3 硅光电池的伏安特性曲线

硅光电池基本特性的研究

硅光电池基本特性 硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源. 图1 三. 实验原理 1.硅光电池的基本结构. 硅光电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池. 在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结.从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.

硅光电池的基本结构如图3所示. 图3 2.硅光电池的基本原理 当两种不同类型的半导体结合形成PN结时.由于分界层(PN结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理. 单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用. 3.硅光电池的光电转换效率 硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等. 4. 硅光电池的基本特性 4.1 硅光电池的开路电压与入射光强度的关系 硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零. 硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢. 4.2 硅光电池的短路电流与入射光的关系 硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短

硅光电池特性实验

ZKY-SAC-Ⅰ 太阳能电池特性实验仪实验指导及操作说明书 成都世纪中科仪器有限公司 地址:成都市人民南路四段9号中科院成都分院邮编:610041 电话:(028)85247006 85243932 传真:(028)85247006 网址;https://www.360docs.net/doc/955992322.html, E-mail: ZKY@ZKY.C n 2009-7-21

太阳能电池特性实验仪 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO2已经超过500亿吨。我国能源消费以煤为主,CO2的排放量占世界的15%,仅次于美国,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。在地球大气圈外,太阳辐射的功率密度为1.353kW /m2,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射的功率密度约为1kW /m2,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验内容 1.太阳能电池的暗伏安特性测量 2.测量太阳能电池的开路电压和光强之间的关系 3.测量太阳能电池的短路电流和光强之间的关系 4.太阳能电池的输出特性测量

相关文档
最新文档