MATLAB语言在非线性最小二乘估计中的应用

MATLAB语言在非线性最小二乘估计中的应用
MATLAB语言在非线性最小二乘估计中的应用

《MATLAB语言与应用》实验测验高成。.doc

《MATLAB语言与应用》实验测验1 专业学号姓名成绩 自动化200909150151 高成 要求:随机生成一个4×4矩阵A,生成一个4×4的魔术矩阵B,计算C=A.*B,D=A*B,E=A/B,F=A\B,G=A.^2,H=A^2。 矩阵C、D、E、F、G和H的实验结果分别为: >> A=rand(4) A = 0.2769 0.6948 0.4387 0.1869 0.0462 0.3171 0.3816 0.4898 0.0971 0.9502 0.7655 0.4456 0.8235 0.0344 0.7952 0.6463 >> B=magic(4) B = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 1 5 1 >> C=A.*B C = 4.4308 1.3897 1.3162 2.4293 0.2309 3.4881 3.8156 3.9181 0.8742 6.6516 4.5931 5.3470 3.2938 0.4822 11.9280 0.6463 >> D=A*B D = 12.6011 13.8844 13.2146 14.6104 7.7173 13.1080 12.9453 8.2055 14.9772 22.2435 21.0705 18.4963 23.0896 16.6406 17.2807 21.1692

>> E=A/B Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.306145e-017. E = 1.0e+014 * 0.8053 2.4159 -2.4159 -0.8053 -0.5976 -1.7929 1.7929 0.5976 0.1930 0.5789 -0.5789 -0.1930 -1.9751 -5.9254 5.9254 1.9751 >> F=A\B F = 32.4732 0.3697 5.9411 15.7588 34.5598 -1.5535 0.4005 28.6980 -48.3016 -4.7808 -8.8210 -36.1811 22.4018 27.1553 26.4707 24.4556 >> G=A.^2 G = 0.0767 0.4828 0.1925 0.0349 0.0021 0.1006 0.1456 0.2399 0.0094 0.9029 0.5860 0.1985 0.6781 0.0012 0.6323 0.4177 >> H=A^2 H = 0.3053 0.8361 0.8711 0.7083 0.4678 0.5121 0.8228 0.6505 0.5120 1.1116 1.3455 1.1126 0.8391 1.3610 1.4971 0.9428

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

Matlab最小二乘法拟合笔记

最小二乘法拟合 在科学实验的统计方法研究中,往往要从一组实验数据中寻找出自变量x 和因变量y之间的函数关系y=f(x) 。由于观测数据往往不够准确,因此并 不要求y=f(x)经过所有的点,而只要求在给定点上误差 按照某种标准达到最小,通常采用欧氏范数作为误差量度的标准。这就是所谓的最小二乘法。在MATLAB中实现最小二乘法拟合通常采用polyfit函数进行。 函数polyfit是指用一个多项式函数来对已知数据进行拟合,我们以下列数据为例介绍这个函数的用法: >> x=0:0.1:1; >> y=[ -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2 ] 为了使用polyfit,首先必须指定我们希望以多少阶多项式对以上数据进行拟合,如果我们指定一阶多项式,结果为线性近似,通常称为线性回归。我们选择二阶多项式进行拟合。 >> P= polyfit (x, y, 2) P= -9.8108 20.1293 -0.0317 函数返回的是一个多项式系数的行向量,写成多项式形式为: 为了比较拟合结果,我们绘制两者的图形: >> xi=linspace (0, 1, 100); %绘图的X-轴数据。 >> Z=polyval (p, xi); %得到多项式在数据点处的值。 当然,我们也可以选择更高幂次的多项式进行拟合,如10阶: >> p=polyfit (x, y, 10); >> xi=linspace (0, 1,100);

>> z=ployval (p, xi); 读者可以上机绘图进行比较,曲线在数据点附近更加接近数据点的测量值了,但从整体上来说,曲线波动比较大,并不一定适合实际使用的需要,所以在进行高阶曲线拟合时,“越高越好”的观点不一定对的。

非线性最小二乘法

非线性最小二乘法 编辑词条分享 ?新知社新浪微博腾讯微博人人网QQ空间网易微博开心001天涯飞信空间MSN移动说客 非线性最小二乘法 非线性最小二乘法是以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估 计方法。 编辑摘要 目录 1 简介 2 推导 3 配图 4 相关连接 非线性最小二乘法 - 简介 以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线性系统的模型为y=f(x,θ) 式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估 计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1), ,(xn,yn)。估计参数的准则(或称目标函数)选为模型的误差平方和非线性最小二乘法就是求使Q达到极小的参数估计值孌。 推导 非线性最小二乘法 - 推导 以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线 性系统的模型为 y=f(x,θ) 式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1), ,(x n,y n)。估计参数的准则(或称目标函数)选为模型的误差平方和

非线性最小二乘法就是求使Q达到极小的参数估计值孌。 由于f的非线性,所以不能象线性最小二乘法那样用求多元函数极值的办法来得到参 数估计值,而需要采用复杂的优化算法来求解。常用的算法有两类,一类是搜索算法,另 一类是迭代算法。 搜索算法的思路是:按一定的规则选择若干组参数值,分别计算它们的目标函数值并 比较大小;选出使目标函数值最小的参数值,同时舍弃其他的参数值;然后按规则补充新 的参数值,再与原来留下的参数值进行比较,选出使目标函数达到最小的参数值。如此继 续进行,直到选不出更好的参数值为止。以不同的规则选择参数值,即可构成不同的搜索 算法。常用的方法有单纯形搜索法、复合形搜索法、随机搜索法等。 迭代算法是从参数的某一初始猜测值θ(0)出发,然后产生一系列的参数点θ(1)、θ(2) ,如果这个参数序列收敛到使目标函数极小的参数点孌,那么对充分大的N就可用θ(N)作为孌。迭代算法的一般步骤是: ① 给出初始猜测值θ(0),并置迭代步数i=1。 ② 确定一个向量v(i)作为第i步的迭代方向。 ③ 用寻优的方法决定一个标量步长ρ(i),使得 Q(θ(i))=Q(θ(i)),其中θ(i)=θi-1+ρ(i)v(i)。 ④ 检查停机规则是否满足,如果不满足,则将i加1再从②开始重复;如果满足,则 取θ(i)为孌。 典型的迭代算法有牛顿-拉夫森法、高斯迭代算法、麦夸特算法、变尺度法等。 非线性最小二乘法除可直接用于估计静态非线性模型的参数外,在时间序列建模、连 续动态模型的参数估计中,也往往遇到求解非线性最小二乘问题。 非线性最小二乘法 - 配图 非线性最小二乘法

哈工大_Matlab__2013年春季学期《MATLAB语言及应用》试题答案

2013年春季学期 《MATLAB语言及应用》课程试卷 姓名: 学号: 学院: 专业: 必答题 1.常用的matlab界面由哪些窗口组成,各有什么主要作用?(4分) (1)菜单和工具栏功能:【File】菜单主要用于对文件的处理。【Edit】菜单主 要用于复制、粘贴等操作,与一般Windows程序的类似,在此不作详细介绍。【Debug】菜单用于调试程序。【Desktop】菜单用于设置主窗口中需要打开的窗口。【Window】菜单列出当前所有打开的窗口。【Help】菜单用于选择打开不同的帮助系统。 (2)命令窗口功能:用于输入命令并显示除图形以外的所有执行结果 (3)历史命令窗口功能:主要用于记录所有执行过的命令 (4)当前工作目录窗口功能:对文件和目录进行操作 (5)工作空间窗口功能:查看、载入和保存变量 2.如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么 区别?(2分) 方法一:在MATLAB命令窗口中输入editpath或pathtool命令或通过【File】/|【SetPath】菜单,进入“设置搜索路径”对话框,通过该对话框编辑搜索路径。 方法二:在命令窗口执行“path(path,…D:\Study ?)”,然后通过“设置搜索路径”对话查看“D:\Study”是否在搜索路径中。 方法三:在命令窗口执行“addpath D:\Study- end”,将新的目录加到整个搜索路径的末尾。如果将end改为begin,可以将新的目录加到整个搜索路径的开始。 区别:当前文件目录是正在运行的文件的目录,显示文件及文件夹的详细信息,且只有将文件设置为当前目录才能直接调用。搜索路径中的文件可以来自多个 不同目录,在调用时不用将其都设置为当前目录,为同时调用多个文件提供 方便。 3.有几种建立矩阵的方法?各有什么优点?(4分) 1.在命令窗口中直接输入优点:适合输入不规则和较小的矩阵 2.通过语句和函数生成矩阵优点:适合输入规则且较大的矩阵 3.通过M文件来建立矩阵,从外部数据文件中导入矩阵 优点:方便创建和导入大型矩阵 4.说明break语句、continue语句和return语句的用法。(3分)

MATLAB语言及应用课程教学大纲

《MATLAB语言及应用》课程教学大纲 课程编号:21311105 总学时数:32 总学分数:2 课程性质:专业必修课 适用专业:电气工程及其自动化 一、课程的任务和基本要求: 控制算法是集中现代控制系统CAD 技术的本质反映,对于控制算法系统深入地学习,在扩展计算机技术在控制理论中的应用和发展,同时培养学生运用计算机技术进行思维和开发的能力。控制系统理论、计算方法与计算机技术的结合是当代控制理论发展的标志,因此在以MATLAB 为代表的软件平台上,对控制系统进行分析、设计与仿真将成为控制工程领域工程师必须熟练掌握的重要知识和技能。因此,深入透彻地分析和理解控制算法的思想和构造就必须系统学习典型控制系统应用软件的基本原理和控制算法,将成为本课程的目的和任务。 通过本课程的学习,要求学生掌握对于控制系统的分析和综合设计的方法和基本技巧,而控制算法在控制系统CAD 技术中占有相当大的比重,本课程要求较熟练掌握控制算法的基本思想;MATLAB 是一种解释性编程语言,因此,要求熟练掌握MATLAB 的基本编程手段和模块化编程方法,消化和理解控制语言描述的图形界面的设计过程。 二、基本内容和要求: 1.自动控制系统与仿真基础知识 (1)自动控制系统基本概念 (2)自动控制系统分类 (3)控制系统仿真基本概念 (4)MA TLAB与控制系统仿真 (5)MA TLAB 7中控制相关的工具箱 要求:了解自动控制系统与仿真的基础知识,包括自动控制系统的基本概念、分类,以及控制系统仿真的基本概念和Matlab工具。 2.MA TLAB计算及仿真基础 (1)MA TLAB概述 (2)MA TLAB桌面操作环境 (3)MA TLAB数值计算 (4)关系运算和逻辑运算 (5)符号运算 (6)复数和复变函数运算 (7)MA TLAB常用绘图命令 (8)MA TLAB程序设计 要求:了解MA TLAB计算及仿真基础,包括MATLAB的安装、界面及其数值计算、函数运算、程序设计及其绘图命令。 3. Simulink仿真基础 (1)Simulink仿真概述

matlab特点及应用领域

MATLAB就是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模与仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB与Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数与数据、实现算法、创建用户界面、连 matlab开发工作界面 接其她编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位就是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 一种语言之所以能如此迅速地普及,显示出如此旺盛的生命力,就是由于它有着不同于其她语言的特点。正如同FORTRAN与C等高级语言使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称作为第四代计算机语言的MATLAB,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来。MATLAB的最突出的特点就就是简洁。MATLAB用更直观的、符合人们思维习惯的代码,代替了C与FORTRAN语言的冗长代码。MATLAB给用户带来的就是最直观、最简洁的程序开发环境。以下简单介绍一下MATLAB的主要特点。 ①语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB程序书写形式自由,利用其丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。可以说,用MATLAB进行科技开发就是站在专家的肩膀上。 具有FORTRAN与C等高级计算机语言知识的读者可能已经注意到,如果用FORTRAN或C语言去编写程序,尤其当涉及矩阵运算与画图时,编程会很麻烦。例如,如果用户想求解一个线性代数方程,就得编写一个程序块读入数据,然后再使用一种求解线性方程的算法(例如追赶法)编写一个程序块来求解方程,最后再输出计算结果。在求解过程中,

matlab 最小二乘最优问题

最小二乘最优问题(转) 默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小 1.约束线性最小二乘 有约束线性最小二乘的标准形式为 sub.to 其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。 在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。 函数lsqlin 格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。 x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参 数 [x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。 [x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。 [x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条 件 [x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出

非线性最小二乘平差

非线性最小二乘平差 6-1问题的提出 经典平差是基于线性模型的平差方法。然而在现实世界中,严格的线性模型并不多见。测量上大量的数学模型也是非线性模型。传统的线性模型平差中的很多理论在非线性模型平差中就不一定适用;线性模型平差中的很多结论在非线性模型平差中就不一定成立;线性模型平差中的很多优良统计性质在非线性模型平差中就不一定存在。例如,在线性模型平差中,当随机误差服从正态分布时,未知参数X 的最小二乘估计具有一致无偏性和方差最小性。但在非线性模型平差中,即使随机误差严格服从正态分布,未知参数X的非线性最小二乘估计也是有偏的。其方差一般都不能达到最小值。 对于测量中大量的非线性模型,在经典平差中总是进行线性近似(经典的测量平差中称之为线性化),即将其展开为台劳级数,并取至一次项,略去二次以上各项。如此线性近似,必然会引起模型误差。过去由于测量精度不高,线性近似所引起的模型误差往往小于观测误差,故可忽略不计。随着科学技术的不断发展,现在的观测精度已大大提高,致使因线性近似所产生的模型误差与观测误差相当,有些甚至还会大于观测误差。例如,GPS载波相位观测值的精度很高,往往小于因线性近似所产生的模型误差。因此,用近似的理论、模型、方法去处理具有很高精度的观测结果,从而导致精度的损失,这显然是不合理的。现代科学技术要求估计结果的精度尽可能高。这样,传统线性近似的方法就不一定能满足当今科学技术的要求。另外,有些非线性模型对参数的近似值十分敏感,若近似值精度较差,则线性化会产生较大的模型误差。由于线性近似后,没有顾及因线性近似所引起的模型误差,而用线性模型的精度评定理论去评定估计结果的精度,从而得到一些虚假的优良统计性质,人为地拔高了估计结果的精度。 鉴于上述各种原因,对非线性模型平差进行深入的研究是很有必要的。非线性模型的平差和精度估计以及相应的误差理论研究也是当前国内外测绘界研究的前沿课题之一。 电子教材 > 第六章非线性模型平差 > 6-2 非线性模型平差原理

Matlab语言及应用论文

一、MATLAB简介 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 二、应用 MATLAB 产品族可以用来进行以下各种工作: (1)数值分析; (2)数值和符号计算; (3)工程与科学绘图; (4)控制系统的设计与仿真; (5)数字图像处理技术; (6)数字信号处理技术; (7)通讯系统设计与仿真; (8)财务与金融工程。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特

最小二乘法MATLAB程序及结果

最小二乘递推算法的MATLAB仿真 针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。更改a1、a2、b1、b2参数,观察结果。 仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k) 程序如下: L=15; y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值 for i=1:L; %移位循环 x1=xor(y3,y4); x2=y1; x3=y2; x4=y3; y(i)=y4; %取出作为输出信号,即M序列 if y(i)>0.5,u(i)=-0.03; %输入信号 else u(i)=0.03; end y1=x1;y2=x2;y3=x3;y4=x4; end figure(1); stem(u),grid on z(2)=0;z(1)=0; for k=3:15; z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号 end c0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值 p0=10^6*eye(4,4); %直接给出初始状态P0 E=0.000000005; c=[c0,zeros(4,14)]; e=zeros(4,15); for k=3:15; %开始求k h1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]'; x=h1'*p0*h1+1; x1=inv(x); k1=p0*h1*x1; %开始求k的值 d1=z(k)-h1'*c0;c1=c0+k1*d1; e1=c1-c0; e2=e1./c0; %求参数的相对变化 e(:,k)=e2; c0=c1; c(:,k)=c1; p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值 p0=p1;

非线性最小二乘lsqnonlin

非线性最小二乘lsqnonlin 数学规划模型的matlab求解 数学规划模型的matlab求解 var OsObject = ""; if(https://www.360docs.net/doc/957462204.html,erAgent.indexOf("MSIE")>0) { document.write(""); } if (isFirefox=https://www.360docs.net/doc/957462204.html,erAgent.indexOf("Firefox")>0){ document.write(" "); } if(isSafari=https://www.360docs.net/doc/957462204.html,erAgent.indexOf("Safari")>0) { //return "Safari"; } if(isCamin o=https://www.360docs.net/doc/957462204.html,erAgent.indexOf("Camino")>0){ //return "Camino"; } if(isMozilla=navigato https://www.360docs.net/doc/957462204.html,erAgent.indexOf("Gecko/")>0){ //return "Gecko"; } 今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题); 非线性规划模型(目标函数或者约束条件是非线性的函数); 整数规划(决策变量是整数值得规划问题); 多目标规划(具有多个目标函数的规划问题) ;目标规划(具有不同优先级的目标和偏差的规划问题) 动态规划(求解多阶段决策问题的最优化方法) 。数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。 以下是解线性规划模型的方法: 1.线性规划问题 线性规划问题的标准形式为: min f ' *x sub.to:A*x

最小二乘定位解算matlab代码

R1=6378137; C=3e8; DeltaT=1e-3; SatellitePosition=[177461757273651;12127-9774210911;13324-181********;14000 -130********;19376-15756-73651;zeros(19,4);6400200-12000]; SatellitePosNew=ones(1,3); VisSatNum=0; %VisSatNum:可见的卫星个数; CalculateOK=1; for k=1:24 if(SatellitePosition(k,4)==1) VisSatNum=VisSatNum+1; SatellitePosNew=[SatellitePosNew;SatellitePosition(k,1:3)]; end end SatellitePosNew(1,:)=[];%把SatellitePosNew的第一行去掉 if(VisSatNum<4) CalculateOK=0; CalUserPosition=[000]; return end Prange=ones(1,VisSatNum); UserPos=SatellitePosition(25,1:3); for n=1:VisSatNum Prange(1,n)= sqrt((SatellitePosNew(n,:)-UserPos)*(SatellitePosNew(n,:)-UserPos)')+C*DeltaT; end CalculateRecord=[111]; XYZ0=[6400100-1200]; DeltaT0=0; Wxyz=SatellitePosNew; Error=1000; ComputeTime=0; while((Error>1)&(ComputeTime<1000)) ComputeTime=ComputeTime+1; R=ones(1,VisSatNum); for n=1:VisSatNum R(1,n)=sqrt((Wxyz(n,:)-XYZ0)*(Wxyz(n,:)-XYZ0)')+DeltaT*C;%DeltaT0???? end

参数的最小二乘法估计

第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。 最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。 本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。 §2最小二乘法原理 最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n ,,21记最可信赖值为x ,相应的残差x x v i i 。测值落入),(dx x x i i 的概率。 根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即

权因子:2 2o i i w 即权因子i w ∝21i ,则 再用微分法,得最可信赖值x 1 1 n i i i n i i w x x w 即加权算术平均值 这里为了与概率符号区别,以i 表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。它是以最小二乘方而得名。 为从一组测量数据中求得最佳结果,还可使用其它原理。 例如 (1)最小绝对残差和法:Min v i (2)最小最大残差法:Min v i max (3)最小广义权差法:Min v v i i m in m ax 以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。 §3.线性参数最小二乘法 先举一个实际遇到的测量问题,为精密测定三个电容值:321,,x x x 采用的测量方案是,分别等权、独立测得323121,,,x x x x x x ,列出待解的数学模型。 1x =0.3 2x =-0.4 1x +3x =0.5

Chapter2 非线性最小二乘法与数值最优化

第1章 非线性最小二乘法与数值最优化 变量之间的关系更多地表现为非线性特征。线性模型作为基础模型是非线性的近似,即任何非线性模型都可以通过线性模型来近似表达。比如,模型01x y e u ββ=++通过泰勒级数展开表述为 0000100101**01|()x x x x x y e x x u e x e x u x u βββββββ=≈+-+ =-++ =++ 模型201y x u ββ=++的线性近似表达式为 0010201010**01(2)|()22x x y x x x u x x x u x u βββββββ=≈+-+ =-++ =++ 例 1.1 利用Monte Carlo 模拟的方法观察线性模型对非线性模型的近似。 设DGP 为:y=10+0.2*exp(x)+u ,x 为[1,3]区间的均匀分布。利用线性模型与指数模型分别回归模型,并计算x 对y 的(平均)边际影响与(平均)弹性。(数据文件:nonlin ) 但线性模型对非线性模型的近似程度取决于高阶部分是否充分小。即使在样本内线性模型能够较好地拟合数据,也不能准确地体现变量的结构关系。非线性模型中,x 对y 的边际影响(或弹性)是变化的;而线性模型中,x 对y 的边际影响(或弹性)是常数。很多情况下,线性模型与非线性模型对边际影响或弹性的估计存在非常大的差异。另外,利用线性模型拟合非线性数据存在潜在的危险,即区间外预测会存在越来越大的误差。因此,正确设定模型的形式是进行准确推断和预测的重要环节。 对于一般的回归模型,如以下形式的模型, (,)f =+y X βu 1.1 OLS 一般不能得到其解析解。比如,运用OLS 方法估计模型(1.1),令S(β)表示残差平方和,即 2 211()[(;)]n n i i i i i S u y f ====-∑∑βX β 1.2 最小化S(β),即根据一阶条件可以得到 1 (;)()2[(;)]n i i i i f S y f =??=--=??∑X ββX β0ββ 以模型y x u γαβ=++为例,其一阶条件为 2011 0()1[]02i n x i i S y e ββββ=?=---=?∑β

(完整版)《MATLAB语言及其应用》教案

MATLAB语言及其应用 教 案 任课教师:罗靖宇 任课班级:09通信(1)(2) 教材:MATLAB程序设计与应用(第二版) 作者:刘卫国主编出版社:高等教育出版社

内容: 书籍简介:本书以MATLAB 7.0版为蓝本介绍MATLAB功能与应用强调理论和实践相结合贴近读者需要注重讲清有关数学方法和算法原理前提下介绍MATLAB功能;注重和有关学科领域结合,突出应用书中有许多应用实例些实例既是对MATLAB重点和难点诠释又可以更好地帮助读者应用MATLAB来解决实际问题具有很强代表性。 全书分为基础篇应用篇和实验篇基础篇包括MATLAB系统环境MATLAB数据及其运算MATLAB矩阵分析与处理 MATLAB程序设计MATLAB图MATLAB数值计算MATLAB符号计算应用篇包括MATLAB图形用户界面设计MATLAB Notebook使用MATLAB Simulink 仿真软件MATLAB外部程序接口技术MATLAB应用实验篇和教学内容相配合包括15实验以帮助读者更好地上机操作。本书可作为高等学校理工科各专业大学生或研究生学习教材也可供广大科技工作者参考。 第1章MATLAB系统环境 1.1 MA TLAB概貌 1.1.1 MA TLAB 发展 1.1.2 MA TLAB 主要功能 1.1.3 MA TLAB功能演示 1.2 MA TLAB环境准备 1.2.1 MA TLAB 安装 1.2.2 MA TLAB 启动与退出 1.3 MA TLAB操作界面 1.3.1 主窗口 1.3.2 命令窗口 1.3.3 工作空间窗口 1.3.4 当前目录窗口和搜索路径 1.3.5 命令历史记录窗口 1.3.6 Stalt菜单 1.4 MA TLAB帮助系统 1.4.1 帮助命令 1.4.2 帮助窗口 1.4.3 演示系统 第2章MATLAB数据及其运算 2.1 MA TLAB数据特点 2.2 变量及其操作 2.2.1 变量与赋值 2.2.2 变量管理 2.2.3 数据输出格式 2.3 MA TLAB矩阵表示 2.3.1 矩阵建立 2.3.2 冒号表达式 2.3.3 矩阵拆分 2.4 MA TLAB数据运算 2.4.1 算术运算 2.4.2 关系运算 2.4.3 逻辑运算 2.5 字符串 2.6 结构数据和单元数据 2.6.1 结构数据 2.6.2 单元数据 第3章MATLAB矩阵分析与处理 3.1 特殊矩阵 3.1.1 通用特殊矩阵 3.1.2 用专门学科特殊矩阵 3.2 矩阵结构变换 3.2.1 对角阵与三角阵 3.2.2 矩阵转置与旋转 3.3 矩阵求逆与线性方程组求解 3.3.1 矩阵逆与伪逆 3.3.2 用矩阵求逆方法求解线性方程组 3.4 矩阵求值 3.4.1 方阵行列式值 3.4.2 矩阵秩与迹 3.4.3 向量和矩阵范数 3.4.4 矩阵条件数 3.5 矩阵特征值与特征向量 3.6 矩阵超越函数 第4章MATLAB程序设计 4.1 M文件 4.1.1 M文件分类 4.1.2 M文件建立与打开 4.2 程序控制结构 顺序结构、选择结构、循环结构 4.3 函数文件 4.4 程序调试 第5章MATLAB绘图 5.1 二维图形

matlab最小二乘法

4. 设某物理量Y与X 满足关系式Y=aX2+bX+c,实验获得一批数据如 下表,试辨识模型参数a,b和c 。(50分) X 1.01 2.03 3.02 4.015 6.027.038.049.0310 Y9.6 4.1 1.30.40.050.10.7 1.8 3.89.0单,最后给出结果及分析。 (1) 问题描述: 由题意知,这是一个已知模型为Y=aX2+bX+c,给出了10组实验输入输出数据,要求对模型参数a,b,c进行辨识。这里对该模型参数辨识采用递推最小二乘法。 (2) 参数估计原理 对该模型参数辨识采用递推最小二乘法,即RLS(recurisive least square),它是一种能够对模型参数进行在线实时估计的辨识方法。 其基本思想可以概括为:新的估计值=旧的估计值+修正项 下面将批处理最小二乘法改写为递推形式即递推最小二乘参数估计的计算方法。 批处理最小二乘估计为,设k时刻的批处理最小二乘估计为: 令 K时刻的最小二乘估计可以表示为 = =;式中,因为要推导出P(k)和K(k)的递推方程,因此这里介绍一下矩阵求逆引理:设A、(A+BC)和(I+)均为非奇异方阵,则通过运用矩阵求逆引理,把复杂的矩阵求逆转化为标量求倒数,大大减小了计算量。与间的递推关系。最终得到递推最小二乘参数递推估计公式如下: (3)程序流程图 (如右图1所示) 递推最小二乘法(RLS)步骤如下: 已知:、和d。 Step 1 :设置初值和P(0),输入初始数据; Step2 :采样当前输出y(k)、和输入u(k) Step3 :利用上面式计算、和; Step4 :kk+1,返回step2,继续循环。

最小二乘法matlab多项式拟合

最小二乘法拟合探究 吴春晖 (中国海洋大学海洋环境学院山东青岛 266100) 摘要: 本文的拟合对象为含多个变量的待定系数的多项式。通过最小二乘法对多项式作出拟合,以向量矩阵的形式来解出待定的系数。在matlab中,通过算法,写出具体的解法。之后,先对最小二乘法的准确性作出检验,分析该方法在应对复杂情况的误差。在检验该方法的可行性之后,对给定的变量值进行拟合与解题。同时,本文将对基于Laguerre多项式的最小二乘法进行分析检验, 关键词:最小二乘法拟合多变量Laguerre多项式 引言: 在之前的计算方法中,在给出已知节点后,如果需要根据给出的节点来确定未知节点的值,我们需要运用插值。在对插值的精准性进行分析后,我们发现不同插值方式的误差都极大,而且插值所得出的函数的特征由插值方式所决定,并不能反映具体的节点原来可能的规律与分布。所以,拟合的方法相比插值而言,并不要求函数值在原节点处的值相等,却能在一定程度上反映原函数的规律。在该文中,我们主要运用最小二乘法进行拟合。

目录 第一章matlab最小二乘法拟合程序 (3) 1.1最小二乘法拟合的数学法 (3) 1.2 编写最小二乘法的matlab拟合程序 (3) 1.2.1程序算法 (3) 1.2.2 最小二乘法拟合的程序 (4) 1.3程序的分析说明 (4) 第二章最小二乘拟合法的检验及应用 (5) 2.1 最小二乘法拟合的检验 (5) 2.2最小二乘法拟合的实际应用 (7) 第三章Laguerre多项式的最小二乘拟合 (8) 3.1 算法与程序 (8) 3.2检验与分析 (9) 第四章最小二乘法拟合的分析总结 (11)

matlab程序设计与应用(第二版)第三章部分课后答案

第三章1. (1)A=eye(3) (2)A=100+100*rand(5,6) (3)A=1+sqrt(0.2)*randn(10,50) (4)B=ones(size(A)) (5)A+30*eye(size(A)) (6)B=diag(diag(A)) 2. B=rot90(A) C=rot90(A,-1) 3. B=inv(A) ;A的逆矩阵 C=det(A) ;A的行列式的值 D=A*B E=B*A D=E 因此A与A-1是互逆的。 4. A=[4 2 -1;3 -1 2;12 3 0]; b=[2;10;8]; x=inv(A)*b x = -6.0000 26.6667 27.3333 5. (1) diag(A) ;主对角线元素 ans = 1 1 5 9 triu(A) ;上三角阵

ans = 1 -1 2 3 0 1 -4 2 0 0 5 2 0 0 0 9 tril(A) ;下三角阵 ans = 1 0 0 0 5 1 0 0 3 0 5 0 11 15 0 9 rank(A) ;秩 ans = 4 norm(A) ;范数 ans = 21.3005 cond(A) ;条件数 ans = 11.1739 trace(A) ;迹 ans = 16 (2)略 6. A=[1 1 0.5;1 1 0.25;0.5 0.25 2] A = 1.0000 1.0000 0.5000 1.0000 1.0000 0.2500 0.5000 0.2500 2.0000

[V,D]=eig(A) V = 0.7212 0.4443 0.5315 -0.6863 0.5621 0.4615 -0.0937 -0.6976 0.7103 D = -0.0166 0 0 0 1.4801 0 0 0 2.5365

相关文档
最新文档