并联位移机器人的外文文献翻译、中英文翻译、外文翻译

并联位移机器人的外文文献翻译、中英文翻译、外文翻译
并联位移机器人的外文文献翻译、中英文翻译、外文翻译

附录:

并联位移机器人的设计

Jacques M.HERVE

ECELE CENTRALE PARIS

92295 CHATENAY MALABRY CEDEX

FRANCE

摘要:本文目的是对偶具有人性化机器人的应用做一个完全的介绍,并将着重讨论并行机器人特别是那些能够进行空间平移的机器人。在许多工业的应用过程中这种机器人被证明其末端执行器在空间上的定位是没必要的。这个方法的优点是我们能系统地导出能预期得到位移子群的所有运动学链。因此,我们调查了机器人的整个家族。T-STAR机器人现在就是一台工作装置。而H-ROBOT,PRISM-ROBOT是新的可能的机器人。这些机器人能满足现代生产快节奏工作中价格低以及符合挑选的工作环境,如选料、安排、包装、装配等发日益增长的需求。

关键词:运动学,并行机器人

引言

群论可以运用于一系列位移当中。根据这个理论,如果我们能够证明群{D}包含所有的可能的位移,那么{D}就具有群结构。刚体的最显著运动是由群{D}表现出来的。这方法导致机械装置的分类 [1]。建立这样的一个分类的主要的步骤是将位移群的所有子群导出。这能通过检验所有具有旋转和平移特性的[2]产品直接推理出。然而,一个更有效的方法存在于假设群论[3],[4]中。假设群论是在取决于许多有限实参数的全纯映射的基础上定义的。位移群{D}是六维假设群的一个特例。

假设理论

在假设群论的框架内,我们将用于补偿李代数的微元变换与通过其前面幂运算得到的有限运算结合起来。连续群通过与群微元变换有关的微分幂运算描述出来。

另外,群体特性通过微分运算及其逆运算所得到的李代数的代数结构而得到了解释。让我们回忆一下李代数主要的定义公理:一个李代数是一个具有封闭乘积的反对偶称双线性的矢量空间。众所周知 [5],螺旋速度场是在给定点N的条件下通过运算得到的一个六维的矢量空间。由下面[3]中步骤表明,我们能得完整的欧几里得位移{D}子群列表(见大纲表1)。该列表是通过首先定义一个与速度场有关的微分运算符得到的。然后,通过幂运算,得到了李代数有限位移的表达式。此表达式相当于仿射的直接归一正交变换。螺旋速度场的子李代数是对偶位移子群组的直接描述。

{X (w)}子群

为了利用平行机理得到空间平移,我们需要找到所有位移子群的交集——空间平移子群{T}。我们考虑的子群交集将严格的包含于两个“平行”子群内。此类别的最重要的情况是2个{X (w)} 子群和2个不同矢量方向w和w’的平行关系。这很容易证明:

{X(w)} {X(w’)}={T},w≠w’

子群{X (w)}在机制设计起一个很重要的作用。该子群由带有旋转运动的空间平移组成,其旋转主轴方向与所给定的矢量w的方向始终平行。{X(w)}机械联系的实际实施是通过子群{X(w)}代表的系列运动学对偶中的命令实现的。实际上棱柱对偶和旋转对偶P,R,H都用于构造机器人(圆柱体对偶C以紧凑的方式结合棱柱对偶和旋转对偶)。产生的这些运动学对偶的所有可能组合由子群组{X (w)}在[6]中给出。

同时它们必须连续的满足两种几何情况:旋转轴与螺旋轴要与给定的矢量w平行;不是被动运动。

{X{w}}子群的位移运算符,在M点的作用是:

M → N + au + bv + cw +exp(hw^) N M

^是矢量乘积标志。

点N和矢量u,v,w组成了空间的正交标架的基准。a, b, c, h为具有四维空间的子群的四个参数。

空间平移的并联机器人

当两子群组{X(w)} 和{X(w’)},w≠w’,满足w≠w’,但矢量平行时,在移动平台和固定马达之间,其机械生成元就足以能产生空间平移。三个子群组{X

(w)},{X(w’)},{X(w’’)},w≠w’时其生成元同样也能产生空间平移。P,R或H的任何系列组成群组{X (w)}生成元的对偶的空间平移都能被实现。此外,这3种机械生成元可以是不同或一样但都取决于所需的运动学结果。这种组合范围很广,使得整个能进行空间平移的机器人家族成员得到了增加。最有趣的是建筑的模拟能容易地是完成,机器手的选择也能适应委员的需要。Clavel的Delta机器人属于这个家族,因为它基于相同的运动学原理[7]。

并行操作机器人Y-STAR

STAR [16] 由3个能产生{X (u)}, {X (u’)}, {X(u’’)} (fig 1)子群组的协作操作臂组成。3只机械臂是相同且每只都能通过一系列的RHPaR生成一个子群{X (u)},其中Pa代表循环平移协作,此平移协作由一块绞接的平行四边形的两对偶立的杆控制决定。

两旋转对偶轴与螺旋对偶轴必须平行以保证能生成{X (u)}子群组。每条机械臂,第一个2对偶,即同轴旋转对偶和螺旋对偶组成固定机器人的固定部分,同时形成处于相同平面的轴的机械结构,将其分为三个相同部分,从而形成了Y行状。因此任意两轴之间的角度都占整个空间角度的2 /3。机器人的移动部分由PaR系列组成,都能集中于移动平台做指定的某点位置。平台与参考平面保持平行,不能绕垂直于参考平面的轴旋转。任何的一种专有的末端执行器都能是放置在这流动的平台上。所得到的反应移动平台的{T}子群仅能在空间进行平移,在[8]中给出。

H型机器人

大部分并型机器人包括Delta机器人和Y Star机器人,其末端执行器的工作空间与整个装置相比较小。这是此类机器人的一个缺陷。为了避免这种工作空间的限制,对偶此装置安装具有平行轴的电动千斤顶。与Y Star相似的机器人臂不能使用:三个相同集{X (v)}的交集等于{X (v)}而不是{T}。因此,在计新的H机器人[16]时,我们选择与Y-Sta相同的两条手臂,第三条手臂可与Delta手臂相比。这第三条机械臂开始形成带有与第一个两电动

千斤顶平行的机动化柱状对偶的固定框架。继以之绞接的二维平行四边形,此四边形由于其中一根杆的缘故能绕垂直于P对偶的轴转动。与此杆相对偶的杆经由平行轴的旋转对偶R

被连结到移动平台上。当平行四边形形状变化时,这个性质被保持(自由度为一)。此机器人的第一个样机有一个团队的学生在Pastoré教授的指导下于法国“IUT de V ille D’Avray”完成的。此H型机器人安装了具有3种系统的螺杆(1)/大间距的螺母(2),能允许快速移动。它由轴承(6)通过执行机构M控制。三个绞接的平行四边形位于(4)的两端,在(5)的中间将螺母与水平平台(3)连接。机架(7)支撑着整个结构(图2)。边螺旋杆允许沿着其轴转动和移动。中心螺母则不允许平行四边形构架的转动。移动平台与半气缸相似,其自由度为3。这装置的主要优点是那工作空间是直接与平行轴长度成比例,能得到一个较大工作空间。

柱状-机器人

滑动对偶偶P较好的性有能在在工业机械元件上得到应用的可能。一个平行四边形能够利用四转动对偶偶R得到一个移动自由度。因此,利用柱状对偶偶代替平行四边形(Star 机器人)进行机器人设计是一个经济可行的方法。人们想象出了由CPR三重次序组成的很多几何排列(圆柱形对偶偶C可能能被RP代替以得到一电动千斤顶)。轴C必须在每次排列中与R轴平行。P对偶偶的方向可以是任意的。柱状机器人的草图见图3。两固定电动千斤顶是同轴的。第三个电动千斤顶为垂直安装。实际上,这些轴都是水平的。两柱状对偶偶相对偶于前两轴呈45度角。第三柱状对偶偶与第三轴垂直。移动平台在不需要人为调节的条件下在较大工作空间内自行移动。

结论

很多资料[10], [11], [12], [13], [14], [15]表明了假设群论的,特别是其动力学的重要性。通过对偶新的并行机器人的查证能够对偶我们进行机器人原型的构造有很大帮助。其机械性能的日益增加和制造费用的降低用使得机器人在当今工业制造中越来越具有吸引力。这种新机器人具有通用并行机器人在定位、灵敏性和马达定位安装方面的优点,可代替DELTA机器人。

简写列表 1

置换组的子群

{E} 恒等。

{t(D)} 对直线 D 的平移。

{R(N,u)} 绕轴旋转装置.( 或同等物对 N',和 NN 的 u'^u=O)

{H(N,u,p)} 转轴 (N ,u,p)= 2 k 的螺旋运动。

{t(P)} 对平面 P 的平移。

{C(N,u)} 沿轴平移的组合旋转装置.(N,u)

{t} 空间的平移。

{G(P)} 对平面P的平行平面运动。

{Y(w,p)} 平面垂直平移到 w 所允许的平移旋转和沿任何轴平行到 w 的旋转动作。{S(N)} 在点N周围的额球状的旋转装置。

{X(w)} 允许空间和沿任一轴旋转到 w 的平移旋转装置运动。

{D}综合刚体运动。

Design of parallel manipulators via the displacement group

Jacques M.HERVE

ECELE CENTRALE PARIS

92295 CHATENAY MALABRY CEDEX

FRANCE

Abstract:Our aim is to give a complete presentation of the application of Life Group Theory to the structural design of manipulator robots. We focused our attention on parallel manipulator robots and in particular those capable of spatial translation. This is justified by many industrial applications which do not need the orientation of the end-effectors in the space. The advantage of this method is that we can derive systematically all kinematics chains which produce the desired displacement subgroup. Hence, an entire family of robots results from our investigation. The

T-STAR manipulator is now a working device. H-ROBOT, PRISM-ROBOT are new possible robots. These manipulators respond to the increasing demand of fast working rhythms in modern production at a low cost and are suited for any kind of pick and place jobs like sorting, arranging on palettes, packing and assembly.

Keywords: Kinematics, Parallel Robot.

Introduction

The mathematical theory of groups can be applied to the set of displacements. If we can call {D} the set of all possible displacements, it is proved, according to this theory, that {D} have a group structure. The most remarkable movements of a rigid body are then represented by subgroups of {D}. This method leads to a classification of mechanism [1]. The main step for establishing such a classification is the derivation

of an exhaustive inventory of the subgroups of the displacement group. This can be done by a direct reasoning by examining all the kinds of products of rotations and translations [2].

However, a much more effective method consists in using Lie Group Theory [3] , [4]. Lie Groups are defined by analytical transformations depending on a finite number of real parameters. The displacement group {D} is a special case of a Lie Group of dimension six.

Lie’s Theory

Within the framework of Lie’ Theory, we associate infinitesimal transformations making

up a Lie algebra with finite operations which are obtained from the previous ones by exponentiation. Continuous analytical groups are described by the exponential of

differential operators which correspond to the infinitesimal transformations of the group.

Furthermore, group properties are interpreted by the algebraic structure of Lie algebra of the differential operators and conversely. We recall the main definition axiom of a Lie algebra: a Lie algebra is a vector space endowed with a bilinear skew symmetric closed product. It is well know [5] , that the set of screw velocity fields is a vector space of dimension six for the natural operations at a given point N.

By following the steps indicated in [3] we can produce the exhaustive list of the Lie subgroup of Euclidean displacements {D} (see synoptical list 1). This is done by first defining a differential operator associated with the velocity field. Then, by exponentiation, we derive the formal Lie expression of finite displacements which are shown to be equivalent to affine direct orthonormal transformations. Lie sub-algebras of screw velocity fields lead to the description of the displacement subgroups.

The {X (w)} subgroup

In order to generate spatial translation with parallel mechanisms, we are led to look for displacements subgroups the intersection of which is the spatial translation subgroup {T}.We will consider only the cases for which the intersection subgroup is strictly included in the two “parallel” subgroups. The most important case of this sort is the parallel association of two {X (w)} subgroups with two distinct vector directions w and w’. It is easy to prove:

{X(w)} {X(w’)}={T},w≠w’

The subgroup {X (w)} plays a prominent role in mechanism design. This subgroup combines spatial translation with rotation about a movable axis which remains parallel to given direction w , well defined by the unit vector w. Physical implementations of {X(w)} mechanical liaisons can be obtained by ordering in series kinematics pairs represented by subgroups of {X(w)}. Practically only prismatic pair and a revolute pair P, R, H are use to build robots (the cylindric pair C combines in a compact way a prismatic pair and a revolute pair). A complete list of all possible combinations of these kinematics pairs generating the {X (w)} subgroup is given in [6].

Two geometrical conditions have to be satisfied in the series: the rotation axes and the screw axes are parallel to the given vector w; there is no passive mobility.

The displacement operator for the {X {w}} subgroup, acting on point M is: M →N + au + bv + cw +exp(hw^) N M

^ is the symbol of the vector product.

Point N and the vectors u, v, w make up an orthogonal frame of reference in the space and a, b, c, h are the four parameters of the subgroup which has the dimension 4. Parallel robots for spatial translation

To produce spatial translation it is sufficient to place two mechanical generators of the subgroups {X(w)} and {X(w’)},w≠w’, in parallel, between a mobile platform and a fixed motors then three generators of the three subgroups

{X(w)},{X(w’)},{X(w’’)},w≠w’, is needed. Any series of P, R or H pairs which constitute a mechanical generator of the {X (w)} subgroup can be implemented. Morever, these three mechanical generators may be different or the same depending on the desired kinematics results. This wide range of combinations gives rise to an entire family of robots capable of spatial translation. Simulation of the most interesting architectures can easily be achieved and the choice of the robot to be constructed can therefore meet the needs of the commissioner.

Clavel’s Delta robot belongs to this family as it is based on the same kinematics principles [7].

The parallel manipulator Y-STAR

STAR [16] is made up by three cooperating arms which generate the subgroups {X (u)}, {X (u’)}, {X(u’’)}, (fig 1). The three arms are identical and each one generates a subgroup {X(u)} by the series RHPaR where Pa represents the circular translation liaison determined by the two opposite bars of a planar hinged parallelogram. The axes of the two revolute pairs and of the screw pair must be parallel in order to generate a {X (u)}, subgroup. For each arm, the first two pairs, i.e. the coaxial revolute pair and the screw pair, constitute the fixed part of the robot and form at the same time the mechanical structure of an axes lie on the same plane and divide it into three identical parts thus forming a Y shape. Hence the angle between any two axes is always 2 /3.The mobile part of the robot is made up by three PaR series that all converge to a common point below which the mobile platform is located. The platform stays parallel to the reference plane and cannot rotate about the axis perpendicular to this plane. Any kind of appropriate end effectors can be placed on this mobile platform.

The derivation of the {T} subgroup, which proves the mobile platform can only translate in the space, is given in [8].

The H – Robot

For a great majority of parallel robots including the Delta Robot and the Y Star, the working volume of the end effectors is small relative to the bulkiness of the whole device. It is the essential drawback of such a kind of manipulator. In order to avoid this native narrowness of the working volume, it can be imagine to implement three input electric jacks with three parallel axes instead of converging axes. Three arms similar to those of the Y Star cannot be employed: the intersection set of three equal set {X (v)} will be equal to {X (v)} instead of {T}. Hence, designing the new

H-Robot [16], we have chosen two arms of the Y Star type and a third pattern which may be compared with the Delta arms.

This third mechanism begins from the fixed frame with a motorized prismatic pair parallel to the first two electric jacks. It is followed by a hinged planar parallelogram which is free to rotate around an axis perpendicular to the P pair thanks to a bar of the parallelogram. The opposite bar is connected to the mobile platform via a revolute pair R of parallel axis. This property is maintained when the parallelogram changes of shape (with one degree of freedom).

In a first prototype built at “IUT de Ville D’Avray ”(France) by a team a students directed by the professor Pastoré, a H-Robot implements 3 systems screws (1) / nut (2) with a large pitch , which allow rapid movements. It is hold by bearings (6) and animated by the actuators M. Three planar hinged parallelograms, on both sides (4) and at the center (5) make the connection from the nuts to the horizontal platform (3). The stand (7) supports the whole structure (fig 2).

The side screws permit rotation and translation along their axes. The central nut does not allow the rotation of the parallelogram plane about the screw axis.

The mobile platform can only translate with 3 degrees of freedom inside the working space which may be assimilated to a half-cylinder.

The main advantage of this device is that the working volume is directly proportional to the length of the parallel axes and it can be made considerably large.

The Prism- Robot

Sliding pairs P of good quality are available in the industry of mechanical components.

A parallelogram employs four revolute pair R to generate a one degree of freedom translation motion. Therefore, the idea of implementing prismatic pairs instead of parallelograms (Star-Robot) seems to be an economic hint for a new robot design. Various geometric arrangements of three sequences CPR can be imagined (the cylindric pair C may be replaced by RP in order to make up an electric jack). The axis of C have to be parallel to the R axis in each sequence. The direction of P pair may be anyone. A selected sketch is the Prism-Robot of figure 3. Two fixed electric jacks are coaxial. A third fixes electric jack is perpendicular. For practical manipulators, these axes will be horizontal. Two prismatic pair are inclined with the angle 45o relative to the first two axes. The third prismatic pair will be perpendicular to the third axis. The mobile platform is able to undergo pure translation in a wide volume with no jamming effect.

Conclusions

The importance of Lie group theory, expecially for kinematics is recognized from various source [10], [11], [12], [13], [14], [15]. Investigation of new parallel robots generating pure translation led us to the construction of several prototypes. Increasing

performances and the low cost of fabrication make these robots attractive for modern industry. They are presented as an alternative to the DELTA robot and have the classical parallel robot advantages for positioning, precision, rapidity and fixed motor location.

References

[1] HERVE J.M, “Analyse structurelle des mécanismes par group des déplacements”, Mech, Mach, Theory 13, pp, 437-450 (1978).

[2] FRANGHELLA P, “Kinematics of Spatial Linkage by Group Algebra: a strucrure based approach”, Mech, Mach, Theory 23, no 3 pp, 171-183 (1988).

[3] HERVE J.M, “The mathematical group structure of the set of displacements”, Mech, Mach, Theory 29, no 1 pp, 71-83 (1994).

[4] HERVE J.M, “Intrinsic formulation of problems of geometry and kinematics of mechanism”, Mech, Mach, Theory 17, pp 179-184 (1994).

[5] SUGIMOTO K, DUFFY J, “Application of linear Algebra to Screw Systems”, Mech, Mach, Theory 17, pp, 73-83 (1994).

[6] HERVE J.M, SPARACINO F, “Structural Synthesis of Parallel Robots Generating Spatial Translation” 5th Int. Conf, on Adv, Robotics, IEEE no 91TH0367-4, V ol 1, pp. 808-813, 1991.

[7] CLA VEL R, “Delta, a fast robot with parallel geometry”, Proc. Int, Symp, on Industrial Robots, April 1988, pp 91-100.

[8] HERVE J.M, SPARACINO F, “Star, a New Concept in Robotics”, 3rd Intern. Workshop on Advances in Robot Kinematics, Sept. 7-9, 1992, Ferrara, Italy pp. 176-183.

[9] MERLET J.P, “Les robots parallèles”, Hermès, Paris,1990.

[10] KARGER A, NOV ACK J. Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, 1985.

[11] CHEVALLIER D.P, “Lie Algebras, Modules, Dual Quaternions and Algebraic Methods in Kinematics”, Mech, Mach, Theory, V ol. 26, no 6, pp, 613-627 (1994).

[12] POPPLESTONE R.J, “Group Theory and Robotics”, in Robotics Research. The First Int. Symp, M.Brady and R.Paul Eds, Cambrige, MM.MIT Press 1984.

[13] ANGELES J, “Spatial kinematics chains”, Springer Verlag, Berlin, 1982.

[14] HILLER M,WOERNIE C, “A Unified Repre sentation of Spatial Displacements”, Mech, Mach, Theory Vol. 19, pp, 477-486 (1984).

[15] SAMUEL A.E, Mc AREE P.R, HUNT K. H, “Unifying Screw Geometry and Matrix Transformations”, The International Journal of Robotics Research, V ol. 10, no5, October 1991.

[16] HERVE J.M, “Dispositif pour le déplacement en translation spatiale d’un element dans I’espace, en particulier pour robot mécanique”, French patent no 9100286 of January 11, 1991. European patent no 91403521.7 of December 23, 1991.

Synoptical list 1

Subgroups of the displacement group

{E} identity.

{T(D)} translations parallel to the straight line D.

{R(N,u)} rotations around the axis determined by the pair N,u (or and equivalent pair N’,u with NN’^u=O).

{H(N,u,p)} screw motions with the axis N,u and the pitch p = 2 k.

{T(P)} translations parallel to the plane P.

{C(N,u)} combined rotations and translations along an axis (N,u).

{T} spatial translation.

{G(P)} planar movements parallel to the plane P.

{Y(w,p)} screw translations allowing plane translations perpendicular to w and screw motions of pitch p along any axis parallel to w.

{S(N)} spheric rotations around the point N.

{X(w)} translating hinge motions allowing spatial translations and rotations around any axis parallel to w.

{D} general rigid body motions.

红外数据通信技术外文翻译文献

红外数据通信技术外文翻译文献(文档含中英文对照即英文原文和中文翻译) Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique, drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos

etc. characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage. Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit customer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish customer’s operation demand. Keywords: Infrared dray;Code;Decoding;LM386;Red outside transceiver 1 Introduction 1.1 research the background and significance Infrared Data Communication Technology is the world wide use of a wireless connection technology, by the many hardware and software platforms supported. Is a data through electrical pulses and infrared optical pulse switch between the wireless data transceiver technology.

通信工程专业英语翻译

通信工程专业英语翻译 JXTA is a crystallization by Sun company's chief scientist Bill Joy's more than twenty years of brewing."JXTA technology is a platform for Network programming and calculation.To solve the modern distribution calculation especially peer-to-peer (Peer to Peer, P2P) in the calculation of the problem".[1] JXTA research project,which will provide a new framework that make the user more convenient to access to connect on the Internet's personal computer resources, thus further expand Internet 's space. At the same time JXTA is also the Sun's "ONE Internet" strategic continuance, and will take a more positive attitude to compete with the .net strategy of Microsoft and Hailstorm plan . JXTA agreement defines a set of six agreement based on XML, the organization of node into node group, release and found some resources, communication and mutual monitoring provides standardized method.(Endpoint Routing Protocol,ERP) is used for node found routing.To send a message to other nodes, and through the potential firewall and connection.(Rendezvous Protocol,RVP) s used for the nodes in the group to spread information.(Peer Resolver Protocol,PRP) is Used to one or more points to send general inquiries, and receive the response of inquiries.

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

通信工程项目毕业材料外文翻译

用于多跳认知无线电网络的分布式网络编码控制信道 Alfred Asterjadhi等著 1 前言 大多数电磁频谱由政府机构长期指定给公司或机构专门用于区域或国家地区。由于这种资源的静态分配,许可频谱的许多部分在许多时间和/或位置未使用或未被充分利用。另一方面,几种最近的无线技术在诸如IEEE802.11,蓝牙,Zigbee之类的非许可频段中运行,并且在一定程度上对WiMAX进行操作;这些技术已经看到这样的成功和扩散,他们正在访问的频谱- 主要是2.4 GHz ISM频段- 已经过度拥挤。为了为这些现有技术提供更多的频谱资源,并且允许替代和创新技术的潜在开发,最近已经提出允许被许可的设备(称为次要用户)访问那些许可的频谱资源,主要用户未被使用或零星地使用。这种方法通常被称为动态频谱接入(DSA),无线电设备发现和机会性利用未使用或未充分利用的频谱带的能力通常称为认知无线电(CR)技术。 DSA和CR最近都引起了无线通信和网络界的极大关注。通常设想两种主要应用。第一个是认知无线接入(CW A),根据该认知接入点,认知接入点负责识别未使用的许可频谱,并使用它来提供对次用户的接入。第二个应用是我们在这个技术中研究的应用,它是认知自组织网络(CAN),也就是使用 用于二级用户本身之间通信的无许可频谱,用于诸如点对点内容分发,环境监控,安全性等目的,灾难恢复情景通信,军事通信等等。 设计CAN系统比CW A有更多困难,主要有两个原因。第一是识别未使用的频谱。在CW A中,接入点的作用是连接到互联网,因此可以使用简单的策略来推断频谱可用性,例如查询频谱调节器在其地理位置的频谱可用性或直接与主用户协商频谱可用性或一些中间频谱经纪人另一方面,在CAN中,与频谱调节器或主要用户的缺乏直接通信需要二级用户能够使用检测技术自己识别未使用的频谱。第二个困难是辅助用户协调媒体访问目的。在CW A中存在接入点和通常所有二级用户直接与之通信(即,网络是单跳)的事实使得直接使用集中式媒体接入控制(MAC)解决方案,如时分多址(TDMA)或正交频分多址(OFDMA)。相反,预计CAN将跨越多跳,缺少集中控制器;而对于传统的单通道多跳自组织网络而言,这个问题的几个解决方案是已知的,因为假设我们处理允许设备访问的具有成

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

5G无线通信网络中英文对照外文翻译文献

5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 5G无线通信网络的蜂窝结构和关键技术 摘要 第四代无线通信系统已经或者即将在许多国家部署。然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。面临潜在技术的未知挑战也被讨论了。 介绍 信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。 然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。越来越多的

外文翻译:机器人本科生外文翻译资料

外文翻译资料原文 学院 专业班级 学生姓名 指导教师

Robot Darrick Addison (dtadd95@https://www.360docs.net/doc/9611951970.html,), Senior Software Engineer/Consultant, ASC Technologies Inc. 01 Sep 2001 "A re-programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." -- From the Robot Institute of America, 1979 Darrick Addison, an experienced developer in databases, networks, user interfaces, and embedded systems, introduces the field of robotics and the issues surrounding robotic systems. He covers mechanical design, sensory systems, electronic control, and software. He also discusses microcontroller systems, including serial and memory-mapped interfacing, and talks about some of the available open source software options. The word "robot" originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankenstein's monster -- creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations. Basically a robots consists of: ? A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment ?Sensors on or around the device that are able to sense the environment and give useful feedback to the device ?Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

通信工程移动通信中英文对照外文翻译文献

中英文翻译 附件1:外文资料翻译译文 通用移动通信系统的回顾 1.1 UMTS网络架构 欧洲/日本的3G标准,被称为UMTS。 UMTS是一个在IMT-2000保护伞下的ITU-T 批准的许多标准之一。随着美国的CDMA2000标准的发展,它是目前占主导地位的标准,特别是运营商将cdmaOne部署为他们的2G技术。在写这本书时,日本是在3G 网络部署方面最先进的。三名现任运营商已经实施了三个不同的技术:J - PHONE 使用UMTS,KDDI拥有CDMA2000网络,最大的运营商NTT DoCoMo正在使用品牌的FOMA(自由多媒体接入)系统。 FOMA是基于原来的UMTS协议,而且更加的协调和标准化。 UMTS标准被定义为一个通过通用分组无线系统(GPRS)和全球演进的增强数据

技术(EDGE)从第二代GSM标准到UNTS的迁移,如图。这是一个广泛应用的基本原理,因为自2003年4月起,全球有超过847万GSM用户,占全球的移动用户数字的68%。重点是在保持尽可能多的GSM网络与新系统的操作。 我们现在在第三代(3G)的发展道路上,其中网络将支持所有类型的流量:语音,视频和数据,我们应该看到一个最终的爆炸在移动设备上的可用服务。此驱动技术是IP协议。现在,许多移动运营商在简称为2.5G的位置,伴随GPRS的部署,即将IP骨干网引入到移动核心网。在下图中,图2显示了一个在GPRS网络中的关键部件的概述,以及它是如何适应现有的GSM基础设施。 SGSN和GGSN之间的接口被称为Gn接口和使用GPRS隧道协议(GTP的,稍后讨论)。引进这种基础设施的首要原因是提供连接到外部分组网络如,Internet或企业Intranet。这使IP协议作为SGSN和GGSN之间的运输工具应用到网络。这使得数据服务,如移动设备上的电子邮件或浏览网页,用户被起诉基于数据流量,而不是时间连接基础上的数据量。3G网络和服务交付的主要标准是通用移动通信系统,或UMTS。首次部署的UMTS是发行'99架构,在下面的图3所示。 在这个网络中,主要的变化是在无线接入网络(RAN的)CDMA空中接口技术的引进,和在传输部分异步传输模式作为一种传输方式。这些变化已经引入,主要是为了支持在同一网络上的语音,视频和数据服务的运输。核心网络保持相对不变,主要是软件升级。然而,随着目前无线网络控制器使用IP与3G的GPRS业务支持节点进行通信,IP协议进一步应用到网络。 未来的进化步骤是第4版架构,如图4。在这里,GSM的核心被以语音IP技术为基础的IP网络基础设施取代。 海安的发展分为两个独立部分:媒体网关(MGW)和MSC服务器(MSS)的。这基本上是打破外连接的作用和连接控制。一个MSS可以处理多个MGW,使网络更具有扩展性。 因为现在有一些在3G网络的IP云,合并这些到一个IP或IP/ ATM骨干网是很有意义的(它很可能会提供两种选择运营商)。这使IP权利拓展到整个网络,一直到BTS(基站收发信台)。这被称为全IP网络,或推出五架构,如图五所示。在HLR/ VLR/VLR/EIR被推广和称为HLR的子系统(HSS)。 现在传统的电信交换的最后残余被删除,留下完全基于IP协议的网络运营,并

外文翻译通信工程英文的毕业设计论文

编号: 毕业设计(论文)外文翻译 (译文) 学院:信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师单位:信息与通信学院 姓名: 职称: 2014年 2 月9 日 Radio network planning process and methods for WCDMA Abstract This paper describes the system dimensioning and the radio network planning methodology for a third generation WCDMA system. The applicability of each method is demonstrated using examples of likely system scenarios. The challenges of

modeling the multiservice environment are described and the implications to the system performance simulations are introduced. Keywords: Telecommunication network planning, Mobile radio- communication, Code division multiple access, Wide band transmission, Multiple service network, Dimensioning, Simulator, Static model, Dynamic model, Cellular network. Resume(?) Contents I.Introduction II. Initial planning, system dimensioning III. Detailed planning process IV. Example dimensioning case and verification of dimensioning with static simulations V. Comparison of a static to a dynamic network simulator VI. Conclusion INTRODUCTION As the launch of third generation technology approaches, operators are forming strategies for the deployment of their networks. These strategies must be supported by realistic business plans both in terms of future service demand estimates and the requirement for investment in network infrastructure. Evaluating the requirement for network infrastructure can be achieved using system dimensioning tools capable of assessing both the radio access and the core network components. Having found an attractive business opportunity, system deployment must be preceded by careful network planning. The network planning tool must be capable of accurately modeling the system behaviour when loaded with the expected traffic profile. The third generation cellular systems will offer services well beyond the capabilities of today's networks. The traffic profile, as well as the radio access technology itself form the two most significant challenges when dimensioning and planning a WCDMA based third generation system. The traffic profile describes the mixture of services being used by the population of users. There are also specific system functionalities which must be modelled including fast power control and soft handover. In order to accurately predict the radio coverage the system eatures associated with WCDMA must be taken into account in the network modeling process. Especially the channel characterization, and interference control mechanisms in the case of any CDMA system must be considered. In WCDMA network multiple services co-exist. Different services (voice, data) have different processing gains, Eb/N0 performance and thus different receiver SNR requirements. In addition to those the WCDMA coverage depends on the load characterization, hand over parameterization, and power control effects. In current second generation systems' coverage planning processes the base station sensitivity is constant and the coverage threshold is the same for each base station. In the case of WCDMA the coverage threshold is dependent on the number of users and used bit rates in all cells, thus it

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

通信工程专业Code-division-multiple-access码分多址大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:码分多址 文献、资料英文题目:Code division multiple access 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期:2017.02.14

外文原文 Code division multiple access Code division multiple access (CDMA) is a channel access method used by various radio communication technologies. It should not be confused with the mobile phone standards called cdmaOne, CDMA2000 (the 3G evolution of cdmaOne) and WCDMA (the 3G standard used by GSM carriers), which are often referred to as simply CDMA, and use CDMA as an underlying channel access method. One of the concepts in data communication is the idea of allowing several transmitters to send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). This concept is called multiple access. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency. CDMA is a form of spread-spectrum signalling, since the modulated coded signal has a much higher data bandwidth than the data being communicated. Steps in CDMA Modulation Each user in a CDMA system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance will occur when there is good separation between the signal of a desired user and the signals of other users. The separation of the signals is made by correlating the received signal with the locally generated code of the desired user. If the signal matches the desired user's code then the correlation function will be high and the system can extract that signal. If the desired user's code has nothing in common with the signal the correlation should be as close to zero as

相关文档
最新文档