激发态过程的动力学

激发态过程的动力学
激发态过程的动力学

第七章激发态过程的动力学

前面各章我们用量子物理从微观的角度讨论了固体中与光学激发态有关的各种基本的跃迁元过程,诸如单纯的或声子协助的光吸收(或激发)和光发射,光学激发态的弛豫和无辐射跃迁,光学激发能的传输,光学激发的俘获和释放等等。我们称这些与光学激发态有关的过程为激发态过程。在这些过程中,光辐射场,固体中的电子,以及晶格振动(声子)的状态都会有相应的变化。过程中,

激发能可能会转换为光能发射出来,也可转换为热能(声子)。一个完整的

激发态过程,包括使材料达到光学激发态的激发过程,各种激发状态转换的中间过程,和各种退激发过程,特别是以光发射的形式退激发的过程。不过,前面的讨论主要是分别针对每一种元

过程,从微观层面进行了讨论,并给出了这些元过程的跃迁速率。实际材料中发生的过程,在过程的每一阶段,往往有多种元过程同时进行,它们彼此之间互相竞争,使得激发态过程变得复杂多样。我们观察到的材料各种宏观发光现象就是这种激发态过程的结果。材料发光(以及发热)的宏观特性,不仅是实际应用中人们关注的特性。而且,正由于它们都是材料内部各种元过程竞争的结果,它们也成了深入认识微观元过程及它们间关系的窗口。

如果外界的激发强度是恒定的,持续了足够长的时间,各种元过程在竞争中最终总要达到一个平衡,达到某种稳定的状态。这时的光发射也达到一个恒定的强度,称为定态光强。在外界的激发或其它影响过程的外部条件随时间而变的情形,固体的光发射也随时间而变。例如,在某一时刻(设为t=0),开始对材料施加一恒定强度的激发(阶跃激发),材料的发光强度并不是立刻达到定态值,而是有一个上升过程;同样,当激发停止后,发光也不是立即衰减到零,而是有个逐渐衰减的过程。这种激发停止后延续的发光称之为余辉。发光的上升和衰减的快慢因材料而异,其持续时间有的很短,例如皮秒甚至飞秒的量级;有的材料的发光衰减时间很长,达到毫秒,甚至若干小时(常称之为长余辉发光)。一般

来说,外界激发或其它条件随时间而变的规律可以多种多样,相应

的发光也就有不同的时间变化规律。人们已经发展了各种高灵敏的光

探测手段和高时间分辨的光谱技术,可以很好的跟踪材料发光随时间的变化。

在给定的外界环境下,材料的宏观发光特性,无论是稳态的,还是动态的,都与材料的总体状态(瞬时)直接相联系。状态随时间的变化则依赖于材料中不同能量状态间发生的各种元过程之间的竞争。要理解过程的机理,就需从参与过

程的各种元过程的相互关联中去寻找答案。本章的讨论中,我们将采用唯象的方法:每一类元过程的跃迁速率被认为是已知的,用相应的速率常数表示,它们不受其它过程存在与否的影响。同时发生的不同元过程通过速率方程联系在一起。我们将利用速率方程来描述它们间的竞争,以及整个过程随时间的演变。由此可以得到宏观光物性与微观元过程间的关系。我们的讨论大多限于弱辐射场的情形,因而没有特别说明,均不考虑受激发射过程。

7.1孤立中心系的发光增长和衰减

先讨论最简单的体系--孤立中心系的发光过程的时间演变。这里,孤立中心是指其发光过程各自独立地在每个中心处进行,中心间互不相关,因而体系的动力学过程较简单,总的光发射是所有单个中心的简单叠加。

一般来说,外界的激发可以是随时间而变的,设为

()

e e t

=,因而中心的

发光随时间有相应的变化,表示为()

J t。激发最简单的时间变化形式是阶跃式的改变,即一个确定大小的激发突然施加在系统上,或突然撤除。这时所考察的中心系的发光强度将随时间而增长或衰减。设想在某时刻(设为零)开始对材料施加一恒定的激发,如果材料所有中心在施加激发前都处于基态,可以直观的推断,体系中处于激发态的中心数(或每个中心处于激发态的几率)将随时间增大,因而其发光也随之增大,足够长时间后,激发和退激发过程将达到平衡,体系中的激发中心数不再随时间变化,达到了稳定状态。那时体系的发光强度也就达到了定态值,不再随时间而变。如果外界激发突然撤除,由于存在某些退激发途径,它们各有不同的退激发速率,中心系处于激发态的中心数将逐渐减小,相应的,其发光随时间而衰减。这种阶跃式的激发,形式简单,实验上容易实现,在这样的激发条件下的荧光动力学过程也便于理论分析,并由观测的荧光变化规律,得到相关中心的微观参量。下面我们以两个简单体系为例,进行具体讨论,并简略介绍多类中心混合体系荧光衰减的主要特点。

7.1.1二能级中心系

二能级中心系是最简单的中心系,它只包含一类中心,中心只有基态和激发态两个能级,所要考虑的元过程只有中心的激发和退激发(或发光)过程,发光强度与处于激发态的中心数()

n t成比例。先考虑不涉及强辐射场的情形,这时,光的发射只需考虑自发辐射过程。

1)激发停止后的荧光衰减

假定任一时刻处于激发态的单个中心的自发辐射跃迁速率为a ,处于激发态的中心数为()n t ,它描述该中心系的激发程度。于是,体系任一时刻的自发辐射总速率,也即处于激发态的所有中心总自发辐射跃迁速率,就是()n t a 。假定没有无辐射过程,激发态中心数随时间演变的速率方程就如下式所示:

()()dn t dt an t =- (7.1-1) 方程右边的负号表示处于激发态的中心数随时间减少。这一方程的解为:

ln ()(0)n t n at =- 或 0

()(0)at at n t n e n e --=≡。(以后初始时刻的值都用下标0表示)。或者说每个初始时刻处在激发态的中心,在后续时刻t 处在激发态的几率为0

()at n t e n -=。由此可得中心处于激发态的平均寿命, 000()1at an t tdt ate dt n a

τ∞

-===?? (7.1-2) 体系在时刻t ,总的发光强度(单位时间发射的总光子数)为

00()()at at J t an t an e J e --==≡ (7.1-3) 呈现单指数衰减规律。

如果中心从激发态到基态间还有无辐射跃迁,其速率用w 表示。这时,总的退激发速率为a w γ=+。荧光衰减就变成

()00

()a w t t n t n e n e γ-+-== (7.1-4) 而平均寿命为:1

1a w

τγ==+。这时的荧光衰减仍为单指数规律,但下降更快,寿命更短了,因为多了一条衰减通道。

2) 激发开始后发光的增长

设中心总数为N 。时刻t ,处在基态和激发态的中心数分别为1()n t 和2()n t ,显然12n n N +=。假定0t =时,所有中心都处在基态,2(0)0n t ==。这时开始施加一恒定的光激发:激发光强I (光子流密度)。为使数学表述简单起见,

考虑一薄层样品,使得激发光在通过它时的衰减可以忽略不计,中心系中所有中心都得到相同强度的激发。设处于基态的单个中心的吸收截面为σ,则时刻t ,激发速率为1In σ。一般地,激发光可能较强,我们把受激发射过程也包括进来,其速率为2In σ(对S 很小的中心)。于是,对现在所考虑的问题,动力学过程中同时发生的元过程包括吸收,自发发射和受激发射三种。描述体系激发态过程的速率方程就可表示为:

2212dn an In In dt

σσ=-+- (7.1-5) 利用12n N n =-,上列方程可改写成:

()2222222dn an In IN dt

IN a I n a I σσσσσ=--+??=-+- ?+??

,其解为: (){}21exp 22IN n a I t a I σσσ??=--+??+ (7.1-6) 可见,处于激发态的中心数,随

时间指数增长(图7.1.1)。中心

的发光()2n t a 也以相同规律变

化。可以看出,在t 很小,以致

()21a I t σ+<<时,上式中的

指数项可近似取其泰勒展开的前

两项。于是有2n INt σ?,与时

间成线性关系。而当t →∞时,2

n 逐渐趋向于饱和值:22IN n a I σσ∞

=+

。此饱和值依赖于激发强度。对通常的光强

图7.1-1二能级中心系在阶跃激发下激发

中心数随时间的增长

I a σ<<,饱和值近似为2IN n a σ∞?,随激发光强线性增大。而在另一极限

情形,激发光很强,I a σ>>时,2n ∞趋向于饱和值2N 。

可见对双能级中心系,激发光(辐射场)再强也不会使它达到粒子数反转。

7.1.2 三能级中心系

这里考虑的中心除了基态g 和激发态e ,在它们中间还有一个中间能级m 。如果中间能级离基态较近,它与基态间的能量间隔不在光学波段,光发射跃迁包括激发态到基态和中间态两种跃迁,它们的速率常数分别为1a 和2a 。这种情形与情形1很类似,处于激发态的中心数满足速率方程:

()12dn dt a a n =-+ (7.1-7)

其解12()0

()a a t n t n e -+=仍为单指数衰减,只是速率是两个过程的速率之和,寿命变短了()112a a τ-=+。两种跃迁的波长不同,但初态相同,发光与初态粒子数成比例,它们的荧光寿命自然一样。

如果中间能级离激发态较近,如图7.1-3

所示,可能的光发射跃迁是激发态和中间态

到基态的跃迁。相应的跃迁速率常数分别为e a 和m a 。这时还需考虑激发态与中间态

间的跃迁:e m →和m e →,它们的跃

迁速率分别用w 和p 表示,它们通常是无

辐射跃迁。

* 对于温度较低或中间态距激发态较远,

以致0p ≈的情形,处于激发态的中心有两

条通道退激发,激发中心数随时间衰减的规律

与上面类似,为()0()e a w t e e n t n e -+=。然而处于中间态的中心数()m n t 和相应的发光随时间的变化就较复杂。中间态除了到基态的跃迁m g →,还有e m →的跃迁,()m n t 满足的速率方程为:

m e m m dn wn a n dt

=- (7.1-8) 它与e e e e dn wn a n dt

=--一起描述了体系的激发态过程。 作变换()()m a t m m n t n t e -'=,方程(7.1-8)变为:m a t m e dn wn e dt

'=。 利用前面得到的结果()0()e a w t e e n t n e -+=,方程(7.1-8)又变为:

()0m e a a w t

m e dn wn e dt

--'=,可得其解为: ()0()(0)1m e a a w t e m m m e wn n t n e a a w

--??''=+-??-- (7.1-9) 于是

()000()()m m e a t a t a w t e e m m

m m e m e wn wn n t n t e n e e a a w a a w ---+??'==-+ ?----?? (7.1-10)

利用00e e e J a n =,m m m J a n =,00m m m J a n =,中间态的荧光则为:

()000()m e a t a w t

m m m m e e e m e e m e a a w w J t J J e J e a a a w a a a w --+??=-+ ?----??

(7.1-11)

在这一还很简单的情形,荧光变化的规律已经不太“简单”,为两个指数项之和。 当0p ≠,情况更复杂。m e →的跃迁将增加处于激发态e 的中心数,使其变化规律更复杂了。m e →的跃迁是由于电声子相互作用,是吸收声子的过程,其速率可表示为0

B k T p p e -=E ,与温度有关,其中E 为激活能。 若e m a p a >>>>,中间态为亚稳态的情形,可以直观地推断,激发态的荧光衰减过程,在由速率为e a w +的较快的衰减之后,会有一个速率为p 的

衰减较慢的过程,pt e J e -∝,这时荧光强度随时间的变化是由m e →的跃

迁决定的(m e g →→)。如果e m a p a >>≈,且e a w >>,可以预期,激发态的荧光在一个快速衰减后,藉由m e →提供的能量,衰减规律将为()m p a t e J pe -+∝;同时,中间态的发光为()m p a t m m J a e -+∝。

一般情形下,可以列出动力学方程:

e e e e m m e m m m dn a n wn pn dt

dn wn a n pn dt

=--+=-- (7.1-12) 将上面两式消去m n ,就可以得到关于e n 的微分方程:

()()220e e e m e m e n e d n dn a a w p a a a p a w n dt dt

+++++++= (7.1-13) 有了所有微观元过程的速率常数和联系所有这些过程的速率方程,原则上我们可以得到不同状态的中心数目随时间的变化,以及相应的荧光衰减规律。

7.1.3 多类中心混合体系的荧光(非指数)衰减

由于我们测量的系统包含了大量的发光中心,发光强度实际上是一个系综平均值。即使每一个中心的荧光衰减都遵循指数规律,如果不同中心的荧光寿命不都相同,所观察到的它们总的荧光衰减曲线就呈现非单指数的规律。

例如对简单的由M 种独立的发光中心组成的系统,中心类别用m 标记,0,1,2,...,m M =,每种中心在所有中心中所占比例为m p 。各种中心都按指数规律衰减,但各有不同的速率m γ。若中心的光谱是不能分辨的,且初始时刻每个中心处在激发态的几率相同(均匀激发),宏观上观测到的系统总的发光就是所有中心发光之和:

0()e m M t

m m J t J p γ-=∑

0J 为初始光强。这一荧光衰减是一个多指数过程。一般地,当中心类别(以参

数x 标记)连续分布时,设x 类中心的瞬时发光强度为(,)f x t ,中心按参数x 分布的密度函数为()x ?,则平均的发光强度为

()(,)(,)()d J t f x t f x t x x ?∝=? (7.1-14) 例如玻璃基质,由于结构的无序性,其中的发光中心(例如稀土离子)的能级位置分布在某个范围内。考虑图7.1.3所示的三能级。设?是发光能级与它下面的中间能级之间的能量差,不同中心的?围绕平均值0?有一定的分布,通常可用Gauss 分布

2202)(2e π21

)(σ??σ??--= (7.1.15)

来描述。如果无辐射跃迁几率与?的关系为(见5.4节)nr Ce αγ-?=,且不同

中心的辐射跃迁速率r γ

相同,对初始时刻所有中心以相同几率处于激发态的情形,这一中心系的发光衰减就可表示为

202()21

()e e e d r t Cte J t αγσ-??-?---∝?? (7.1-16) 在实际问题中,相互作用的情况往往复杂得多,特别是在无序体系中,如SiO 2玻璃,多孔硅等,经常可以观察到所谓的拉伸指数函数(Stretched exponential function )形式的荧光衰减规律:

0exp[(/)]J J t βτ=- (7.1-17) 其中的参数β 称为弥散参数,与材料的性质和结构有关,还与温度和激发条件等有关,其大小通常为 0 < β < 1。这种衰减规律可以归之于无序效应,

发光中心和陷阱的无规分布,使不同中心的跃迁速率不再相同,即产生所谓的弥散效应,大量中心的发光叠加,就呈现这种拉伸指数式的发光衰减。

对存在D-A间能量传递的体系,其荧光衰减规律将在下一节讨论。

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

第三章 微生物反应动力学习题

第三章微生物反应动力学习题 1. 微生物反应的特点,其与化学反应的主要区别有那些? 2.简要回答微生物反应与酶促反应的最主要区别? 3. 进行微生物反应过程的物量衡算有何意义,请举例说明。 4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么? 5.举例简要说明何为微生物反应的结构模型? 6. 以葡萄糖为单一碳源,进行某种微生物好氧或厌氧培养。已知此菌的比生长速率μ、葡萄糖的比消耗速率γ、细胞、葡萄糖、二氧化碳和各产物中的碳元素含量α1、α2、α3 和αi,利用这6 个常数给出此菌的与生长相关的物料衡算式。 7. 葡萄糖为碳源的复合培养基进行干酪乳杆菌的厌氧培养,1mol葡萄糖可生成乳酸或乙酸或乙醇或甲酸为0.05mol、1.05mol、0.94mol和1.76mol,试讨论各分解代谢的碳元素的恒算及生成ATP的摩尔数。 8. 荧光假单胞菌(Pseudomonas fluorescens)好氧培养中,已知:Y x/s=180g/mol,Y x/o=30.4g/mol,每消耗1mol葡萄糖可生成2molATP,氧化磷酸化的P:O比为1,求Y ATP? 9. 在啤酒酵母的生长试验中,消耗了0.2kg 葡萄糖和0.0672kgO2,生成0.0746kg 酵母菌和 0.121kgCO2,请写出该反应的质量平衡式,计算酵母得率Y X/S 和呼吸商RQ。 10. 微生物物繁殖过程中分裂一次生成两个子细胞,也有4 分裂或8 分裂的,试证明当n 分 裂时,有如下式子:,式中: 为倍增时间, 为世代时间。 11.分别采用含有蛋白胨和牛肉膏的复合培养基、含有20 余种氨基酸的合成培养基和基本培养基进行运动发酵单胞菌厌氧培养,碳源为葡萄糖,获得如下表所示结果。已知菌体的含碳量(以碳源/细胞计)为0.45g/g,求采用不同培养基时的Y KJ。 12. 葡萄糖为碳源进行酿酒酵母培养,呼吸商为1.04,氨为氮源。消耗100mol 葡萄糖和48mol氨,生成细胞48mol、二氧化碳312mol 和水432mol。求氧的消耗量和酵母细胞的化学组成。 13. 以葡萄糖为唯一碳源的最低培养基进行Candida utilis 培养,Y x/s=91.8g-细胞/mol 葡萄糖,求Y kJ。已知葡萄糖的燃烧热为2830KJ/mol。 15. 以葡萄糖为唯一碳源的基本培养基厌氧培养产气气杆菌, Yx/s= 26.1 g 细胞/mol 葡萄糖,试求分解代谢消耗葡萄糖的量占总消耗量的分率? 已知每克细胞含0.45g 碳,每mol 葡萄糖含72g 碳,且△S=△S 合成 +△S分解。 16.一个新发现的微生物在每一次细胞分裂时,可产生3个新细胞,由下列生长数据求:①此微生物的比生长速率μ(h-1);②两个细胞分裂的平均间隔时间;③此微生物细胞的平均世代时间。 时间/h 0 0.5 1.0 1.5 2.0 细胞干重/(g/L) 0.10 0.15 0.23 0.34 0.51

分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。(3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法被分离组分的摩尔分数)富集<0.1;浓缩0.1-0.9;纯化>0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系?

答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ QoA ,SA,B ≈ QoB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。 第三章 分离过程中的动力学 1.简单讨论分子运动与宏观物体机械运动的差别和共同点。

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

(完整版)结构动力学历年试题

结构动力学历年试题(简答题) 1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请 简述每一种荷载的特点。P2 2.通过与静力问题的对比,试说明结构动力计算的特点。P3 3.动力自由度数目计算类 4.什么叫有势力?它有何种性质。P14 5.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P16 6.什么是振型的正交性?它的成立条件是什么?P105 7.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P32 8.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P132 9.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在 哪里?第五章课件 10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确 解相比有何特点?造成这种现象的原因何在?P209 11.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P1 12.坐标耦联的产生与什么有关,与什么无关?P96 13.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面? P132及其课件 14.请给出度哈姆积分的物理意义?P81 15.结构地震反应分析的反应谱方法的基本原理是什么?P84总结 16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。。。 17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该 如何进行判断?P132 18.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型, 每种类型请给出一种实例。P2 19.请分别给出自振频率与振型的物理意义?P103 20.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题 21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响 可以不考虑,这样处理的物理基础是什么?P115 22.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数 为25000个,我们如何缩短计算所耗费的机时?P103 23.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案 24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速), 为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。详解见卷子上答案 25.简述用振型叠加法求解多自由度体系动力响应的基本原理及使用条件分别是什么?若 振型叠加法不适用,可采用何种普遍适用的方法计算体系响应?详解见卷子上答案 26.振型函数边界条件。。。 27.集中质量和一致质量有限元的差异和优缺点,采用这两种有限元模型给出的自振频率与 实际结构自振频率相比有何种关系?P242及卷子上答案 28.人站在桥上可以感觉到桥面的震动,简述当车辆行驶在桥上和驶离桥面的主要振型特征 有何不同? 29.简述用Duhamel积分法求体系动力响应的基本原理,以及积分表达式中的t和τ有何差

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

分离课后习题及答案

第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

晶体生长第七章 晶体生长动力学

第七章 晶体生长动力学 生长驱动力与生长速率的关系(动力学规律或界面动力学规律),先解决生长机制问题。 §1 邻位面生长——台阶动力学 邻位面生长——奇异面上的台阶运动问题 1. 界面分子的势能 1→2 : 2Φ1+8Φ2; 1→3 : 4Φ1+12Φ2; 1→4 : 6Φ1+12Φ2 分子最稳定位置(相变潜热) 单分子相变潜热: l sf =W s +W k ① 流体分子 ⑴ 吸附分子 ⑵ 台阶分子⑶ 扭折 ⑷ 邻位面上不同位置的吸附分子[3] 界面上不同位置的势能曲线 体扩散 面扩散 线扩散

② 流体分子 ⑴ 吸附分子 ⑵ 扭折 ⑷ ③ 流体分子 ⑴ 扭折 ⑷ 2.面扩散 W s =2Φ1+8Φ2 吸附分子→流体需克服的势垒 sf s l 20 1 22≈Φ≈ε 面扩散激活能 υ∥ 吸附分子在界面振动频率 吸附分子在晶面发生漂移的机率为:)/ex p(kT s ε-,面 扩散系数为:D s D s =[υ∥ )/ex p(kT s ε-] 吸附分子平均寿命:τs, s τ1 脱附频率 )/ex p(/1kT W s s -=⊥υτ ) /ex p(1 kT W s s ⊥ = υτ Xs: 吸附分子在界面停留的平均寿命τs 内,由于无规则漂移而在给定方向的迁移(分子无规则漂移的方均根偏差) s s s D X τ=2 (爱因斯坦公式) kT W X s s s 2/]exp[2 1 ε-=∴ 由于对一般的晶面: sf s s l W 45.0≈-ε υ∥=υ⊥ 体扩散 面扩散 体扩散

]/22.0exp[2 1 kT l X sf s ≈∴ Xs 决定了晶体生长的途径。 3. 台阶动力学——面扩散控制 台阶的运动受面扩散控制 界面某格点出现吸附分子的机率:00 N N s s =α 界面N 0,格点Ns 有吸附分子: )/ex p(0 kT W k s -=α (对单原子或简单原子,可忽略取向效应) 若:Xs >> X 0 则到达界面便可到达台阶,扭折 平衡时,脱附分子(单独时间从界面脱附)数为:s s τα1 ? 平衡时,吸附分子数为:s s τα1 ? 0/p p =α 饱和比,在此情况下,吸附分子为: s s ταα1 ? ? Xs >> X 0 则吸附分子均能到达台阶 设台阶长度为a,则单位时间到达台阶的分子数为: a X s s s ???ταα1 20 考虑脱附分子数: a X s s s ???τα1 20

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

分离课后习题及答案

【注意事项】 1.因时间关系,详细复习总结的电子版没时间做了,大家抽空多看看课本,考试以课本基础知识为主,书上找不到答案的不会考。 2.这里主要总结了老师上课讲的课后题 参考 答案,以及部分往届复习的名词解释整合,大家参考记忆。 3.考试题型:6-7个名词解释,6-7个选择题(考察细节掌握,一个两分),填空,简答论述(接近50分)。 4.不考计算题,但依然会考公式的其他应用,复习时自己注意。 5.【P22】【P24】【P44-45】【P216-217】这几页的图和表必须会解读,【P191-192】这两页表必须背过,必考重点!考试没有画图题,但可能有读图题,常见的重点图示必须熟悉。 6.抓紧时间好好复习,今年监考比历届都要严,不要因小失大!!! 7.最后,祝都过。 ***感谢冯晓博、马阿敏、张雪琴三位热心的好学霸肯抽出时间为大家整理资料*** 第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。

晶体生长复习题.doc

1. 简述温度的物理意义。 2. How many atoms of argon at a pressure of one atmosphere are incident on a square centimeter of surface at room temperature in one microsecond? 3. 简要解释晶体的扩散机理有哪两种?1000%时铜在单晶硅中的扩散系数D为10_4cm2/s,而B和P等的扩散系数约为10"14cm2/s,在集成电路制作过程中,如果我们采用1000Q C高温处理,在单晶硅上使B扩散10nm的距离,请估计铜的扩散距离为多少mm? 4. 谈谈你对扩散系数的理解(气体,液体,晶体与非晶的扩散系数有什么不同?扩散系数的大小受哪些因素影响?)请写出扩散方程:Fick第一定律和第二定律的一维表达式。并请写出一维稳态条件下Fick第二定律的表达式及其解。 5. 直径为1nm的金粒子在1000°C,含金1Q/O的玻璃衬底上成核,沉淀粒子基本上是纯金,金在玻璃中的平衡浓度1000°C时为0.1。/。,假设粒子生长是由扩散控制的,1000°C时金在玻璃中的扩散系数为10_w cm2s_1。用球形粒子沉淀的稳态扩散近似计算1小时后金粒子的大小。 6. A Czochralski silicon crystal that is about one meter in length is grown in eight hours, so that a crystal can be grown by a worker in one shift. For a diffusion coefficient in the liquid D=5X l0'5cm2s'1, what is the thickness of the diffusion boundary layer? 7. 晶体熔体生长的温度梯度一般为100°C/cm。保持这样的温度梯度主要通过增加热传导的方式。对于铝,热流量为130W/cm2,氧化铝为20W/cm2, 硅为94 W/cm2,生长直径为12-inch的硅单晶,总热流量为50kW。如果:分凝系数/< = 0.1,液相线斜率m = 1 deg/%C,扩散系数D = 5x10~5 crrP/sec,温度梯度0 = 100°C/cm f 提拉速率v = 1 mm/min = 1/600 cm/sec,请问,不产生组分过冷的临界组分浓度为多少? 8. 位错生长理论模型与Kossel理论模型比较,主要解决了什么问题?根据位错理论模型,过饱和度与晶体生长速率的关系如何? 9. 在熔体中生长晶体,晶体生长速率和过冷度通常是线性关系,采用Czochralski 方法在其熔体中的生长单晶硅的速率约为5x10'5m/sec,体系的过冷度一般为 0.01°C,试求硅单晶生长的动力学系数。 10. 晶体生长动力学主要研究晶体生长的微观过程及其对晶体生长速率的影响。请简要讨论影响晶体生长速率的微观过程有哪些? 11. 如果晶体生长速率由晶体界面动力学过程控制,晶体生长速率与哪些因素有关?写出晶体生长速率的表达式。 12. 什么是stepan Problems?定性描述我们采取什么方法解决stefan Problems? 13. 谈谈你对晶体生长过程中分凝效应理解,分凝系数和有效分凝系数有什么区别。请写出定向凝固方程(scheil方程)并比较与杠杆规则的区别。 14. Crystals that are grown from solution are grown much more slowly, at a rate of perhaps 1 mm/day. For a liquid diffusivity, D=5X 10'5cm2s'1, what is the diffusion length? What does this imply about the concentration in a growth vessel that is 20cm in diameter? 15. the thermal diffusion length is the thermal diffusivity divided by

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

相关文档
最新文档