糖蛋白的结构与功能

线粒体DNA的结构和功能特征

第一节 线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因 (16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome  Encoded by Encoded by  Mitochondrial nuclear

genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex Ⅳ Cytochrome c oxidase complex Ⅴ ATP synthase complex Components of protein synthesis apparatus tRNA components rRNA components Ribosomal proteins Other mitochondrial proteins 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits 2 subunits 24 22 tRNAs 2 rRNAs None None >80 subunits >41 subunits 4subunits 10 subunits 10 subunits 14 subunits ~80 None None ~80 All, e.g. mitochondrial enzymes and proteins 和7个呼吸链脱氢酶亚单位的基因)。位于D环区的HSP(heavy strand promoter)和LSP(light strand promoter)是线粒体基因组转录的两个主要启动子(图6-1)。 mtDNA是裸露的,不与组蛋白结合,存在于线粒体基质内或黏附于线粒体内膜。在一个线粒体内往往有一至数个mtDNA(图6-2)。mtDNA的自我复制也是以半保留复制方式进行。复制先从重链开始,形成一个约680个碱基的7sDNA,称D环。在对鼠细胞研究中发现,大多数的mtDNA均为D环的结构,只有一小部分mtDNA从D环开始合成完整的新生链。轻链的复制要晚于重链,等重链合成过OL之后才开始合成。研究发现mtDNA 的复制可以越过静止期或间期,甚至可以分布在细胞整个周期。mtDNA 的自我转录很似原核生物,即产生一个多顺反子,其中包括多个mRNA和散布于其中的tRNA,剪切位置往往发生在tRNA处,从而使不同的mRNA和tRNA被分离和释放。

内质网的结构和功能

内质网的结构和功能 一、结构 内质网膜约占细胞总膜面积的一半,是真核细胞中最多的膜。内质网(endoplasmic reticulum,ER)是内膜构成的封闭的网状管道系统。具有高度的多型性。可分为粗面型内质网(rough endoplasmic reticulum,RER,图6-20)和光面型内质网(smooth endoplasmic reticulum,SER,图6-21)两类。 二、RER的功能 (一)蛋白质合成 蛋白质都是在核糖体上合成的,并且起始于细胞质基质,但是有些蛋白质在合成开始不久后便转在内质网上合成,这些蛋白质主要有:①向细胞外分泌的蛋白、如抗体、激素; ②跨膜蛋白,并且决定膜蛋白在膜中的排列方式;③需要与其它细胞组合严格分开的酶,如溶酶体的各种水解酶;④需要进行修饰的蛋白,如糖蛋白。 (二)蛋白质的修饰与加工 包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化。糖基化的作用是:①使蛋白质能够抵抗消化酶的作用; ②赋予蛋白质传导信号的功能;③某些蛋白只有在糖基化之后才能正确折叠。 (三)新生肽链的折叠、组装和运输 COP II介导由内质网输出的膜泡运输,这种膜泡由内质网的排出位点(exit sites)以出芽的方式排出,内质网的排出位点没有结合核糖体,随机分布在内质网上。不同的蛋白质在内质网腔中停留的时间不同,主要取决于蛋白质完成正确折叠和组装的时间,这一过程是在属于hsp70家族的ATP酶的作用下完成的,需要消耗能量。有些无法完成正确折叠的蛋白质被输出内质网,转入溶酶体中降解掉,大约90%的新合成的T细胞受体亚单位和乙酰胆碱受体都被降解掉,而从未到达靶细胞膜。 三、ER的其它功能 合成膜脂:大多数膜只是完全在内质网中合成的,例外的情况包括:①鞘磷脂是在内质网上开始合成的,但完成于高尔基体;②某些线粒体和叶绿体独有的膜脂是驻留在这些细胞器中的酶催化合成的。ER合成的膜脂以膜跑运输的方式转运至高尔基体,溶酶体和质膜上,或借磷脂转移蛋白(phospholipid transfer protein,PTP)形成水溶性复合物,转至其他膜上。 解毒作用:SER中的P450酶系属于单加氧酶(monooxygenase),又称为多功能氧化酶(mixed function oxidase)、羟化酶(hydroxylase),因其还原态的吸收峰在450nm处,故名。主要分布在SER中,但也存在于质膜、线粒体、高尔基体、过氧化物酶体、核膜等细胞器的膜中,具有解毒作用,通常可将脂溶性有毒物质,代谢为水溶性物质,使有毒物质排出体外。有时也会将致癌物代谢为活性致癌物。P450种类繁多,但都是与其他辅助成分组成一个呼吸链来实现其功能,呼吸链中的P450还原酶实际就是一种黄素蛋白。P450催化O2分子中的一个原子加到底物分子上使之羟化,另一个氧原子被NADH或NADPH 提供的氢还原生成水,在此氧化过程中无高能磷酸化合物生成。 甾体类激素的合成:在生殖腺和肾上腺的内分泌细胞中,SER、线粒体,可能还有高尔基体上的一些酶共同参与甾体类激素的合成。 调节血糖浓度:使葡糖6-磷酸水解为磷酸和葡萄糖,释放糖至血液中。细胞中的糖元可被酶转化为葡糖1-磷酸,再转变为葡糖6-磷酸,但由于膜对磷酸化的糖是高度不通透的,葡糖6-磷酸只有在去磷酸化以后才能通过质膜,进入血液。

线粒体的结构与功能.

线粒体的结构与功能 生命科学与食品工程系,050601030, 易永洁 摘要:线粒体是细胞质中重要的细胞器之一,普遍存在于真核细胞中。它是生物氧化和能量转换的主要场所,以氧化磷酸化(OXPHOS)方式将食物内蕴藏的能量转变为可被机体直接利用的ATP高能磷酸键。细胞生命活动所需能量的80%来源于线粒体,因此线粒体在细胞的生长代谢和人类的遗传中都有重要的作用。 关键词:线粒体;;结构;功能;遗传病;mtDNA 自1890年Altaman首次发现线粒体以来,生物学家就一直以极大的热情给予关注,到目前为止,其结构和功能方面的研究已经越来越深入明了。 1线粒体的结构 1.1外膜(out membrane) 含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。 1.2内膜(inner membrane) 含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。 线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。 内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状、②管状,但多呈板层状。 1.3膜间隙(intermembrane space) 是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。 1.4基质(matrix) 为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。

细胞的结构和功能

【知识网络构建】 【重点知识整合】 一、原核细胞与真核细胞的结构与功能 1.主要细胞器的结构与功能 (1)结构???? ? 具双层膜:线粒体、叶绿体具单层膜:内质网、高尔基体、液泡、溶酶体 不含磷脂分子:核糖体、中心体 (2)成分? ??? ? 含DNA :线粒体、叶绿体含RNA :线粒体、叶绿体、核糖体 (3)功能上: ①与能量转换有关的细胞器(或产生A TP 的细胞器): 叶绿体:光能(→电能)→活跃的化学能→稳定的化学能; 线粒体:稳定的化学能→活跃的化学能。 ②与主动运输有关的细胞器: 线粒体——供能; 2.细胞形态多样性与功能多样性的统一 [难点]

(1)哺乳动物的红细胞呈两面凹的圆饼状,体积小,相对表面积大,有利于提高O2和CO2交换效率。 (2)卵细胞体积大,储存丰富的营养物质,为胚胎早期发育提供营养。 (3)具有分泌功能的细胞往往具有很多突起,以增大表面积,提高分泌效率,且细胞内内质网和高尔基体含量较多。 (4)癌细胞形态结构发生改变,细胞膜上糖蛋白含量减少,使得癌细胞间黏着性减小,易于扩散和转移。 (5)代谢旺盛的细胞中,自由水含量高,线粒体、核糖体等细胞器含量多,核仁较大,核孔数量多。 3.有关细胞结构的疑难问题点拨 (1)生物名称中带有“菌”字的并非都是原核生物,如真菌类(酵母菌等)。 (2)生物名称中带有“藻”字的并不都是植物,如蓝藻属于原核藻类,但红藻、绿藻等属于真核藻类。 (3)有细胞壁的不一定都是植物细胞,如原核细胞、真菌细胞也有细胞壁。 (4)并非植物细胞都有叶绿体和大液泡,如根尖分生区细胞就没有叶绿体和大液泡。 (5)有中心体的细胞不一定是动物细胞,也可能是低等植物细胞。 (6)有叶绿体和细胞壁的细胞一定是植物细胞。 (7)蓝藻等原核生物虽无叶绿体和线粒体,但仍能进行光合作用和有氧呼吸。 (8)哺乳动物成熟的红细胞无细胞核和众多的细胞器,所以自身不能合成蛋白质,呼吸方式为无氧呼吸,不能进行细胞分裂,而且寿命较短。 二、生物膜系统的结构和功能 1.生物膜的组成、结构和功能 (1)在化学组成上的联系 ①相似性:各种生物膜在组成成分的种类上基本相同,都主要由蛋白质和脂质组成。 ②差异性:各种生物膜在组成成分的含量上有显著差异,这与生物膜的功能有关系;功能越复杂的生物膜中蛋白质的种类和数量越多;具有识别功能的细胞膜中多糖含量较多。 (2)在结构上的联系: ①各种生物膜在结构上大致相同,都是由磷脂双分子层构成基本骨架,蛋白质分布其中,都具有一定流动性的结构特点。

线粒体结构与功能

线粒体 (mitochondria) 线粒体的研究历史 1890: R.Altman(亚特曼)在动物细胞中首次发现线粒体,命名为生命小体(bioblast)。 1897: Von Benda 命名为线粒体(Mitochondrion) 1900:L.Michaelis(米凯利斯) 用詹姆斯绿B对线粒体进行活体染色,发现线粒体存在大量的细胞色素氧 化酶系。 1913:Engelhardt(恩格尔哈特)证明细胞内ATP磷酸化与细胞内氧消耗相偶联。 1943-1950:Kennedy等证明糖最终氧化场所在线粒体。1952-1953:Palade(帕拉登)等用电镜观察线粒体的形 态结构。 1976:Hatefi等纯化呼吸链四个独立的复合体。

1961-1980:Mitchell(米切尔)氧化磷酸化的化学渗透 假说。 1963年:Nass首次发现线粒体存在DNA。 Contents 线粒体的形态结构 线粒体的化学组成及酶的定位 线粒体的功能 线粒体的半自主性 线粒体的生物发生(自学) 第一节线粒体的形态结构 一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5~1.0μm,长1.5~3.0μm。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5μm; 胰腺外分泌细胞线粒体长10~20μm,人成纤维细胞线粒体长40μm。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量 依细胞类型而异,动物细胞一般数百到数千个。

利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 飞翔鸟类胸肌细胞:线粒体数目比不飞翔鸟多; 运动员肌细胞:线粒体数目比不常运动人的多。 (三)分布 分布: 不均,细胞代谢旺盛的需能部位比较集中。 肌细胞: 线粒体沿肌原纤维规则排列; 精子细胞: 线粒体集中在鞭毛中区; 分泌细胞:线粒体聚集在分泌物合成的区域; 肾细胞:线粒体靠近微血管,呈平行或栅状列。 线粒体的分布多集中在细胞的需能部位,有利 于细胞需能部位的能量供应。 二、线粒体的亚微结构 (一) 外膜Outer membrane 包围在线粒体外表面的一层单位膜,厚6-7nm,平整、光滑,封闭成囊。 外膜含运输蛋白(通道蛋白),形态上为排列 整齐的筒状小体,中央有孔,孔径1-3nm,允许分 子量1KD以内的物质自由通过,构成外膜的亲水通道。

细胞器的结构和功能详解

细胞器的结构和功能(一) 班级 姓名 上课时间:______设计人:赵家铎 【教学目标】 知识目标: 1. 了解细胞质的概念、组成成分; 2. 了解细胞器的种类; 3. 掌握线粒体的分布、化学成分、结构及主要功能; 4. 掌握叶绿体结构、成分和主要功能。 能力目标: 通过学习和比较线粒体和叶绿体,培养学生的比较思维能力。 【重、难点】 1. 线粒体的结构和功能; 2. 叶绿体的结构和功能。 【教学环节】 复习: 1. 原生质分化为那几部分? 2. 细胞膜的结构和功能是什么? 【讲授新课】: 细胞质: 1. 定义: 细胞膜以内细胞核以外的原生质。 2. 组成部分: 定 义:细胞中未分化的部分。 细胞质基质 组成成分:水、无机盐、糖类、脂类、氨基酸、核苷 酸、还有许多酶。 作 用:是活细胞进行新陈代谢的主要场所,为新陈代谢的正 常进行提供所需的物质和环境条件。 细 胞 器:是指悬浮在细胞质基质中的一些具有一定形态和功能的结构; 一. 线粒体: 1. 分布: 动物细胞和植物细胞中都有。 2. 形态: 光学显微镜:粒状、棒状; 电子显微镜: 外膜 内膜 量 说明:内、外膜在化学成分上有显著的差异,如蛋白质的含量、类脂的分布很不相 同 嵴增大了线粒体的内膜面积; 3. 主要成分: 1)含有少量的DNA 24. 分布: 广范地分布的细胞质中。 说明: 1) 在不同的细胞中,在生命活动旺盛的细胞中多;线粒体最多的细胞是肝 脏的肝细胞,肝细胞是体内生命活动最活跃的细胞。 2) 线粒体在细胞中的分布是不均匀的,代谢旺盛的部位,线粒体较多。如 精子的尾部线粒体数目多; 5. 作用: 是进行有氧呼吸的主要场所。 它为生命活动提供95%的能量, 因此人们把它称为细胞内供应能量的“动力工厂”!或“能量转换站” 说明: 1) 2) 由于线粒体内消耗O 2 ,产生CO 2 ,所以它是生物体内二氧化碳浓度最高, 氧气浓度最低的部位。 【练习】: 1、 在肾小管的细胞内发现了大量的线粒体,这说明肾小管和对物质的复吸收作用属于下列那一种方式( ) A. 自由扩散 B. 主动运输 C. 内吞 D. 外排 2、 在成人的心肌细胞中明显比腹肌细胞中较多的细胞器是( ) 提示:从“结构与功能相统一”这一角度来考虑 A .核糖体 B .线粒体 C .内质网 D .高尔基体 二. 叶绿体: 1 分布:

糖蛋白分析方法

糖蛋白是蛋白质中的氨基酸侧链被糖基化修饰后的蛋白质,广泛存在于生物体中,具有特殊的生物学功能。研究糖蛋白的传统方法一般是将糖链切掉并分离纯化后再分别进行研究。采用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)——这一软电离生物质谱技术,可直接测定糖蛋白的平均分子量及糖含量,应用蛋白酶切及内切糖苷酶酶切相结合的方法,可确定糖基化位点及糖苷键类型。 一、糖蛋白平均分子量及糖含量的测定: 在糖蛋白MALDI-TOF-MS质谱图上表现为一簇峰,各峰之间约相差一个或几个糖基,同时还出现多电荷峰,有些样品中还含少量不带糖链的蛋白峰。糖蛋白的分子量为这些多重峰的平均值。 从不含糖链的蛋白的分子量可以直接得到糖含量,但因其丰度太小难以准确测定。采用内切糖苷酶F将糖链切除,得到含一个GlcNAc的肽链,肽链与糖蛋白平均分子量之间的差值即为糖链的分子量,糖链的分子量与糖蛋白平均分子量的比值即为糖含量。 二、糖苷键类型及糖基化位点的测定: 糖基化位点的确定,则必须依赖一系列酶切反应的实现来加以证实。一般步骤是:①先将糖蛋白还原烷基化、脱盐,加Glu-c酶切,产物再用内切糖苷酶酶切,含糖肽段峰将出现位移。采用差位酶切法对其进行验证:内切糖苷酶F(Endoglycosidase-F)切断N-糖链中五糖核心区中,两个N-已酰氨基葡萄糖间的内糖苷键,而糖N肽酶F(PNGase-F)切断糖链与天冬酰氨间的糖肽键,两者相差一个N-已酰氨基葡萄糖(194Da);②凝集素对糖肽的提取:凝集素是一类糖结合蛋白,能专一地识别某一特定结构的单糖或寡糖中特定的糖基序列并与之结合。核糖核酸酶B中的糖链为高甘露糖型,我们选用其特异性吸附凝集素----伴刀豆球蛋白(ConA)对含糖肽段进行提取,并直接进行MALDI-TOF-MS检测,为今后糖肽序列分析及糖链结构分析奠定了基础。

线粒体教学设计

精品文档 线粒体、叶绿体的结构和功能 1.学生自学看书并思考讨论,然后进行交流。 2.学生交流后进行归纳。 问题1 :什么是线粒体?什么是叶绿体? 【活动步骤】 师生共同讨论复习归纳线粒体和叶绿体的形态、结构及功能的知识。 1、线粒体的概念、结构和功能 线粒体,有氧呼吸产生能量的主要场所。植物细胞的能量转换器是叶绿体和线粒体线粒体能将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用由于线粒体的作用,生物组织内有机物能在氧的参与下转变成无机物,如二氧化碳和水,并为生物组织和细胞提供进行生命活动所需的能量或 ATPo线粒体主要由蛋白质和脂类组成,其中蛋白质占线粒体干重的一半以 上。此外还有少量的DNA RNA辅酶等。线粒体含有许多种酶类,其中有的酶是线粒体某一结构特有的(标记酶), 比如线粒体外膜的标记酶为单胺氧化酶,内膜为细胞色素氧化酶,膜间隙为腺苷酸激酶,线粒体基质的为苹果酸脱氢酶。在大多数情况下,线粒体呈圆形、近似圆形、棒状或线状。 2、显微镜下面的线粒体 在电子显微镜下,线粒体为内外两层单位膜构成的封闭的囊状结构。可分为四个部分:外膜为一个单位膜,膜中蛋白质与脂类含量几乎均等。物质通透性较高。内膜也是一个单位膜,膜蛋白质含量高,占整个膜的80%左右。内膜对物质有高度地选择通透性。部分内膜向线粒体腔内突出形成嵴。同时内膜内表面排列着一些颗粒状的结构, 称为基粒。基粒包括三个部分:头部(F1因子,为水溶性蛋白质,具有ATP酶活性)、腹部(F?0因子,由疏水性 蛋白质组成)、柄部(位于F1与F0之间)。 3、叶绿体的概念、结构和功能 叶绿体主要在绿色植物的叶肉细胞中扁平的椭球形或球形双层膜、基粒、基质绿色植物进行光合作用的场所 然后分析:线粒体和叶绿体都有外膜、内膜、基质等,但名称虽相同,其组成或结构有差别。它们在组成、结构和功能上相同之处主要表现在:①都是有少量DNA和RNA②都有双层膜结构;③都与细胞内的能量转换有关。 不同之处主要表现在:①叶绿体含有多种色素,线粒体则没有;②增大膜面积的方式不同:线粒体通过内膜折叠 成嵴而增大膜面积,叶绿体通过片层结构重叠成的基粒来增大膜面积;③线粒体是细胞进行有氧呼吸的主要场所,

细胞膜的结构和功能

、细胞膜的结构和功能 (一)基础扫描 1 、生物体结构和功能的基本单位是,阐明细胞是一切动植物生命活动的基本单位的理论观点是。判断:细胞是生物体结构和功能的基本单位()细胞是一切生物体结构和功能的基本单位()细胞是一切动植物结构和功能的基本单位() 2 、细胞的原核细胞:没有,如、细菌、蓝藻、放线菌 类型真核细胞:有,如绝大多数生物(酵母菌、衣藻、草履虫、变形虫) 判断:①成熟的哺乳动物的红细胞,因为没有细胞核,所以是原核细胞() ②生物界可能存在这样的生物:体内既有原核细胞,又有真核细胞() 3 、细胞膜的成分:含有、和,其中,和是主要成分 4、细胞膜的分子结构:层磷脂分子形成磷脂双分子层,是细胞膜的基本支架(磷脂分子的头部 是的,因此在表面;尾部是的,因此在中间);蛋白质以不同深度结合在磷脂双分子层上。 5 、细胞膜的膜外结构:糖被(由组成),消化道和呼吸道上皮细胞表面的糖被有 和作用;糖被还与有关。(请课后试绘:细胞膜结构模式图) 结构特点是:构成细胞膜的磷脂和蛋白质分子不是静止的,而是流动 的 6 、细胞膜生理特性是:即水分子能自由通过(自由扩散)、细胞要选择吸收的离 的特点子(主动运输)、小分子(O2、CO2、甘油、乙醇、苯是自由扩散,葡萄糖 除进入红细胞以外是主动运输,氨基酸是主动运输)也可以通过,而其他的离子、 小分子、大分子则不能通过(指细胞膜总量不变的情况下) 7 、细胞壁:在植物细胞外表面有一层细胞壁,主要成分是和,起支持和保护作用,是全透性结构;一般的原核细胞的表面也有一层细胞壁,主要成分是。判断:在由细胞构成的生物中,只有人和动物的细胞外面才没有细胞壁() 8 、细菌细胞的基本结构有:、、、 细菌细胞的特殊结构有:、、 (二)难点突破 1 、物质基础:构成生物体的和

糖蛋白的研究进展

糖蛋白的研究进展 作者:郭慧, 邓文星, 张映, Guo Hui, Deng Wenxing, Zhang Ying 作者单位:山西农业大学动物科技学院,太谷,030801 刊名: 生物技术通报 英文刊名:BIOTECHNOLOGY BULLETIN 年,卷(期):2009(3) 被引用次数:1次 参考文献(21条) 1.纪洪涛;刘国振;李莉云糖链-细胞表面蛋白质的信号天线[期刊论文]-中国农学通报 2006(05) 2.汪玉松;邹思湘;张玉静现代动物生物化学 2005 3.陈海霞细胞膜糖蛋白及其寡糖链分析方法的研究进展[期刊论文]-中国生物工程杂志 2003(03) 4.孙兴权糖组学研究中糖蛋白糖链结构分析技术[期刊论文]-化学进展 2007(01) 5.Huang Y查看详情 2001 6.武金霞;赵晓瑜糖蛋白的结构、功能及分析方法[期刊论文]-生物技术通报 2004(01) 7.郭尧君蛋白质电泳实验技术 2005 8.徐际升查看详情 1988(05) 9.刘翠芳;蒋继志查看详情 2006(zk) 10.巨同忠查看详情 1996(05) 11.Bog-hansen TC查看详情 1973 12.赛德艾合买提浅谈多糖的研究进展[期刊论文]-伊犁师范学院学报(社科版) 2006(03) 13.Aford J;Kieda C;van Dijk W查看详情 2001 14.Alper J查看详情 2001 15.赵洪亮;刘志敏蛋白质糖基化工程[期刊论文]-中国生物工程杂志 2003(09) 16.任姝萍糖蛋白与疾病的研究进展[期刊论文]-合肥学院学报(社会科学版) 2004(04) 17.贾晓慧糖生物学--生命科学研究的新热点[期刊论文]-洛阳大学学报 2005(02) 18.杨福愉;黄芬膜脂-膜蛋白相互作用及其在医学和农业上的应用 1996 19.黄思玲;凌沛学糖生物学概述[期刊论文]-食品与药品 2005(07) 20.冯伯森;胡莹人及哺乳动物受精与糖蛋白的关系[期刊论文]-生理科学进展 2003(01) 21.唐小云;鞠宝玲;宋宝辉妊娠特异性糖蛋白免疫抑制作用的研究[期刊论文]-中国优生与遗传杂志 2008(06)本文读者也读过(6条) 1.陈海霞.耿美玉.管华诗细胞膜糖蛋白及其寡糖链分析方法的研究进展[期刊论文]-中国生物工程杂志 2003,23(3) 2.武金霞.赵晓瑜糖蛋白的结构、功能及分析方法[期刊论文]-生物技术通报2004(1) 3.马盛群糖生物学与糖蛋白研究进展[期刊论文]-南京农专学报2001,17(1) 4.孙兴权.李静.耿美玉.管华诗.Sun Xingquan.Li Jing.Geng Meiyu.Guan Huashi糖组学研究中糖蛋白糖链结构分析技术[期刊论文]-化学进展2007,19(1) 5.卢穹宇.姬胜利糖蛋白中糖链的分离纯化与结构测定[会议论文]-2007 6.施立楠.吴军糖蛋白糖链的分析[期刊论文]-生物技术通讯2005,16(1)

2019届二轮复习 内质网的结构和功能 作业(适用全国)

2018-2019第一学期高三二轮复习测试内质网的结构和功能 一、单选题 1.下图是某细胞在进行某项生命活动的前、后,几种生物膜面积的变化图。在该变化过程中,最可能合 成的物质是() A. 抗体 B. 雄性激素 C. 呼吸酶 D. RNA聚合酶 2.下列是几个放射性同位素示踪实验,对其结果的叙述不正确的是( ) A. 给水稻提供14 C02.则其根细胞在缺氧状态有可能出现14 C2H5OH B. 给水稻提供14 C02,则14C的转移途径大致是:14 C02一14 C3一(14 CH20) C. 利用15N标记某丙氨酸,附着在内质网上的核糖体将出现放射性,而游离的核糖体无放射性 D. 小白鼠吸入1802,则在其尿液中可以检测到H2180,呼出的二氧化碳也可能含有180 3.下列关于细胞结构和功能的说法正确的是 A. 核仁与核糖体的形成密切相关,没有核仁的细胞将无法形成核糖体 B. 细胞质基质含有多种细胞器,细胞骨架的主要成分为纤维素 C. 核糖体、细胞核、细胞质基质中都含有RNA D. 线粒体、叶绿体、内质网中均含有DNA 4.下列有关叙述正确的有( ) ①线粒体与叶绿体都有双层膜,且膜的化学成分和功能也相同 ②核糖体是各种细胞内合成蛋白质多肽链唯一场所 ③高尔基体是植物细胞特有细胞器,有丝分裂末期与它有关 ④中心体是高等动物细胞特有细胞器,它与细胞的形成有关 ⑤叶绿体内部含有少量的DNA、RNA、核糖体,可合成自身所需全部蛋白质,其功能不受细胞核的调 控 ⑥内质网参与胰岛素和性激素的合成与加工,是细胞内生物膜相互联系的枢纽,是细胞内物质运输的 通道 ⑦烟草含有的烟碱(尼古丁)主要存在于烟草细胞的细胞质中 ⑧能维持细胞形态、保持细胞内部结构有序性的是生物膜 A. ⑤⑧ B. ②⑥ C. ②⑦ D. ⑥⑦ 5.下图为真核细胞蛋白质合成和转运的示意图。下列叙述正确的是 A. 图中由双层膜包被的结构只有① B. 图中与胰岛素合成有关的结构有①②③④⑤ C. 若②合成的是呼吸酶,则该酶在⑥中发挥作用 D. 若②合成的是染色体蛋白,则该蛋白会运送到①⑤⑥中 6.下列关于细胞结构和生理过程的叙述中,正确的是() A. 分泌蛋白的合成与分泌过程中有核糖体、内质网、溶酶体及线粒体等细胞器参与 B. 细胞核能进行遗传信息的传递,是细胞代谢的主要场所 C. 生物膜系统是细胞内所有膜结构的统称,包括叶绿体类囊体薄膜 D. 叶肉细胞产生的一分子CO2进入相邻细胞的叶绿体内,穿过6层磷脂分子 二、探究题 7.血管平滑肌细胞(VSMC)的功能受多种物质影响,与血管健康密切相关。 (1)血管内皮细胞释放的一氧化氮,可降低VSMC膜上Ca2+运输蛋白的活性,导致进入细胞内的Ca2+__________(增加/减少),引起血管平滑肌舒张,上述调节的方式属于_________调节。 (2)机体产生的同型半胱氨酸水平升高,可引起VSMC内质网功能紊乱,堆积未折叠蛋白,这些蛋白没有形成正确的____________,不能行使正常功能。分泌蛋白从合成至分泌到细胞外需要经过高尔基体,此过程中高尔基体的功能是________________。 (3)用同型半胱氨酸处理体外培养的小鼠成熟分化型VSMC后,其细胞分化相关指标的变化如下表所示。 由此推断,同型半胱氨酸导致VSMC分化程度______________(升高/降低),功能紊乱。 (4 )已知血管保护药物 R对VSMC没有直接影响,但可改善同型半胱氨酸对VSMC的作用。以小鼠 VSMC为材料,在细胞水平研究上述作用时,应设计三组实验,_______________、同型半胱氨酸处理组和_____________;每组内设三个重复,其目的是____________。 8.研究分泌蛋白的合成及分泌过程中,科学家们做了下列实验。请回答问题: (1)豚鼠的胰腺腺泡细胞能够分泌大量的消化酶,可观察到这些细胞具有发达的_______________。 (2)科学家将一小块胰腺组织放入含放射性标记____________的培养液中短暂培养,在此期间放射性标记物被活细胞摄取,并掺入到___________上正在合成的蛋白质中。组织内的放射性同位素可使感光乳剂曝光,固定组织后在显微镜下便可发现细胞中含放射性的位点,这一技术使研究者能确定 ________________在细胞内的位置。 (3)科学家将短暂培养的胰腺组织洗涤后,转入________________的培养液中继续培养。实验结果如图所示。随着________________的变化,放射性颗粒数的百分比在不同细胞结构上有规律的变化,据此推测,分泌蛋白转移的途径是________________________________________。

糖蛋白的作用

糖蛋白的作用 含糖的蛋白质,由寡糖链与肽链中的一定氨基酸残基以糖苷键共价连接而成。其主要生物学功能为细胞或分子的生物识别,如卵子受精时精子需识别卵子细胞膜上相应的糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。 糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。可按存在方式分为三类:①可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。血浆蛋白除白蛋白外皆为糖蛋白。可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。 ②膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外。糖链连接在亲水肽段并有严格的方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。③结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们的功能不仅仅是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。 寡糖链通常指由2~10个单糖基借糖苷键连成的聚合体。糖蛋白的寡糖链多有分枝。由于单糖的端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键的羟基,因此,糖链结构的多样性超过多核苷酸及肽链。在糖链结构中可以贮存足够的识别信息,从而在分子识别及细胞识别中起决定性作用。糖蛋白参与的生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化的调节、细胞迁移、细胞归巢、创伤修复及再生等。糖蛋白的糖链还参与维持其肽链处于有生物活性的天然构象及稳定肽链结构,并赋予整个糖蛋白分子以特定的理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。 糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常的标志为临床诊断提供信息;患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这可有助于诊断或预后的判断。糖蛋白还日益介入治疗。例如,针对特定细胞表面特异性糖结构的抗体可作为导向治疗药物的定向载体。利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。 生物合成及降解糖蛋白的生物合成就蛋白质部分而言与一般分泌蛋白质相同,在粗面内质网进行。糖链的生物合成在肽链延长的同时和(或)以后进行。始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有的甚至在到达质膜后在那里最终完成。肽链的糖基化及糖链的延长都在各种糖基转移酶的催化下进行。糖基转移酶有两个作用物。一个是活化形式的单糖,作为糖基的供体,另一个是肽链或寡糖链,作为糖基的接受体。糖基转移酶对供体及接受体皆有严格的特异性。一种糖苷键由一种酶催化形成。糖链的结构及糖基排列顺序无模板可循,而是由糖基转移酶的特异性(包括单糖基种类、端基碳构型、糖苷键连接位置及接受体结构)及其作用的先后顺序决定,因此是由基因通过糖基转移酶而间接控制的,属于基因的次级产物。 糖蛋白的降解可从糖链开始,亦可从肽链开始,糖蛋白肽链的降解同样是在各种蛋白水解酶的催化下进行的。糖链的水解由各种糖苷酶催化。糖苷酶分为外切及内切糖苷酸两大类。外切糖苷酶水解糖链非还原末端的糖苷键,每次水解下一个单糖。这类糖苷酶主要存在于溶酶体中,参与糖蛋白、糖脂及蛋白聚糖的分解代谢。糖苷酶对于所水解的糖苷键及作用物的糖结构(有的不仅要求一定的单糖,还要求一定

糖蛋白药物的研究

糖蛋白药物的研究进展(上) 糖蛋白(glycoproteins)以溶解状态或与细胞膜结合状态广泛存在于细胞内外。其相对分子质量从 1.5×104至大于106,含糖量差异也很大,从1%~ 85%不等。糖蛋白在生物体内是重要的生物活性物质,其糖链和蛋白相互作用介导细胞的专一性识别,调控各种生命过程如受精、发育、神经系统的维持,在目前炎症及癌细胞异常增殖、自身免疫系统中起重要作用。笔者就其糖蛋白的结构、功能、分离纯化技术及糖蛋白药物国内外研究现状做一综述。 1 结构 糖蛋白通过糖肽键(carbohydrate-peptide linkage)将糖链和肽链两部分连接起来,连接方式主要分为β-构型的N-糖苷键和α-构型的O-糖苷键,另外还有阿拉伯糖羟脯氨酸(Ara-Hyp)、半乳糖羟赖氨酸(Gal- Hyl)等。目前所知,组成糖链的单糖超过百种,动物糖蛋白主要有9种,包括半乳糖、甘露糖、葡萄糖、岩藻糖、葡萄糖胺、半乳糖胺、木糖、N-乙酰神经氨酸、N-羟乙酰神经氨酸,它们通过1-2,1-3,1-4,1-6 键连成糖链或分枝结构。参与糖肽键组成的有5 种氨基酸:天冬氨酸、丝氨酸、苏氨酸、羟脯氨酸和羟赖氨酸,以前3种为主。 2 代谢 2.1 糖蛋白的生成合成糖蛋白肽链的生物合成包括多肽链的合成和多肽链的糖基化作用,糖多肽链的合成受基因控制,而多肽链的糖基化作用不受基因调控,由糖基转移酶将糖基转运至肽链上。糖蛋白糖链的合成按糖肽键性质不同可分为N-糖苷键型寡糖和O-糖苷键型寡糖两种生物合成方式。影响糖链合成的因素很多,如神经系统的控制等。 2.2 糖蛋白的降解糖蛋白的降解主要由位于溶酶体的蛋白水解酶和糖苷酶催化。参与糖链降解代谢的大多数糖苷酶是外切酶,要使糖链彻底水解,必须具备全套外切糖苷酶,如缺乏某个酶类,将使糖链降解中断,相关代谢物堆积产生遗传疾病如糖类过多症等。 3 生物学功能 3.1 构成α-构型血抗原的基本物质构成血型的抗原为血型糖蛋白,是一组含大量唾液酸糖链的跨膜蛋白,无论ABO血型系统或MN血型系统都是由血型糖蛋白决定。寡糖链的识别作用决定着细胞的识别、集聚和受体作用。 3.2 黏膜保护作用由于糖蛋白的高黏度特性,可作为机体的润滑剂,防止蛋白水解酶的水解作用;还可防止细菌、病毒的感染或机械作用的损伤。 3.3 构成细胞表面受体,与细胞识别和黏着有关一些外源凝集素、毒素以及病原体的受体均是糖蛋白。一些植物凝集素可使血液细胞发生凝集,动物凝集素不仅在体液免疫中起作用,还和肿瘤转移作用有关。不同性别性细胞相互作用成合子或聚集成组织,都以糖和与糖专一结合的蛋白质间的识别和结合为前奏,特别是与糖链的结构与识别功能有关,为医疗上避孕提供了新的可能途径。利用精细胞表面糖蛋白特异结合的特性,将外源基因导入成熟精子,使外源DNA进入卵中受精,可借此产生优良品种。病原体感染宿主也是通过病毒上的糖蛋白与宿主细胞膜上的糖基专一结合导致的,生物体内,具不同糖链结构的分子乃至细胞可被不同器官或细胞识别、吸收并降解,这些糖蛋白的糖结构决定它们不能长期存在于血液,只能限制在特定部位,此即归巢现象。

糖蛋白的作用

糖蛋白得作用 含糖得蛋白质,由寡糖链与肽链中得一定氨基酸残基以糖苷键共价连接而成。其主要生物学功能为细胞或分子得生物识别,如卵子受精时精子需识别卵子细胞膜上相应得糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白、 糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。可按存在方式分为三类:①可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌得粘液中、血浆蛋白除白蛋白外皆为糖蛋白、可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等、②膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外、糖链连接在亲水肽段并有严格得方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段得表面标志或表面抗原。③结构糖蛋白,为细胞外基质中得不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们得功能不仅仅就是作为细胞外基质得结构成分起支持、连接及缓冲作用,更重要得就是参与细胞得识别、粘着及迁移,并调控细胞得增殖及分化。 寡糖链通常指由2~10个单糖基借糖苷键连成得聚合体。糖蛋白得寡糖链多有分枝、由于单糖得端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键得羟基,因此,糖链结构得多样性超过多核苷酸及肽链。在糖链结构中可以贮存足够得识别信息,从而在分子识别及细胞识别中起决定性作用。糖蛋白参与得生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化得调节、细胞迁移、细胞归巢、创伤修复及再生等、糖蛋白得糖链还参与维持其肽链处于有生物活性得天然构象及稳定肽链结构,并赋予整个糖蛋白分子以特定得理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。 糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等得发生、发展有关。再者,细胞表面得糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常得标志为临床诊断提供信息;患某些疾病时体液中得糖蛋白亦常有特异性或强或弱得改变,这可有助于诊断或预后得判断。糖蛋白还日益介入治疗。例如,针对特定细胞表面特异性糖结构得抗体可作为导向治疗药物得定向载体。利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。 生物合成及降解糖蛋白得生物合成就蛋白质部分而言与一般分泌蛋白质相同,在粗面内质网进行。糖链得生物合成在肽链延长得同时与(或)以后进行。始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有得甚至在到达质膜后在那里最终完成。肽链得糖基化及糖链得延长都在各种糖基转移酶得催化下进行、糖基转移酶有两个作用物、一个就是活化形式得单糖,作为糖基得供体,另一个就是肽链或寡糖链,作为糖基得接受体。糖基转移酶对供体及接受体皆有严格得特异性。一种糖苷键由一种酶催化形成。糖链得结构及糖基排列顺序无模板可循,而就是由糖基转移酶得特异性(包括单糖基种类、端基碳构型、糖苷键连接位置及接受体结构)及其作用得先后顺序决定,因此就是由基因通过糖基转移酶而间接控制得,属于基因得次级产物。 糖蛋白得降解可从糖链开始,亦可从肽链开始,糖蛋白肽链得降解同样就是在各种蛋白水解酶得催化下进行得、糖链得水解由各种糖苷酶催化。糖苷酶分为外切及内切糖苷酸两大类。外切糖苷酶水解糖链非还原末端得糖苷键,每次水解下一个单糖、这类糖苷酶主要存在于溶酶体中,参与糖蛋白、糖脂及蛋白聚糖得分解代谢。糖苷酶对于所水解得糖苷键及作用物得糖结构(有得不仅要求一定得单糖,还要求一定得糖链结构)具有严格得特异性。一条糖链得完全水解就是在一系列糖苷酶依次作用下完成得,每种糖苷酶只能水解下来一个特定得单糖、如果缺少一种糖苷酶,则下一步得糖苷水解被阻断,导致糖链水解不完全,而致分解代

线粒体-1

线粒体 线粒体(mitochondrion)[1]是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为“power house”。其直径在0.5到10微米左右。 除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。 线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 大小 线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0μm,长1-2μm,在光学显微镜下,需用特殊的染色,才能加以辨别。在动物细胞中,线粒体大小受细胞代谢水平限制。不同组织在不同条件下可能产生体积异常膨大的线粒体,称为“巨线粒体”(megamitochondria):胰脏外分泌细胞中可长达10-20μm;神经元胞体中的线粒体尺寸差异很大,有的也可能长达10μm;人类成纤维细胞的线粒体则更长,可达40μm。有研究表明在低氧气分压的环境中,某些如烟草的植物的线粒体能可逆地变为巨线粒体,长度可达80μm,并形成网络。 形状 线粒体一般呈短棒状或圆球状,但因生物种类和生理状态而异,还可呈环状、线状、哑铃状、分杈状、扁盘状或其它形状。成型蛋白(shape-forming protein)介导线粒体以不同方式与周围的细胞骨架接触或在线粒体的两层膜间形成不同的连接可能是线粒体在不同细胞中呈现出不同形态的原因。 数量 不同生物的不同组织中线粒体数量的差异是巨大的。有许多细胞只拥有多达数千个的线粒体(如肝脏细胞中有1000-2000个线粒体),而一些细胞则只有一个线粒体(如酵母菌细胞的大型分支线粒体)。大多数哺乳动物的成熟红细胞不具有线粒体。一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。 分布

相关文档
最新文档