考虑非均匀结构效应的金属材料剪切带

考虑非均匀结构效应的金属材料剪切带
考虑非均匀结构效应的金属材料剪切带

一、提名项目:考虑非均匀结构效应的金属材料剪切带

二、提名意见:

该项目以颗粒增强金属基复合材料和非晶合金为模型系统,突破经典的热塑剪切带理论框架,发展了位错机制依赖的应变梯度本构,揭示了蕴含的非均匀结构通过应变梯度效应对热塑剪切带形成具有强烈驱动作用;建立了包含多过程耦合与时空多尺度的剪切带新理论,澄清了非晶合金剪切带形成机制长期广泛的国际争议,得到了剪切带失稳判据、协同演化、特征厚度以及诱致断裂机理等一系列原创性成果。

该项目8篇代表性论文共被《Nature Materials》、《Physical Review Letters》、《Progress in Materials Science》等SCI重要刊物他人引用393次,引用者包括国内外科学院或工程院院士、权威杂志主编、领域知名学者等。项目研究成果系统揭示了材料内禀非均匀结构效应如何影响甚至颠覆热塑剪切带的传统认知,显著推动了剪切带理论的发展,在国际上产生了重要的学术影响。

提名该项目为国家自然科学二等奖。

三、项目简介

剪切带是一类广泛存在的塑性变形局部化失稳现象。本征上,具有特征厚度的剪切带是一种远离平衡态的动态耗散结构,其涌现与演化是材料内部多种速率依赖耗散过程高度非线性耦合控制的时空多尺度问题。传统金属材料剪切带经百余年研究,逐渐形成了以热软化为主控机制的热塑剪切带理论,并获得了广泛的应用。随着人们对高性能材料的不懈追求,众多内蕴微纳尺度非均匀结构的新型金属材料不断发展,其中代表性的有微米尺度颗粒增强的金属基复合材料和纳米尺度结构非均匀的非晶合金。由于不考虑材料结构效应,经典热塑剪切带理论在描述这些新型金属材料的剪切带行为时,遇到了前所未有的挑战。为此,该项目团队以颗粒增强金属基复合材料和非晶合金为模型材料,研究了材料内禀的非均匀结构效应如何影响甚至颠覆热塑剪切带的传统认知,显著推动了剪切带理论的发展,形成了具有鲜明特色的系统性的原创研究成果。主要发现点如下:

(一)、发展了颗粒增强金属基复合材料应变梯度依赖的热塑剪切带理论。实验发现微尺度增强颗粒对金属基复合材料塑性变形具有强化和剪切带软化“正、反”尺寸效应,通过发展计及应变梯度效应的热塑剪切带理论,揭示了颗粒尺寸作为内禀结构效应对金属基复合材料热塑剪切带形成具有强烈驱动作用;

(二)、建立了内蕴非均匀结构效应的非晶合金剪切带新理论。构建了非晶合金自由体积-热-粘塑性剪切流动的理论框架,得到了具有明确物理内涵的剪切带失稳判据和特征厚度的解析表达,揭示了非晶合金剪切带形成的结构软化主控、热软化辅助的新机制,阐明了多重剪切带协同演化动力学规律;

(三)、提出了一种新的原子团簇运动模型—“拉伸转变区”,澄清了非晶合金剪切带诱致断裂过程中的能量耗散机制:裂尖剪切主控“剪切转变区”和体胀主控“拉伸转变区”两个耦合元过程的固有竞争。

上述工作的8篇代表性论文被SCI他引393次。引用者包括块体非晶合金领域开创者之一、日本学士院院士和美国工程院院士A. Inoue,欧洲科学院院士、德国科学院院士和美国工程院外籍院士H. Gleiter,美国工程院院士和中国科学院外籍院士高华健,中国科学院汪卫华院士,Albert Sauveur成就奖获得者美国加州大学M.A. Meyers教授,《Philosophical Magazine》主编英国剑桥大学A.L. Greer教授等。研究成果得到大量后续研究证实,不仅在国内外学术界产生重要影响,而且得到国外军事研究机构的关注。非晶剪切带成果已成为领域经典工作之一,被多篇权威综述文章作为独立一节长篇幅引用,并作为独立一章《Shear-banding in metallic glasses》发表在英国帝国理工学院Dood教授和第二完成人合著的剪切带专著《Adiabatic Shear Localization》第二版中。

基于该项目成果,第一完成人于2007年获得国家杰出青年科学基金资助,2009年入选“新世纪百千万人才工程”国家级人选。第三完成人于2008年获得首届英国麦克斯韦青年作者奖。

四、客观评价

发现点一:颗粒增强金属基复合材料应变梯度依赖的热塑剪切带理论。代表性引文【1,2,3】

复合材料力学领域著名学者新加坡国立大学M. Gupta教授、S.P. Joshi教授等系列文章中大量引用代表性论文【1】中提出的机理和理论公式,用于解释他们的实验现象。比如,在代表性引文【1】中:“屈服应力的提高可用以下方程估算[代表性论文1],......根据Taylor位错强化机理,这些应力可被确定如下[代表性论文1].......”;Acta Mater 55 (2007) 5115中:“几何必须位错增加的详细推导可参考[代表性论文1],具体表达为:...... .”。

瑞典皇家理工学院P. Gudmundson教授在代表性引文【2】中:“通过考虑间接和直接强化,应变梯度理论可耦合进增量细观力学框架。从而,实验观察到的金属基复合材料颗粒尺寸依赖的非弹性变形行为可被预测[代表性论文1].”。

《国际损伤力学杂志》主编美国加州大学J.W. Ju教授等(Int. J. Damage Mech 2011;附件7-9):直接引用[代表性论文1]的实验图1;“根据(By following)代表性论文1,热失配产生的位错密度可估算为....。通过引入初始粒子的体积分数,可考虑以下增量形式(参见代表性论文1):...... .”。

芬兰坦佩雷理工大学K. Valtonen教授等在代表性引文【3】中:“观察到的绝热剪切带对于本文的金属基复合材料具有重要作用。发现十分小的增强颗粒尺寸[代表性论文2](~5-15μm)会影响白色绝热剪切带的形成,...... .”。

加拿大曼尼托巴大学N. Bassim教授等(Mater. Sci. Eng. A 2014;附件7-10):“ Owolabi等[20]和Dai等[代表性论文2]研究了颗粒增强金属基复合材料中颗粒尺寸对绝热剪切带形成的影响,发现小颗粒增强的复合材料更易于形

成绝热剪切带。Dai等将这种尺寸依赖行为归因于应变梯度效应,认为高应变梯度是绝热剪切带形成的强驱动力.”;(Mater. Sci. Eng. A 2007;附件7-10):“冲击后材料的微结构演化也证实铝基复合材料比单相合金更容易热塑失稳而应变局部化。这些结果和Dai等[代表性论文2]的观察一致,即高应变梯度是绝热剪切带形成的强驱动力.”。

发现点:内蕴非均匀结构效应的非晶合金剪切带新理论。代表性引文【4,5,6,7】

美国乔治亚理工学院N.N. Thadhani教授在代表性引文【4】这样评价:“Jiang 和Dai[代表性论文5]揭示了剪切带失稳的自由体积起源。他们解释了自由体积软化和经典的热软化可导致完全不同的剪切带机理。…... Jiang和Dai[代表性论文5]进一步解释了剪切带内动态应变率导致的局部瞬态温升,这会加速自由体积的净产生,从而有利于自由体积软化为起源的剪切带失稳.”。

日本东京大学H. Tanaka教授在代表性引文【5】中:“这种剪切带内密度涨落的增强,更确切地是自由体积的聚集,已经得到非晶合金单轴压缩实验的证实27-29.”,其中28是代表性论文4。

英国剑桥大学A.L. Greer教授和美国约翰霍普金斯大学E. Ma教授在代表性引文【6】用1个多页面、3幅原图,详细介绍并充分肯定了代表性论文5关于剪切带形成过程中热和自由体积相互作用的结果。他们这样评价:“正如Jiang 和Dai所全面揭示(comprehensively demonstrated)的那样。即使热不是非晶合金中剪切局部化的起源,它也必将对剪切带起重要影响。他们的模型......。一个重要的优点(A key merit)是不同的因素可以单独进行建模分析。......从这个连续介质模型可以得出重要的一点(A key point)是,一旦有热产生,温度将随着应变持续升高。这种耦合模式下的近似线性增长与上述方程(4)对热的简单描述几乎一致.”。

德国莱布尼茨固体材料研究所J. Eckert教授和中科院物理所汪卫华院士等【Acta Mater. 2012;附件7-11】评述:“一般来讲,剪切带起始于局部的软化区域,软化机制可以归因于局部热影响[30-32] 或者剪胀(自由体积产生)[11-13] 或者两者的耦合[代表性论文5] .”。

美国布朗大学高华健院士等在代表性引文【7】中将代表性论文7作为他们的研究出发点:“一个重要的突出问题(An important outstanding question)是这两个长度尺度,即STZ尺寸和剪切带厚度,是否以及如何相互关联的.25”。在文章结尾,他们这样总结:“有趣的是,我们发现对于三种玻璃的剪切带厚度和STZ特征尺度的比例几乎保持恒定,为8。这也和剪切带厚度大致等于10倍STZ尺寸的观测是一致的.25”,从而验证了该项目关于非晶剪切带厚度的理论预测。

发现点三:非晶合金剪切带诱致断裂机理。代表性引文【4,8】

美国加州大学C.H. Rycroft教授和以色列威兹曼科学院E. Bouchbinder教授评价(代表性引文8):“对于多组分低冷速的块体非晶合金,裂纹成核不大可能与流体弯月失稳相关,而很可能是裂尖孔洞成核[代表性论文8]。后者最近已经得到实验和模拟支持[代表性论文8,35-38]...”。

日本东北大学原校长A. Inoue院士、英国剑桥大学A.L. Greer教授等合作的系列论文中【Scripta Mater. 2009 & 2010; Intermetallics 2011; Acta Mater. 2012;附件7-12】重点阐述了代表性论文8提出的非晶断裂韧脆转变准则,来解释他们的实验现象。例如,他们评价(Scripta Mater. 2009):“正如Jiang et al. [代表性论文8]指出,两个重要的尺度决定了断裂形貌的长度尺度:裂尖曲率半径R和弯月失稳的临界波长λc。R依赖于断裂模式。…虽然数值上有些差异,但是基本思想是一致的”。

印度理学院U. Ramamurty院士等在【Acta Mater. 2009;附件7-13】中大篇幅引用并阐述TTZ模型,在文中评价到:“特别地,Jiang et al.[代表性论文8]把非晶合金中观察到的准解理断裂拟想成TTZ的结果。... 这一点在本文的韧脆转变框架中极为重要(paramount importance)。...”。

香港理工大学K.C. Chan教授和中科院物理所汪卫华院士等在【Acta Mater. 2008;附件7-14】中,直接引用代表性论文8提出的TTZ模型及理论方程预测实验观测的纳米周期条痕尺度,发现预测值与实验值非常接近(“very close to”)。

五、代表性论文

1. L.H. Dai,*Z. Ling, Y.L. Bai/ Size-dependent inelastic behavior of

particle-reinforced metal-matrix composites/ Composites Science and Technology/ 2001, 61: 1057-1063.

2. L.H. Dai,* L.F. Liu, Y.L. Bai/ Effect of particle size on the formation of adiabatic

shear band in particle reinforced metal matrix composites/ Materials Letters/ 2004, 58: 1773-1776.

3. L. F. Liu, L. H. Dai,* Y. L. Bai, B. C. Wei/ Initiation and propagation of shear bands

in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings/ Journal of Non-Crystalline Solids/ 2005, 351: 3259-3270.

4. L. F. Liu, L. H. Dai,* Y. L. Bai, B. C. Wei, J. Eckert/ Behavior of multiple shear

bands in Zr-based bulk metallic glass/ Materials Chemistry and Physics/ 2005, 93: 174-177.

5. M. Q. Jiang, L. H. Dai*/ On the origin of shear banding instability in metallic

glasses/ Journal of the Mechanics and Physics of Solids/ 2009, 57: 1267-1292.

6. Y. Chen, M.Q. Jiang, L.H. Dai*/ Collective evolution dynamics of multiple shear

bands in bulk metallic glasses/ International Journal of Plasticity/ 2013, 50: 18-36.

7. M. Q. Jiang, W. H. Wang, L. H. Dai*/ Prediction of shear-band thickness in

metallic glasses/ Scripta Materialia/ 2009, 60: 1004-1007.

8. M. Q. Jiang, Z. Ling, J. X. Meng, L. H. Dai*/ Energy dissipation in fracture of bulk

metallic glasses via inherent competition between local softening and quasi-cleavage/ Philosophical Magazine/ 2008, 88: 407-426.

六、主要完成人情况

姓名排名行政职务技术职称工作单位完成单位

戴兰宏一力学所学位

委员会主任

研究员

中国科学院

力学研究所

中国科学院

力学研究所

白以龙二无研究员/院士中国科学院

力学研究所

中国科学院

力学研究所

蒋敏强三无研究员中国科学院

力学研究所

中国科学院

力学研究所

刘龙飞四材料科学与

工程学院副

院长

副教授湖南科技大学

中国科学院

力学研究所

陈艳五无副研究员中国科学院

力学研究所

中国科学院

力学研究所

对本项目贡献:

第一完成人—戴兰宏:发展了位错机制依赖的应变梯度本构,揭示了内禀结构尺寸/应变梯度效应对热塑剪切带形成具有驱动作用;建立了表征非晶合金自由体积-热-粘塑性剪切流动的统一理论框架,得到了剪切带失稳判据、协同演化、特征厚度以及诱致断裂机理等一系列原创性成果。是代表性论文[1]-[8]的通讯作者兼[1]和[2]的第1作者。

第二完成人—白以龙:为颗粒增强金属基复合材料和非晶合金的剪切带分析提供理论指导,参与建立了应变梯度依赖热塑剪切带理论和非晶合金自由体积-热-粘塑性剪切流动的统一理论框架,分析了非晶剪切带的失稳机制,是代表性论文[1]-[4]的主要作者。

第三完成人—蒋敏强:对重要科学发现点2和3做出了创造性贡献:澄清了非晶合金剪切带耦合软化过程中自由体积和热的相互作用机制,参与了非晶剪切带协同演化模型的建立以及机理分析,得到了理论预测非晶剪切带厚度的解析表达;提出了“拉伸转变区”模型与韧脆转变准则,澄清了非晶剪切带诱

致断裂过程的能量耗散机制。

第四完成人—刘龙飞:实验发现了应变率、自由体积和温度等是影响剪切带形成的主要因素,分析了非晶剪切带的失稳机制,参与了颗粒增强金属基复合材料热塑剪切带的实验研究与机理分析。

第五完成人—陈艳:发展了非晶合金多重剪切带协同演化理论模型,构建了样品尺寸依赖的剪切带形核-扩展能量耗散竞争图谱。

七、完成人合作关系说明

从1992年9月至1996年8月,第一完成人作为第二完成人的博士研究生,在其指导下开展金属基复合材料热塑剪切带形成机制的研究;从2005年9月至今,第三完成人先后作为第一完成人的博士研究生和团队成员,在其指导下开展非晶合金剪切带及其诱致断裂行为的研究;从1999年9月至2006年12月,第四完成人先后作为第一完成人和第二完成人联合指导的硕士、博士研究生,开展金属基复合材料热塑剪切带和非晶合金剪切带行为研究;从2007年9月至今,第五完成人先后作为第一完成人的博士研究生和团队成员,在其指导下开展非晶合金多重剪切带行为的研究。

完成人合作关系情况汇总表

序号合作方式合作者合作时间合作成果证明材料备注

1 论文合著戴兰宏、刘龙

飞、白以龙1992年9

月-2006

年12月

Effect of

particle size

on the

formation of

adiabatic

shear band

in particle

reinforced

metal

matrix

composites

代表性论文

2

2 论文合著蒋敏强、戴兰

宏2005年9

月-至今

On the

origin of

shear

banding

instability in

metallic

glasses

代表性论文

5

3 论文合著陈艳、蒋敏

强、戴兰宏2007年9

月-至今

Collective

evolution

dynamics of

multiple

shear bands

in bulk

metallic

glasses

代表性论文

6

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途1 《信息来源:无缝钢管》

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

常用金属材料分类

常用金属材料分类 热浸镀锌钢板 (GI) 电镀锌钢板 (EG) 电镀锡钢板 - 马口铁 (SPTE) 不锈钢带材 冷轧碳素钢板 (CRS) 铝及铝合金板材 一.热浸镀锌钢板 (GI) 1. 概况: 热浸镀锌钢板即是将板材浸入熔化锌池中 , 在板材两面浸镀厚度均匀的锌层 . 锌池中锌的重量百分比 仝 97% . 2. 分类: 冷轧热浸镀锌钢材 ,依供货商习惯 .共使用 C1,C2,D1 三种材质 . 标注示范 :HGCC1-ZSFX 其中 : HG--- 热浸镀锌制程 C--- 冷轧底材 C1--- 商用品质 ; (C2--- 改良商用质量 ; D1--- 引申品质 ) Z--- 无锌花 (M--- 细小锌花 ) S--- 调质处理 (B--- 亮面调质处理 ) F--- 耐指纹涂复 (C--- 铬酸盐处理 ) X--- 不涂油 二.电镀锌钢板 (EG) 1. 概况 : 与 GI 料基体材料相同 , 均为商用性能 SPCC (冷轧碳素钢板中一款 ) 材质 . 不同的是采用电镀方式附着 表面锌层 . (又称为电解片: SECC ) 2. 镀锌层重量 : 是材料使用性能的一个重要参数 ,如果锌层较厚且致密,可有效防止SPCC 材质与空气或其它物质接触 产生氧化 . 3. 区别与用途: GI 料与EG 料目前在 NOTE-BOOK^业应用越来越广,因为: SPCC 质地较软,易冲压成形,并且易保证产品结构尺寸要求,另外价格便宜.常用于支架,外壳,连结 EG 料相对于GI 来讲价格稍贵,但表面状况相对显得较光亮.表面状况:无锌花或很细小锌花.防腐性 能相对较好 . 三.电镀锡钢板 - 马口铁 (SPTE) 1. 概况: 基材为低碳钢表面电镀锡 , 常称马口铁 (SPTE). 2. 镀锡用原钢板可划分为以下三种钢类型 : D 类—铝脱氧钢 ,适用于深引伸要求 ,减小表面折痕和拉伸变形等危害 . L 类--- 残留元素( Cu,Ni,Cr,Mo) 特别少 , 对某种食品耐蚀性极好 , 适用于食品类容器 . 用途: 片等.

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

常用金属材料的密度表

常用金属材料的密度表 材料名称 密度,克/ 立方厘米材料名称 密度,克/ 立方厘米 灰口铸铁 6.6~7.4不 锈 钢1Crl8NillNb、Cr23Ni187.9 白口铸铁7.4~7.72Cr13Ni4Mn98.5 可锻铸铁 7.2~7.43Cr13Ni7Si2 8.0 铸钢7.8纯铜材8.9工业纯铁7.8759、62、65、68黄铜8.5普通碳素钢7.8580、85、90黄铜8.7优质碳素钢7.8596黄铜8.8碳素工具钢7.8559-1、63-3铅黄铜8.5易切钢7.8574-3铅黄铜8.7锰钢7.8190-1锡黄铜8.8 15CrA铬钢7.7470-1锡黄铜8.54 20Cr、30Cr、40Cr铬钢7.8260-1和62-1锡黄铜8.5 38CrA铬钢7.8077-2铝黄铜8.6铬钒、铬镍、铬镍钼、铬锰、 硅、铬锰硅镍、硅锰、硅铬钢7.85 67-2.5、66-6-3-2、60-1-1铝黄铜8.5 镍黄铜 8.5 铬镍钨钢7.80锰黄铜8.5铬钼铝钢7.65硅黄铜、镍黄铜、铁黄铜8.5含钨9高速工具钢8.35-5-5铸锡青铜8.8含钨18高速工具钢8.73-12-5铸锡青铜8.69高强度合金钢`7.826-6-3铸锡青铜8.82轴承钢7.817-0.2、6.5-0.4、6.5-0.1、4-3锡青铜8.8 不锈钢0Cr13、1Cr13、2Cr13、3Cr13、 4Cr13、Cr17Ni2、Cr18、9Cr18、 Cr25、Cr28 7.754-0.3、4-4-4锡青铜8.9 Cr14、Cr177.74-4-2.5锡青铜8.75 0Cr18Ni9、1Cr18Ni9、 1Cr18Ni9Ti、 2Cr18Ni9 7.855铝青铜8.2 1Cr18Ni11Si4A1Ti7.52锻 铝 LD8 2.77 7铝青铜 7.8LD7、LD9、LD10 2.8 19-2铝青铜7.6超硬铝 2.85 9-4、10-3-1.5铝青铜7.5LT1特殊铝 2.75 10-4-4铝青铜7.46工业纯镁 1.74 铍青铜8.3变 形 镁 MB1 1.76 3-1硅青铜8.47MB2、MB8 1.78 1-3硅青铜8.6MB3 1.79 1铍青铜8.8MB5、MB6、MB7、MB15 1.8 0.5镉青铜8.9铸镁 1.8 0.5铬青铜8.9工业纯钛(TA1、TA2、TA3) 4.5 1.5锰青铜8.8 钛 合 金 TA4、TA5、TC6 4.45 5锰青铜8.6TA6 4.4 白 铜 B5、B19、B30、BMn40-1.58.9TA7、TC5 4.46 BMn3-128.4TA8 4.56 BZN15-208.6TB1、TB2 4.89 BA16-1.58.7TC1、TC2 4.55 BA113-38.5TC3、TC4 4.43 纯铝 2.7TC7 4.4 防 锈 铝 LF2、LF43 2.68TC8 4.48 LF3 2.67TC9 4.52 LF5、LF10、LF11 2.65TC10 4.53 LF6 2.64纯镍、阳极镍、电真空镍8.85 LF21 2.73镍铜、镍镁、镍硅合金8.85 硬 铝 LY1、LY2、LY4、LY6 2.76镍铬合金8.72 LY3 2.73锌锭(Zn0.1、Zn1、Zn2、Zn3)7.15 LY7、LY8、LY10、LY11、LY14 2.8铸锌 6.86 LY9、LY12 2.784-1铸造锌铝合金 6.9 LY16、LY17 2.844-0.5铸造锌铝合金 6.75 锻 铝 LD2、LD30 2.7铅和铅锑合金11.37 LD4 2.65铅阳极板11.33 LD5 2.75

常用金属材料的特性

它们都是含碳量比较低的优质碳素结构钢。它们不同的主要是两方面,一是含碳量不同;而是机械性能不同。 从化学成分上来看,是含碳量不同,10#钢平均含碳量为万分之10,20#钢平均含碳量为万分之20。 由于含碳量的不同就导致了它们的机械性能的不同。碳素结构钢随着含碳量的增加,强度硬度都相应提高,塑性纫性相应降低。10#、20#属于低碳钢,强度硬度不高,塑性纫性都很好。它们之间比较来说,10#钢的强度和硬度比20#钢要低;10#钢的塑性和纫性比20#钢要好,也是说要软些。 我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,

(整理)常用金属材料密度表

精品文档 精品文档 常用金属材料密度表,包括黑色、有色金属材料及其合金材料的密度。 密度(10^3kg/m^3)(g/cm^3) 材料名称 密度 克/厘米3 材料名称 密度 克/厘米3 灰口铸铁 6.6~7.4 不锈钢 1Crl8NillNb 、Cr23Ni18 7.9 白口铸铁 7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸铁 7.2~7.4 3Cr13Ni7Si2 8.0 铸钢 7.8 纯铜材 8.9 工业纯铁 7.87 59、62、65、68黄铜 8.5 普通碳素钢 7.85 80、85、90黄铜 8.7 优质碳素钢 7.85 96黄铜 8.8 碳素工具钢 7.85 59-1、63-3铅黄铜 8.5 易切钢 7.85 74-3铅黄铜 8.7 锰钢 7.81 90-1锡黄铜 8.8 15CrA 铬钢 7.74 70-1锡黄铜 8.54 20Cr 、30Cr 、40Cr 铬钢 7.82 60-1和62-1锡黄铜 8.5 38CrA 铬钢 7.80 77-2铝黄铜 8.6 铬钒、铬镍、铬镍钼、铬锰、硅、 铬锰硅镍、硅锰、硅铬钢 7.85 67-2.5、66-6-3-2、60-1-1铝黄铜 8.5 镍黄铜 8.5 铬镍钨钢 7.80 锰黄铜 8.5 铬钼铝钢 7.65 硅黄铜、镍黄铜、铁黄铜 8.5 含钨9高速工具钢 8.3 5-5-5铸锡青铜 8.8 含钨18高速工具钢 8.7 3-12-5铸锡青铜 8.69 高强度合金钢 7.82 6-6-3铸锡青铜 8.82 轴承钢 7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜 8.8 不 锈 钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、 Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜 8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜 8.75 0Cr18Ni9、1Cr18Ni9、Cr18Ni9Ti 、 2Cr18Ni9 7.85 5铝青铜 8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77 7铝青铜 7.8 LD7、LD9、LD10 2.8 19-2铝青铜 7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜 7.5 LT1特殊铝 2.75 10-4-4铝青铜 7.46 工业纯镁 1.74 铍青铜 8.3 变形镁 MB1 1.76 3-1硅青铜 8.47 MB2、MB8 1.78 1-3硅青铜 8.6 MB3 1.79 1铍青铜 8.8 MB5、MB6、MB7、MB15 1.8

机械常用金属材料与特性

1、45——优质碳素结构钢,是最常用中碳调质钢。(欢迎关注自动化爱好者论坛,更多学习资料,更多交流者) 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 (一)、机械性能 机械性能是指金属材料在外力作用下所表现出来的特性。 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 5 、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm2 ) . (二)、工艺性能 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。(三)、化学性能 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

常用金属材料的密度表 钢 材 基 本 常 识

常用金属材料的密度表

钢材基本常识 (一) 敬告:本刊自即日起将连续刊登钢材的基本常识,敬请关注! 一、钢材的一般常识与管理 (一)普通结构钢普通结构钢简称普通钢。普通钢对硫、磷含量限制较宽,硫的含量不大于0.045%(≤0.045%)、磷的含量不大于0.045%(≤0.045%);普通结构钢主要用于一般要求的建筑和工程结构;普通结构钢主要包括碳素结构钢、低合金结构钢及由他们派生出来的专门用途的普通结构钢。 普通结构钢又可分为以下两类: (1)碳素结构钢(简称普碳钢),其中按屈服点分为Q195、Q215、Q235、Q255、Q275五种牌号;按硫、磷的含量分为A、B、C、D四个质量等级。A级含硫、磷

量高,D级含硫、磷量低;按脱氧程度分为沸腾钢、半镇静钢、镇静钢和特殊镇静钢(见GB700-88标准)。 (2)低合金结构钢按钢的组织分为三类:铁素体珠光体钢,通常在热轧状态下交货;低碳贝氏体钢,通常在热轧或正火状态下交货;低碳马氏体钢,通常在淬火—回火状态下交货。以上三类组织的钢最常用的是铁素体珠光体钢。选用时,可在屈服点相同的钢号级别中选用。(二)合金结构钢合金结构钢是在优质碳素结构钢的基础上加入一种或数种合金元素组成的钢种。常加入的合金元素有Mn、Si、Cr、Ni、W、Mo、V、Ti、B、Nb等。合金结构钢含碳量小于0.55%;与碳素结构钢比较,具有高的淬透性,用于制造性能要求高、尺寸大、形状复杂的机构设备结构零件。 合金结构钢有以下四种分类: (1)按硫、磷含量不同分为三类:优质合金结构钢。钢中含S≤0.035%,P≤0.035%;高级优质合金结构钢,牌号后加“A”,钢中含S≤0.025%,P≤0.025%;特级优质合金结构钢,牌号后加“E”钢中含S≤0.015%,P≤0.025%。 (2)按合金元素含量分为三类:低合金钢(合金元素总含量﹤5%);中合金钢(合金元素总含量5%-10%);高合金钢(合金元素总含量﹙﹥10%)。 (3)按使用加工方法不同分为两类:压力加工用钢——热压力加工或冷拔坯料;切削加工用钢。钢材的使用加工方法应在合同中注明,未注明者,按切削加工用钢交货。 (4)按热处理方法不同分为调质钢和渗碳钢两类. 二、钢材的分类与相关概念钢材品种繁多,根据截面积形状的特点,可归纳为型材、板材、管材和金属制品四大类。 (一)分类 1、型钢特别是异型型钢,其截面形状与所要制成的构件或机构零件较适应或基本相同,不必加工或稍经加工即可使用,而且具有较高的抗弯、抗扭能力。大量用作各种建筑结构和工程结构,也大量用作各种机械零件和工具。 2、钢板钢板具有很大的表面积,有很大的覆盖和包容能力,可按使用要求进行剪裁和组合(焊接、铆接和咬接),可进行弯曲和冲压成型,不仅广泛用于制造各种结构件、容器、车辆和各种工业炉、反应塔器的壳体、机械零部件及日常

常用金属材料的力学性能一览表

常用金属材料的力学性能 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往妾受到各种形式外力的作托。如起重机上的钢索,受到悬吊物拉力的作用:柴油机上的连杆,在传递动力时.不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件燮受到弯矩、扭力的作用等尊。这就要求金属材料必须具有一种弟受机械荷而不超过许可变形或不破坏的能力* 这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在夕卜力作坤下表现出力学性能的指标。 111 强度 强度是扌旨金属材料在静载荷作用下抵抗变形和断裂的能力。逼度扌旨标一般用单位面积所承受的载荷即力表示,符号为6 单位为 MP 弘 工程中常用的强度指标有屈服逼度和扰拉强度。屈服逼度是指金属材料在外力作用下* 产生屈服现象时的应力,或开始岀现塑性变形吋的最低应力值,用%表示?抗竝强度是指金厲材料在拉力的作用下,被拉断前所能承受的最大应力值,用巧表示。 对于大多数机械零件.工作时不允许产生塑性变形,所以屈服强度是事件逼度设计的依据!对于因断裂而失效的零件,而用抗拉强度作为其逼度设计的依据。 1.1 2 塑性 塑性是扌旨金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性揭标有诩长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号豪示*断面收縮率指试样拉断后,断面縮小的面积与原来截面积之比,用甲表示。 伸长率和断面收缩率越大,其塑性越好;反之塑性越差,良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 113 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力? 硬度的测试方法很多,生产中常埔的硬度测试方法有布氏硬度测试法和洛氏碳度试验方法两神° C- )布氏硬度试验法 布氏硬度试验法是用一直径为 D 的淬火钢球或硬质合金球作为压头,在载荷 0 的作用下压入被测试金厲表面,保持一定时间后卸载,测量金属表面形成的压痕直径乩以压痕的单位面积所承受的平均压力作为被测全属的布氏硬度值。 布氏硬度指标有 HBS 和 HBW, 前者所用压头为淬火钢球,适坤于布氏硬度值低于仍 0 的金属材料,如艮火钢、正火钢、调质钢及铸铁、有包金厲等;后者压头为硬质合金,适用于布氏硬度值为 450^650 的金属材料,如悴火钢等。 布氏硬度测试法,因压痕较尢故不宜测试成品件或薄片金属的硬度。

金属材料的性能

金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。 一.机械性能 (一)应力的概念 物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。 (二)机械性能 金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项: 1.强度 这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有: (1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPa σb=Pb/Fo 式中:Pb–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo–拉伸试样原来的横截面积。 (2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。 金属材料的拉伸试验曲线 σs=Ps/Fo 单位:兆帕(MPa)式中:Ps –达到屈服点S处的外力(或者说材料发生屈服时的载荷)。 对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。 屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs /σb)要小,以提高其安全可靠性,

相关文档
最新文档