AnsysWorkbenchFluent流体管道初级教程示例合并

AnsysWorkbenchFluent流体管道初级教程示例合并
AnsysWorkbenchFluent流体管道初级教程示例合并

Fluent示例

鉴于网上Fluent免费资料很少,又缺少实例教程。所以,分享此文章,希望对大家有所帮助。

1.1问题描述

本示例为ansys-fluent15.0-指南中的,不过稍有改动。

1.2 Ug建模图

1.3 Workbench设置

项目设置如下图所示。(为了凸显示例,所以个项目名称没改动;并且用两种添加项目方式分析,还增加了一个copy项,以供对比。)

说明:ansys workbench15.0与ug8.5(当然,也包括同一时期的solidworks、Pro/e等三维CAD软件)可无缝连接,支持ug8.5建立的模型,可直接导入到ansys workbench15.0中。

方法:在workbench中的Geometry点击右键,弹出快捷菜单,选择“browse”,浏览到以保存的文件,打开即可。个人感觉workbench 建模不方便。

1.4 DM处理

Workbench中的DM打开模型,将导入的模型在DM中切片处理,以减少分网、计算对电脑硬件的压力(处理大模型常用的方法,也可

称之为技巧)。最终效果,如下图所示。

为以后做Fluent方便,在这里要给感兴趣的面“取名”(最好是给每一个面都取名。这样,便于后续操作)。

方法是右键所选择的面,在弹出的对话框中“添加名称”即可,给“面”取“名“成功后,会在左边的tree Outline中显示相应的“名”。

结果如下图所示(图中Symmetry有两个,有一个是错的,声明一下)

1.5 Mesh设置

如下图所示。

在Mesh中insert一个sizing项(右键Mesh,选Sizing即可),以便分体网格,其设置如下:

分体网格的方法:先选择“体”,然后在Geometry中选择Apply 即可。最后设置单元大小6e-3m。

1.6 setup设置

如下图所示。

1.6.1Units设置

选择General中的Units项,打开对话框,如下设置:

选择好后,点击close后确认并关闭对话框。

说明:这样做显示较为细腻,缺点是需后续单位换算。Fluent默认单位国际单位。

1.6.2 Models设置

如下如所示,开启能量方程;双击Viscous选项,选择K-ε选项,并选择Enchanced wall Treatment模式。

说明:Enhanced Wall Treatment适合K-ε模型。

1.6.3 Material设置

如下图,材料选择water。

说明:如果材料库中没有water,可手动添加。方法:选择Fluent,然后选择Creat/Edit,改name为water,最后点击No。(如果点击yes,则将把原有的材料-air改动了。)

Water参数如下

说明,要记得单位换算。1.6.4 Cell Zone Conditions设置

如下图所示,

选择相应的boundary设置如下:

其余boundary默认。

1.6.6 Solution Methods设置

如下图所示

其余选项默认即可。

1.6.7 Montors设置

如下图所示

其中monitors栏,点选Edit后编辑,设置如下

一般默认即可,不过还是看看吧。

Surface Monitors作用是显示所要“监视”的内容,设置方法如下:增加内容时选Creat,编辑已有内容时选Edit,删除已有内容时选

Delete。当选Creat时,可参考

注意,Name是自动生成的,不用自己取名(当然,自己命名也

无妨)。Window内容是显示窗口的编号,一般按顺序增加即可。Get Data Every为“写入频率”,采用默认值也可以。Report Type是报告类型;Field Variable是“监视”内容,下拉菜单中的内容均可选择,关于它们名称解释可参考网络上的文章。

此对话框中的内容,按需选择即可。本示例中“监视”内容为3个,方便演示。

1.6.8 Solution Initiation设置

选择“混合模式”,最后点击Initiation初始化。如下图所示

1.6.9 Run Calculation设置

包括“迭代次数”、“写入频率”等,最后Calculate即可,内容如下(本例迭代次数300——数值多少,自己定,其余默认即可)

2.0 结果显示

选择菜单中的Insert项,按需要添加即可。

举例,添加个contour,默认名称“contour1”,点击OK,添加成功。接着,弹出对话框如下:

流体问题的分析

流体问题的分析 1、某农田自动灌溉的喷射装置的截面图如图所示,它主要由水泵、竖直的细输水管道和喷头组成,喷头的喷嘴(长度可忽略不计)离地面的高度为h.水泵启动后,水从水池通过输水管道压到喷嘴并沿水平方向喷出,在地面上的落点与输水管道中心的水平距离为R,此时喷嘴每秒钟喷出水的质量为m,整个供水系统的效率恒为η,忽略水池中水泵 与地面的高度差,不计水进入水泵时的速度以及空 气阻力,重力加速度为g. (1)求水从喷嘴喷出时的速率v; (2)求水泵的功率P; (3)若要浇灌离输水管道中心R1处的蔬菜,求喷嘴 每秒钟喷出水的质量m1和水泵的功率P1. 2、对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质. (1)一段横截面积为S、长为l的直导线,单位体积内有n个自由电子,电子电量为e.该导线通有电流时,假设自由电子定向移动的速率均为v. (a)求导线中的电流I; (b)将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导F安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)

3、如图1所示,等臂U形管竖直安装在光滑水平面上放置的轻质小车上,小车 和试管的总质量与试管内水的质量相等,均为M。开始时试管 底部的阀门K关闭,管的水平部分的水柱与右侧竖直管内的水柱 等长,小车静止。打开阀门,水缓慢流动到另一侧,使两竖直管 中水面平齐。已知两竖直管轴线间距离为L,则上述过程中,小 车向______________移动,移动的距离为_________________。 变1、如图所示为自动灌溉的喷射装置的截面图.主要由水泵、竖直细输水管和喷头组成.喷头的喷嘴离地面高度为h,喷嘴的长度为r,水泵启动后,水从水池通过输水管压到喷嘴并沿水平方向喷出,在地面上的落 点与输水管道中心的水平距离为R,此时喷嘴每秒中喷出的 水的质量为m0,忽略水池中水泵与地面的高度差,不计水 进入水泵时的速度以及空气阻力,重力加速度为g. (1)求水从喷嘴喷出时的速度v和水泵的输出功率p; (2)若要浇灌离输出管道中心2R处的蔬菜,求此时水泵的输出功率p1. 变式2:某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为ρ,重力加速度大小为g。求 (i)喷泉单位时间内喷出的水的质量; (ii)玩具在空中悬停时,其底面相对于喷口的高度。

工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

流体力学课程

量纲分析和相似原理在流体力学的应用 钟文 车辆1003 摘要:量纲分析法是研究较为复杂的自然现象中各物理量之间的关系及内在规律性的有效工具,也是相似理论的理论基础.量纲分析法的理论和应用,在科学研究和物理学领域中有着十分重要的地位.而对于设计制造复杂庞大的机械,往往要根据相似原理,进行模拟实验,将实验结果推广到同类型中,以相似原理为基础的模型试验方法在流体中有广发的应用。 关键词:量纲分析法;相似原理;流体力学;应用 0 前言 本文在充分研读[1] 《工程流体力学》(莫乃容)第九章节及相关书籍后,对量纲分析和相似原理有了一个深刻的认识,在对量纲分析和相似原理实际操作上做了一些范例,同时在了解的基础上继续做了一些实际的推广,将量纲分析的基本原理,相似原理引入相似结构大变形非线性动态响应分析。对车身典型薄壁件进行了轴向冲击响应与压溃变形的相似分析,得到模型与原型之间的相似比,并进一步得出了由缩比模型预测相似模型碰撞响应。 实验可分为两类,即直接试验和模拟实验。直接实验就是在所研究的对象即原型上直接进行实验,这种方法具有很大的局限性:实验结果只能用于特定的实验条件,或只能推广到与实验条件完全相同的现象上去:对于某些设备,由于实验条件的限制,如高温高压或者设备尺寸太大或者太小,都可能使实验难以进行;对于那些尚未建造的设备,如要设计一座新的水坝,则根本谈不上用实验方法探索其规律性;直接实验的方法不适用于大型设备的破坏性实验。 模拟实验即模化实验克服乐山直接实验的缺点,根据相似原理,按一定原则把流动实物原型缩小或放大,或者把复杂的、苛刻的工况条件转化为简单 的实验条件,或者更换为流体介质,把易燃、易爆、有毒、昂贵的流体介质更换为空气或水,制成模拟试验台,把模型试验台上测定流动参数,找出模型中流体的运动规律,然后将这些规律运用于与模型相似的各种实验设备上去。用模型试验方法解决流体力学所依据的基本理论和方法是量纲分析和 相似原理。 1量纲分析 1.1量纲和单位 物理量单位的种类称为量纲,表示物理量的本质属性,用dim 表示。一个物理量可以用不同的单位度量,但量纲却是唯一的。例如长度、宽度、高度、厚度、深度都可以用米、英尺等长度单位来度量,但是它们的量纲都是长度量纲L 。 由于许多物理量的量纲之间都有一定的联系,在量纲分析时选少数几个物理量的量纲作为基本量纲,其他物理量的量纲都可以由这些基本量纲导出,称为导出量纲。基本量纲是相互独立的,而不能由其他量纲的组合来表示,在工程流体力学中常用质量、长度、时间(M 、 L 、T )作为基本量纲。 在一般的力学问题中,任意一个物理量B 的量纲都可以用M , L ,T 这三个基本量纲的指数乘积来表示 dim B =M αL βT γ 在量纲分析中,有一些物理量的量纲为1 ,称为无量纲量,用M 0L 0T 0表示。无量纲量就 是一个数,但可以把它看成由几个物理量组合而成的综合表达。例如雷诺相似准数的量纲 dim Re = dim (υvl )=000121T L M T L L LT =--

浅析管道流体发电技术

浅析管道流体发电技术 文章对管道流体发电技术的技术背景、发电特点与应用场合进行了分析,提出管道流体发电系统的一般构成,介绍了外管道流体发电技术的发展现状,并对管道流体发电的发展前景进行简要分析。 關键词:管道流体;发电;节能 引言 面对能源紧缺、环境污染的现状,节能环保成为当今科技发展的一大主题。其中,利用排水管道、输油管道等各类管道流体发电,便是其中的一种。长输送管道用来输送流体介质,必然存在管道异物阻塞,出现裂纹等现象,由于管道一般为埋地敷设,只能在管道内部装设自行清理、检查的装置,并要求此装置具有持续的电能供应,于是,管道流体自发电技术应运而生。同时,在提倡发展多种能源的今天,也可以作为一种分布式电源,为供电紧缺地区提供一定的电能。 1 管道流体发电技术定义 管道流体发电技术是指在输油管道或下水管道中,利用一定的装置,将流体的动能转化为电能并加以利用的一种技术。该技术目前主要应用于各类运输管道的自动清理、检测装置的供电系统中。能源自给式管道机器人就是其中的一类,利用该技术产生的电能给这种机器人充电,管道机器人长期浸润在流动介质中,在不需要自带能源的条件下进行检测裂缝、清理异物等工作,从而对管道进行低成本高效率的检测和维护。同时,管道流体发电技术也成为一种新型的分布式发电技术,为供电缺乏地区提供电能。例如在城市污水运输管道中应用流体发电技术,就可以形成相当规模的流体发电系统。 2 管道流体发电技术背景 2.1 流体力学分析 对于一般运输流体介质的管道而言,其入口处的压力P和流量u是由压力供给系统所决定。(在此假定长输送管道内的流体是连续稳定不可压缩的。)从物理角度分析,Z为位置水头,■为静压水头,而■为动压水头,称为管道内的总水头,反映的是管道中沿流动方向任意断面的高度Z、压力P和流速u,三个变量之间的关系。由受力分析可知,作用于管道中流体的外力主要有流体动压力、重力,由于流体沿管道流动产生的内摩擦力,以及管道中一些装置(发电装置、清理检测装置等)引起流体扰动的干扰阻力,所以流体沿流动方向的总机械能逐渐减少,我们把这部分损耗的机械能称为水头损失Z水。为了克服水头损失,工程上采取的办法是提高长输送管入口处的静压力,使之在管道出口处变为流体的动能。如果我们在较长的输送管道中增加发电装置,相当于增加流体所受阻力Z阻,将会引起流场力学条件的变化,此时管道内部实际流体的伯努利方程为:

流体管路流动阻力系数

流量L/h 粗糙管/cmH2O 粗糙管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 54.2 55.9 1.7 54.3 55.9 1.6 1.65 700 57.5 60.7 3.2 57.7 60.9 3.2 3.2 900 61.7 67.2 5.5 61.5 66.8 5.3 5.4 1100 65 72.8 7.8 65 72.5 7.5 7.65 1300 68 78.4 10.4 68.1 78.6 10.5 10.45 1500 70.6 84.8 14.2 70.6 84.9 14.3 14.25 1700 72.4 90.7 18.3 72.3 90.5 18.2 18.25 1900 73.4 95.8 22.4 73.3 96.7 23.4 22.9 流量L/h 光滑管/cmH2O 光滑管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 50.3 51.1 0.8 50.2 51.4 1.2 1 700 54.3 56.5 2.2 54.3 56.5 2.2 2.2 900 59 62.5 3.5 58.6 62.1 3.5 3.5 1100 63.3 68.4 5.1 62.9 67.8 4.9 5 1300 67.4 74 6.6 67.2 73.9 6.7 6.65 1500 71.3 80.4 9.1 70.9 76.9 6 7.55 1700 73.8 84.9 11.1 73.7 84.7 11 11.05 1900 76.2 89.5 13.3 76.2 89.5 13.3 13.3 流量L/h 局部阻力管/cmH2O 局部阻力管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 49.9 51.5 1.6 49.8 51.3 1.5 1.55 700 54.2 56.9 2.7 54.2 57 2.8 2.75 900 58.5 62.8 4.3 58.5 62.5 4 4.15 1100 63.2 69.1 5.9 62.7 68.4 5.7 5.8 1300 66.5 74.2 7.7 66.7 74.4 7.7 7.7 1500 70.2 80.3 10.1 69.9 79.9 10 10.05 1700 72.8 85.6 12.8 72.7 85.4 12.7 12.75 1900 75 90.2 15.2 75 90.2 15.2 15.2

流体阻力实验仿真软件说明

流体阻力实验仿真软件说明 1 目的及特点 本仿真软件以最新设备为模拟对象,充分展现了新设备的优势,力求在界面友好的基础上做到全面、系统、规范的展示新设备的流程与操作方法,力求增强操作者在与软件本身的互动性。 2 模块介绍 软件结构框图: 3 操作界面 用户界面是应用程序的脸面,是整个程序给操作者的最直观的第一印象,所以对于一个

操作程序而言,界面设计的好坏与否十分重要,直接关系到软件的功能和应用。 (i) 实验指导 此菜单主要为软件的使用者在对实验不很了解的情况下提供实验中最基本的介绍,包括实验的目的、内容、仪器和方法等等内容,使操作者可以在很短的时间内了解实验。而且由于采用了滚动式的表现形式,使得指导部分生动具体,也更直观。 (ii) 实验操作 此菜单主要是用于将实验方法和操作的步骤具体化,使学生在初步了解实验的基础上,对实验仪器和实验的具体操作步骤进一步的理解,从而保证实验的顺利进行。本部分除了采用的滚动字幕描述外,还配以整个实验的流程简图,方便使用。 (iii) 数据记录 此菜单主要是用来显示在实验中记录的数据组,使数据直接显示在准备好的表格中,使数据更加直观清晰,方便进行数据观测和校正。同时统一各个仪器的流量和读数的单位,以免发生不必要的麻烦。在记录的同时,根据已知的计算公式,将数据直接转化为曲线,不但简化实验,也使整个过程简便和直观化,便于使用者掌握实验。 (iv) 实验成绩 此菜单主要是用来显示实验结束后,操作者的总体得分,以便给整个操作过程一个直观的,具体的评价。做到心中有数。 :

各窗口和菜单的具体功能说明如下: 只要是在主界面下就可以查看实验指导,实验操作。当完成实验后才可以查看实验结果,并且只有在完成实验并且清理完实验现场后才可以查看实验成绩。但无论到那一级子窗体都可以返回主界面。 4 其它窗体 5 数学模型 本实验涉及到的公式比较复杂,不能直接的出公式,只有通过迭代才能的出相关的公式和数据。下面先定义几个函数: 对于密度上面已经用了内差法,在不同温度下的相关公式,即温度与密度有一定的关系,这里把他们定义成: )(1t f =ρ (2—2) 密度与温度也有一定的关系,可用内差法求得。在不同的温度下有不同的公式: 当20o C>=t>=10 o C 时 μ=[1.3077-(1.3077-1.005)×(t-10)/10]×10-3 当30o C>=t>=20 o C 时 μ=[1.005-(1.005-0.8007)×(t-20)

CFX的流场精确数值模拟教程

基于CFX的离心泵 内部流场数值模拟基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用 CFX 软件的科研人员还较少,所以将CFX 使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 、CFX数值计算的完整流程 、基于ICEM CFD勺离心泵网格划分 2.1导入几何模型 2.2修整模型 2.3创建实体 2.4仓U建PRAT 2.5设置全局参数 2.6划分网格 2.7检查网格质量并光顺网格2.8导出网格—选择求解器2.9导出网格 、CFX-Pre设置过程 3.1基本步骤 3.2新建文件

3.3导入网格 3.4定义模拟类型3.5创建计算域3.6指定边界条件3.7建立交界面

3.8定义求解控制 3.9定义输出控制 3.10写求解器输入文件 3.11定义运行 3.12计算过程 四、CFX-Post 后处理 4.1计算泵的扬程和效率 4.2云图 4.3矢量图 4.4流线图 2.1导入几何模型 在ICEMCFD软件界面内,单击File宀Imort Geometry^STEP/IGES(—般将离心泵装配文件保存成STEP格式), 将离心泵造型导入I C E M如图3所示。 图3导入几何模型界面

2.2 修整模型 单击Geometry^Repair Geometry 宀Build Topology,设置Tolerenee,然后单击Apply,如图 4 所示。拓扑 分析后生成的曲线颜色指示邻近表面的关系:gree n =自由边,yellow =单边,red =双边,blue =多边,线条 颜色显示的开/关Model tree T Geometry T Curves T Color by cou nt,Red curves 表示面之间的间隙在容差之 内,这是需要的物理模型, N41 f !孕ECHH 匚丁E> !1 Z-和-1 :z? ...... ....................... 兰直卤* 百曲gw 卜宀-im * Q涕曲空JIT^J 厂社tt-sfri- Piwpe^ifl-5 CorFklr air^ i Cphcri s Quip^jr 匸* JO 匸叭和皈X XWM X ■an. y% wn- Yellow edges 通常是一些需要修补的几何。 亠 图4修整模型界面 2-3 创建实体单击Geometry^Creade Body,详细过程如图5所示。

CFX的流场精确数值模拟教程.pdf

基于CFX的离心泵内部流场数值模拟 基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用CFX 软件的科研人员还较少,所以将CFX使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 一、 CFX数值计算的完整流程 二、基于ICEM CFD的离心泵网格划分 2.1 导入几何模型 2.2 修整模型 2.3 创建实体 2.4 创建PRAT 2.5 设置全局参数 2.6 划分网格 2.7 检查网格质量并光顺网格 2.8 导出网格-选择求解器 2.9 导出网格 三、CFX-Pre 设置过程 3.1 基本步骤 3.2 新建文件 3.3 导入网格 3.4 定义模拟类型 3.5 创建计算域 3.6 指定边界条件 3.7 建立交界面 3.8 定义求解控制

3.10 写求解器输入文件 3.11 定义运行 3.12 计算过程 四、 CFX-Post后处理 4.1 计算泵的扬程和效率 4.2 云图 4.3 矢量图 4.4 流线图 2.1 导入几何模型 在ICEM CFD软件界面内,单击File→Imort Geometry→STEP/IGES(一般将离心泵装配文件保存成STEP格式),将离心泵造型导入ICEM,如图3所示。 图3 导入几何模型界面 2.2 修整模型 单击Geometry→Repair Geometry→Build Topology,设置Tolerence,然后单击Apply,如图4所示。拓扑分析后生成的曲线颜色指示邻近表面的关系:green = 自由边, yellow = 单边,red = 双边, blue =多边,线条

AnsysWorkbench-15-Fluent 流体 管道 初级教程 示例-合并

Fluent示例 鉴于网上Fluent免费资料很少,又缺少实例教程。所以,分享此文章,希望对大家有所帮助。 1.1问题描述 本示例为ansys-fluent15.0-指南中的,不过稍有改动。

1.2 Ug建模图 1.3 Workbench设置 项目设置如下图所示。(为了凸显示例,所以个项目名称没改动;并且用两种添加项目方式分析,还增加了一个copy项,以供对比。)

说明:ansys workbench15.0与ug8.5(当然,也包括同一时期的solidworks、Pro/e等三维CAD软件)可无缝连接,支持ug8.5建立的模型,可直接导入到ansys workbench15.0中。 方法:在workbench中的Geometry点击右键,弹出快捷菜单,选择“browse”,浏览到以保存的文件,打开即可。个人感觉workbench 建模不方便。 1.4 DM处理 Workbench中的DM打开模型,将导入的模型在DM中切片处理,以减少分网、计算对电脑硬件的压力(处理大模型常用的方法,也可 称之为技巧)。最终效果,如下图所示。

为以后做Fluent方便,在这里要给感兴趣的面“取名”(最好是给每一个面都取名。这样,便于后续操作)。 方法是右键所选择的面,在弹出的对话框中“添加名称”即可,给“面”取“名“成功后,会在左边的tree Outline中显示相应的“名”。 结果如下图所示(图中Symmetry有两个,有一个是错的,声明一下)

1.5 Mesh设置 如下图所示。 在Mesh中insert一个sizing项(右键Mesh,选Sizing即可),以便分体网格,其设置如下:

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

我对流体力学的认识

我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体

力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 流体力学的研究方法 进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 现场观测是对自然界固有的流动现象或已有工程的全尺寸流动

工程流体力学教学大纲

本教学大纲详细说明了在学习中的重点,以及从课时可以看出其的认知程度 《工程流体力学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Hydrodynamics 2、课程类别:专业基础课程 3、课程学时:总学时88,实验学时12 4、学分:5.5 5、先修课程:《高等数学》、《大学物理》、《工程力学》 6、适用专业:油气储运工程 7、大纲执笔:油气储运教研室云萍 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务 工程流体力学是油气储运工程专业的一门主要专业基础课程。它的主要任务是通过各个教学环节,使学生掌握流体运动的基本概念、基本理论、基本计算方法和基本实验技能,提高学生分析和解决实际问题的能力,为以后学习专业知识,从事专业技术工作和科研打下必要的流体力学基础。 三、课程的基本要求 通过本课程的学习,了解流体的物理性质,掌握流体的平衡规律、流体的运动规律、流体与其接触的固体壁面间的受力特点、压力管路中的水力计算、气体动力学基础知识及非牛顿流体运动规律等容。 四、教学容要求及学时分配 1. 流体及其主要物理性质(4学时) 1)具体容 工程流体力学的研究对象 流体的特性、连续介质的假说 流体的密度和重度 流体的压缩性、膨胀性和粘性 作用在流体上的力 2)重点:流体的物性及作用在流体上的力 3)难点:粘性 4)基本要求 正确理解流体的主要物理性质,特别是粘性和牛顿摩擦定律

正确理解流体连续介质、理想流体和实际流体、不可压缩流体和可压缩流体的概念2.流体静力学(10学时) 1)具体容流体静压强及特性 流体平衡微分方程式 流体静力学基本方程式 压力的基准和计量 流体相对平衡 静止流体作用在平面上的力 静止流体作用在曲面上的力 2)重点:流体静压强的特性,流体静力学基本方程式的应用,静止流体作用在平面、曲面上的力 3)难点:静止流体作用在平面、曲面上的力 4)基本要求 掌握流体静压强的概念及其性质 掌握流体平衡微分方程式及应用,能够熟练地进行点压强和总压力的计算 3. 流体运动学与动力学基础(14学时) 1)具体容 研究流体运动的拉格朗日法及欧拉法 流体运动的基本概念 恒定流动的连续性方程 理想流体运动微分方程式 理想流体伯努利方程式 实际流体伯努利方程式及其意义 伯努利方程式的应用 泵对液体能量的增加 系统与控制体 动量定理及其应用 2)重点:流体运动的基本概念,伯努利方程式的应用,泵对流体能量的增加,动量定理的应用 3)难点:实际流体伯努利方程式的推导,输运公式的推导,能量方程、动量方程的灵活应用 4)基本要求 了解描述流体运动的两种方法,建立以流场为对象描述流体运动的概念 掌握连续性方程式,流体微团运动的基本形式和理想流体运动微分方程式(欧拉运动方程式) 牢固掌握流体运动的总流分析法,能够比较灵活地综合运用连续方程式,能量方程式(伯

ANSYS CFD管道流体分析算例Fluid11

Fluid #3: Analyzing Flow in a System of Pipes USING FLOTRAN Introduction: In this example you will model a system of pipes filled with water. Physical Problem: Compute and plot the velocity distribution in the pipe system shown in the figure. Problem Description: ?The shape of the pipe grid is shown in the figure. (Each point is spaced evenly at 0.33m) O bjective: T o plot the velocity profile within the pipe. T o graph the variation of velocity out the bottom pipe. Y ou are required to hand in print outs for the above. F igure: STARTING ANSYS ?Click on ANSYS in the programs menu. ?Select Interactive. ?The following menu that comes up. Enter the working directory. All your files will be stored in this directory. Also enter 64 for Total Workspace and 32 for Database. ?Click on Run. MODELING THE STRUCTURE G o to the ANSYS Utility Menu Click Workplane>WP Settings The following window comes up

管道流体双向流固耦合的动力学模拟分析

管道流体双向流固耦合的动力学模拟分析 【摘要】新疆某石化公司的10-K-302C离心式甲烷制冷压缩机自2009年9月开机以来,润滑油管线振动位移一直较大。为了分析润滑油是否是造成管道振动的因素,采用Ansys Workbench有限元软件模拟了管道内润滑油耦合前后的动力特性,分析了润滑油在耦合前后的压力、速度变化情况,得到流体速度在弯管处变化过大产生了较大的冲量对管道位移过大有着重要影响。 【关键词】输油管道workbench 双向流固耦合流体动力学 1 引言 流体动力学是研究流体平衡的条件及压强分布、流体运动规律、以及流体与固体之间的相互作用等,研究结果对分析管道的振动及影响因素有重要意义。本文针对新疆某石化公司的10-K-302C离心式甲烷制冷压缩机自开机以来润滑油管线振动较大的问题,通过对管内流体流动状态进行模拟分析,得出了流体耦合前后动力特性的变化及管道振动的原因。 2 双向流固耦合分析原理 流固耦合要遵循质量守恒定律、动量守恒定律、能量守恒,所以在流固耦合交界面处,应满足流体域固体应力(σ)、位移(d)、温度(T)、热流量(q)等变量的相等或守恒,即满足下面四个方程: σ分别为液体、固体应力。 3 流体和管道的计算模型 就10-K-302C离心式甲烷制冷压缩机装置的润滑油管线位移较大现象,通过分析润滑油耦合前后的动力学特性,找出流体运动特性,对寻找该管道振动原因有重要指导作用。出口管道的管路图如图1:选取润滑油在弯管中心轴线处的1、、2、、3、、4、点,及在出口处5、为观测点。 图3 耦合后润滑油速度流线图 耦合前后润滑油与管道接触壁面的压力云图4和图5。绝对压力均在入口处较大,弯头处较其连接处的直管压力较大。耦合前润滑油壁面的最大绝对压力为772KPa,最小绝对压力为759.9KPa,压力波动值为1.58%,压力波动较小。流固耦合后接触壁面的压力大小和分布与耦合前几乎相同。图 5 耦合后润滑油壁面绝对压力 4.2 耦合前后流体观测点随时间的变化对比

流体流动

第一章.流体流动 1.计算空气在-40℃和310mmHg真空度下的密度和重度(用SI制和工程单位制表示)。 2.在大气压为760[毫米汞柱]的地区,某真空蒸馏塔塔顶真空表的读数为738[毫米汞柱]。若在大气压为655[毫米汞柱]的地区使塔内绝对压力维持相同的数值,则真空度读数应为多少。 3.敞口容器底部有一层深0.52m的水,(ρ=1000kg/m3),其上为深3.46m的油(ρ=916kg/m3)。求器底的压力,以Pa,atm及mH2O三种单位表示。这个压力是绝压还是表压? 4.如附图所示,封闭的罐内存有密度为1000kg/m3的水, 水面上所装的压力表读数为42kPa。又在水面以下装一 压力表,表中心线在测压口以上0.55m,其读数为58kPa。 求管内水面至下方测压口的距离。 5.图示的汽液直接接触混合式冷凝器,蒸汽被水冷凝 后冷凝液和水一道沿气压管流至地沟排出,现已知器内 真空度为0.85kgf/cm2,问其表压和绝压各为多少mmHg、 kgf/cm2和Pa?并估计气压管内的液柱高度H为多少米?(大气 压为752mmHg) 6.用一复式U管差压计测定水流管道A、B两点的压差,压差 计的指示液为汞,两段汞柱之间放的是水,今若测得h1=1.2m, h2=1.3m,R1=0.9m,R2=0.95m,问管道中A、B两点间的压差 ΔP AB为多少?(先推导关系式,再进行数学运算)。 7.用双液体U管差压计测定两点间空气的压差,读数为320 mm。由于侧壁上的两个小室不够大,致使小室内两液面产生 4mm的高差。求实际的压差为多少Pa。若计算时不考虑两小室 内液面有高差,会造成多大的误差?两液体的密度如附图所示。 8.硫酸流经由大小管组成的串联管路,硫酸相对密度为1.83, 体积流量为150 l/min,大小管尺寸分别为φ57x3.5mm和φ 76x4mm,试分别求硫酸在小管和大管中的(1)质量流量;(2) 平均流速;(3)质量流速。 9.如图在槽A中装有NaOH和NaCl的混合水溶液,现须将该溶液

管道流体的瞬态仿真模型 (1)

管道流体的瞬态仿真模型 贺尚红 1,2 ,钟 掘 1 (1.中南工业大学机电工程学院,湖南长沙 410083; 2.长沙交通学院机电系,湖南长沙 410076) [摘要]通过对管道的离散化处理,建立了流体管道频率相关摩擦仿真模型;研究了N 的取值、离散管段数对仿真结果的影响及管道与集中元件和扰动激励的耦合方法,并对带容腔的流体管道系统进行了数字仿真.结果表明,该模型将管道的分布特性表示成网络形式,可方便地与各种边界条件进行耦合;仿真结果与有关文献提供的近似解析计算和实验结果吻合良好. [关键词]液压管道;液压传动;液压仿真;液压;瞬态分析[中图分类号]TH137.1[文献标识码]A [文章编号]1005 9792(2000)02 0173 04 管道内流体动力学模型的研究是管道内流体传输与瞬变研究的基础,其数学模型有理想流体模型、线性摩擦模型和目前广泛应用的精度高的频率相关摩擦模型3种形式[1] .频率相关摩擦模型涉及贝塞尔函数及自变量中含有贝塞尔函数的双曲函数,在进行时域分析和计算时,因拉氏反变换的复杂性,需对贝塞尔函数和双曲函数进行适当的简化,只对于简单的管路系统和边界条件,才可求出时域响应的解析表达式[2,3].对管道网络系统瞬态特性分析常用的方法有特征线法[4,5]、传输线法[6]和键合图法[7] .这些方法对管道边界条件的处理均较复杂,对非线性元件的处理也非常不便或难以进行.文献[8]对可化为串联形式的管道系统用传递矩阵及始端和终端的边界条件求得响应的频谱函数,再通过FFT 软件直接求得时域响应,该方法不能处理在时域内非线性表达形式的边界条件,且不便于复杂网络系统的耦合建模[9].为此,作者通过对管道的离散化处理,建立了一个管道仿真模型,在此基础上研究了流体管道与集中元件和出入端扰动边界条件的耦合方法,并对一个带容腔的流体管道系统进行了仿真. 1 管道仿真模型 为了得到管道流体动力学模型,作如下假设:管 道为标准光滑圆直管,流动状态为一元层流,不考虑管道变形对油液压缩性的影响,忽略流动时的热传导效应.如图1所示,根据流量连续方程和Navier Stockes 方程有: s c p +Z d Q d x =0(1 ) 图1 管道离散化模型 d p d x +s c ZQN =0(2) 为了得到管道仿真模型,需对管道进行离散化处理,考虑k -1,k,k +1共3个相邻管段,每管段不考虑分布效应,对流量和压力微分作以下近似处理: d Q d x =Q k -Q k -1 x , d p d x = p k +1-p k x 因此,有 p k = c x Z(Q k -1-Q k ) s (3)ZQ k = c N x (p k -p k +1)s (4) [收稿日期] 1999 05 26 [基金项目] 国家自然科学基金资助项目(59835170) [作者简介] 贺尚红(1965-),男,中南工业大学博士研究生,长沙交通学院副教授. 第31卷第2期2000年4月 中南工业大学学报J.CENT .SOU TH U N IV.T ECHN OL. Vol.31 No.2 April 2000

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

fluent的一个实例(波浪管道的内部流动模拟).

基于FLUENT 的波浪管道热传递耦合模拟 CFD 可以对热传递耦合的流体流动进行模拟。CFD 模拟可以观察到管道内部的流动行为和热传递,这样可以改进波浪壁面复杂通道几何形状中的热传递。 目的: (1) 创建由足够数量的完整波浪组成的波浪管道,提供充分发展条件; (2) 应用周期性边界条件创建波浪通道的一部分; (3) 研究不同湍流模型以及壁面函数对求解的影响; (4) 采用固定表面温度以及固定表面热流量条件,确定雷诺数与热特性之间的 关系。 问题的描述: 通道由重复部分构成,每一部分由顶部的直面和底部的正弦曲面构成,如图。 图1 管道模型 空气的流动特性如下: 质量流量: m=0.816kg/s; 密度: ρ=1kg/m 3; 动力粘度:μ=0.0001kg/(m ·s); 流动温度: Tb=300K ; 流体其他热特性选择默认项。 流动初试条件: x 方向的速度=0.816m/s ; 湍动能=1m 2/s 2; 湍流耗散率=1×105m 2/s 3。 所有湍流模型中均采用增强壁面处理。 操作过程: 一、 完整波浪管道模型的数值模拟 (1) 计算 Re=uH/v=0.816×1/ (0.0001/1) =8160 Cf/2=0.0359Re -0.2=0.0359× (8160)-0.2=0.0059259 0628.00059259.0816.02 =?==f t C u u y +=u t y/v y=0.00159

(2)创建网格 本例为波浪形管道,管道壁面为我们所感兴趣的地方所以要局部细化。入口和出口处的边界网格设置如图。 图2 边网格 生成面网格 图3 管道网格 (3)运用Fluent进行计算 本例涉及热传递耦合,所以在fluent中启动能量方程,如图。 图4 能量方程

相关文档
最新文档