套管式液氯汽化系统及其设计

套管式液氯汽化系统及其设计
套管式液氯汽化系统及其设计

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

液氯汽化器及防止三氯化氮积聚问题.doc

液氯汽化器及防止三氯化氮积聚问题 农药、医药、化工等工业上使用液氯十分普遍。在食盐电解制氯气时,由于盐水中含有氨和铵类物质,氯气中就伴有三氯化氮生成。在正常情况下,商品液氯含三氯化氮是微量的[如英、前苏联标准规定,液氯含三氯化氮≤0.005%(w/w)],但使用液氯时,当三氯化氮被积聚时,就产生潜在的爆炸危险。 近年来,我国在生产和使用液氯过程中,因氯中含三氯化氮超标而引起爆炸,已有多次发生,这不仅危害安全生产,而且造成设备的严重破坏和人员伤亡。液氯系统中,液氯汽化器是三氯化氮积累的主要部位之一,为了避免和减少三氯化氮的积累,使用液氯时,如何合理选择液氯汽化器结构类型和防止三氯化氮积聚是十分重要的。 一、三氯化氮性质 三氯化氮分子式为NCl3,呈黄色粘稠性液体或斜方晶体,有强烈刺激性气味,相对密度为1.653,熔点<-40℃,沸点<71℃,自然爆炸点95℃,溶于氯,也溶于苯、四氯化碳、氯仿等有机溶剂,在碱、酸中易分解。 据资料报道,三氯化氮在气相中的爆炸体积极限≥5%,液体在加热到60℃~95℃会发生爆炸;在震动或超声波条件下可分解爆炸;在光的

照射下,瞬间爆炸;与油脂、橡皮等有机物接触,易促使爆炸发生。在液氯残液中含三氯化氮<18%(w/w)不发生爆炸,氯仿中含三氯化氮18%(w/w)也是稳定的。 2mol三氯化氮爆炸时,分解成1mol氮气和3mol氯气,同时放出4.6×105J热量,在容积不变的情况下爆炸时,温度高达2128℃,压力高达5.4×102MPa,爆炸威力是相当大的。 二、液氯汽化器结构形式及工艺技术操作特性 通常用于氯气输送、提压的液氯汽化器,其结构形式主要有3种:夹套式、蛇管式、套管式。它们的工艺技术操作特性见下表。 汽化器类型 夹套式 蛇管式 套管式 供热介质侧 介质名称

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

液氯汽化器使用说明书样本

液氯汽化器使用说 明书

液氯蒸发器装置 使用说明书 苏州华德气体设备有限公司服务热线: 69370785

在线服务热线:QQ 前言 本说明书依据GB/9969.1-1998工业产品使用说明书总则而编制。 使用操作本系列设备前,必须熟读并理解说明书的内容及安全注意事项。防止出人身事故及安全隐患! 贵公司现购买了我公司100型设备,谢谢惠顾。请按本说明书中所要求的规范进行操作。 本说明书适合于同系列设备设计更改后但工艺流程不变或技术指标不变的产品。若有改动,恕不另行通知。 特别声明:我公司只负责对汽化器系统内由我公司提供的产品进行保修, 不承担由于汽化器装置损坏而造成的用户其它损失的连带赔偿责任。 一、概述 此汽化器是经过热水与低温液态气体进行热交换,从而使低温液态气体气化成气态气体的一种设备。它适用的介质

液氯。此汽化器是针对于大型工业业单位,在热水、蒸气或电力充分条件下,采用此汽化器更能充分保证换热效率,而且结构紧凑占地小,价格低等具多优点。 蒸发器及换热器为优质材质,能够抵御氯气腐蚀,保证设备正产运转。宽裕的热热面积能够保证液氯的充分汽化。具有低温高温低水位连锁报警。 二、液氯汽化器的原理 该蒸汽加热器系列液氯汽化器主要由盘管和加热器两部分组成,盘管式蒸汽加热器位于汽化器的侧面,浸没在水中。电加热器加热汽化器筒体内的水,使之稳定在设定的范围内(一般为40-70±2.5℃根据需要压力调节温度,水温越高,氯气压力就越高)。液氯则经过过滤器后由汽化内器碳钢盘管经过,吸收温水中的热量后汽化并过热,避免三氯化氮集聚,经过氯气缓冲器脱去雾滴后输入后方管网。 水温加热控制是由温控器经过温度热电偶反馈进行控制,根据检测到的水温信号传到控制系统,再用控制系统反馈出控制信号调节加热器,此种控制反应速度快,且能根据水温

管壳式换热器的有效设计外文翻译

武汉工程大学邮电与信息工程学院毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

氯气汽化器安全操作规程

氯气汽化器安全操作规程 (一)开车前的准备工作 1、检查汽化器,缓冲罐,水泵,管线等,应无跑冒滴漏现象。 2、检查所有阀门是否灵活好用,阀门的开关位置应符合要求。 3、检查磅秤,仪表是否正常,保证仪表、自动温度控制正常使用。 4、检查水、电、汽,保证正常使用。 (二)开车操作 氯气钢瓶的操作 1、启动水循环泵,使温水在汽化器罐内循环,开启自动温控系统, 保证水温在40℃。 2、将液氯钢瓶放在磅秤上,连接好液氯钢瓶下出液阀和球阀及衬 氟软管。 3、打开球阀,用氨水试漏。确保无泄漏后,再开启主管阀门和液 氯钢瓶下出液阀,依靠液氯钢瓶内自身压力,将液态氯气经过主管加入到汽化器中进行汽化,汽化后的氯气进入到缓冲罐。 4、汽化器出口氯气温度保证在室温情况下,缓冲罐压力保证在≤ 0.2Mpa。 5、在气温较高时,为防止液氯进汽化器的流量过快,最终缓冲罐 压力过高,可适当调节液氯瓶下出液阀的开度,或者减少钢瓶连接数量,以降低缓冲罐压力。气温较低时则相反。 6、钢瓶更换,在正常开车过程中,若发现缓冲罐压力下跌和液氯 钢瓶出口管结霜,则表示钢瓶内液氯将用完,需及时更换。用地

磅秤,控制钢瓶内余氯并做好记录。液氯钢瓶内应保证有5-10Kg 左右液氯留瓶内,不能用空。更换钢瓶时,应密切注意缓冲罐氯气压力。 先关闭该组液氯钢瓶下出液阀。 开启另一组液氯钢瓶下出液阀,主管道阀门,球阀,恢复供氯。 拆卸钢瓶。先用热水将连接管内液氯赶净后,关闭球阀和主管道阀门,卸下钢瓶。 将空瓶运走,换上新钢瓶,并与汽化系统连接好备用。 7、当液氯钢瓶内液氯将用完时,靠自身压力难以压出液氯时,可 以用热水加热钢瓶,加热时水温不超过40℃。 8、每半小时巡检一次,发现问题及时汇报进行解决。 (三)停车操作 1、关闭钢瓶下出液阀。 2、关闭水循环泵。 3、长期停车需将钢瓶全部拆除,并将缓冲罐和汽化器内氯气排 净。 (四)注意事项 1、钢瓶放置要上下阀垂直。 2、每次更换钢瓶必须检查管道和阀门。 3、若汽化器出口结霜,表明汽化不完全,有液氯进入缓冲罐,要 及时进行处理(减少液氯进料量、适当提高热水温度); 4、要及时检查水泵运行情况,防止出现停泵后结冰现象。

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

列管式换热器课程设计书资料

前言 在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。它是化工、炼油、动力、原子能和其它许多工业部门广泛应用的一种通用工艺设备。对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。 在换热设备中,应用最广泛的是管壳式换热器。目前这种换热器被当作为一种传统的标准换热器,在许多工业部门中被大量地使用。尤其在化工生产中,无论是国内还是国外,它在所有的换热设备中,仍占主导地位。 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固定管板式、釜式浮头式、形管式、滑动管板式、填料函式及套管式等几种。根据介质的种类、压力、温度、污垢和其它条件,管板与壳体的连接,传热管的形状与传热条件,造价便宜,维修检查方便等情况,同时也需要了解各种结构形式的特点来选择设计制造各种管壳式换热器。 本设计根据设计要求,由于温差应力较大选用浮头式换热器。 浮头式换热器如图所示。一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不产生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出(也有设计成不可拆的),这样为检修、清洗提供了方便。但结构较复杂,而且浮头端小盖在操作时无法知道泄漏情况,所以在安装时要特别注意其密封。

目录 1.化工原理课程设计任务书 (1) 2.流程图 (2) 3.工艺流程图 (2) 4.设计计算 (3) 4.1设计任务与条件 (3) 4.2设计计算 (3) 4.2.1确定设计方案 (3) 4.2.2确定物性参数 (3) 4.2.3估算传热面积 (4) 4.2.4管束计算 (5) 4.2.6壳体设计 (8) 4.2.7设备零部件设计 (9) 5.设计结果评价 (11) 6.总结 (12) 参考文献 (12) 7.设备装配图 (13)

液氯气化工艺流程

液氯气化工艺及计算 一、工艺流程: 本工艺分为共三部分:液氯储槽进料部分,液氯气化部分,废气处理部分。现分述如下:(一)、液氯储槽进料部分: 1、首先确认槽车泄料口、尾气接口及氮气接口连接完毕,以氮气试压至0.70MPa,确认连接点有无泄漏。 2、在确认连接点无泄漏的情况下,管道泄压。检查槽车与储罐压力,确保槽车与储罐压力差值在0.15~0.20MPa范围内,如槽车压力低,可采取槽车用氮气加压,或储罐泄压的方式进行处理(注:槽车压力大于储罐压力)。 3、在确认槽车与储罐压力、压差无误的情况下,打开储罐进料阀、槽车泄料阀开始进料。在进料过程中注意保持槽车与储罐的压差值,如压差过小可暂停进料,按2中所述进行处理后,才可进行过料。同时在槽车与储罐的打压泄压过程中,槽车与储罐压力不得超过0.65MPa,同时不得低于0.05 MPa。 4、在槽车泄料过程完毕后,关闭槽车泄料阀,以氮气向储罐方向压料,完毕后关闭储罐进料阀,打开槽车进料阀,以氮气向槽车方向压料,完毕后关闭槽车泄料阀。注意在压料过程中,操作压力不得超过储罐规定压力,同时在操作阀门过程中,一定要缓慢进行。 5、压料完毕后,缓慢开启尾气阀做抽空处理,同时开启氮气阀置换,分析检测合格后方可拆开泄料阀,完成槽车泄料操作。 (二)、液氯气化部分: 1、液氯气化器采用热水循环加热,热水槽循环水依靠外接软化水补充,并控制一定液位(2/3)。循化水依靠外接蒸汽管道加热,并且水温控制在40~45℃范围内。热水循环罐通过底部排污口定期排污。 2、液氯储槽中的液氯依靠液下泵送至液氯气化器内,液下泵出口压力控制在0.65MPa左右,依靠液位传感器传输信号调节进料量,维持气化器中液位在2/3左右。气化器通过离心泵送来的循环热水加热使液氯转化为气体,通过气化器上的压力传感器调节进水流量,来调节蒸发量使气化器压力稳定在0.6MPa左右。 气化器通过底部排污口定期排污至废气缓冲罐内,严格控制汽化器中三氯化氮含量不超过50g/l。 3、从气化器出口排出的氯气通过调节法进入氯气缓冲罐,为防止氯气夹带液氯影响后系统操作安全,氯气缓冲罐采用加套式,加套内通以热水保温加热(40~45℃),使带入的液氯完全气化,氯气缓冲罐压力通过进口调节阀控制(0.6MPa)。 从氯气缓冲罐出口排出的氯气送至氯化氢合成工序。 4、液氯气化器排污操作: a、将气化器液位控制在30%,压力泄至0.2MPa左右,再向中间排污罐排料。 b、排料完毕后,关闭气化器排污阀,以氮气给中间排污罐打压至0.15MPa,然后缓慢向残氯吸收罐过料,残氯以15%稀碱液缓慢吸收,稀碱液通过外置冷却器换热,保证吸收罐温度≤40℃,压力≤0.02MPa,尾气排至废气处理塔。 c、残液处理过程中,及时监测吸收碱液中的含碱量,当碱液低于2%含量是及时更换碱液。(三)、尾气处理部分: 1、本工序槽车泄料,储罐进料,设备管道泄压、液下泵氮气密封、设备排污,设备检修置换等含氯废气均排至废气缓冲罐内,废气经废气处理塔经碱液吸收后,由塔顶风机抽出排至大气,风机进口压力稳定在-3.5Kpa。 2、碱液经由碱液高位槽定量放至循环罐内,向碱液循环罐加入定量水,开碱液循环泵打循环混合碱液。分析检测混合碱液浓度达10~15%时,停止加水。开启碱液循环泵,向废气处

1化工原理课程设计(换热器)

一、设计题目: 设计一台换热器 二、操作条件: 1、煤油:入口温度140℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。 3、允许压强降:不大于1×105Pa。 4、每年按330天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 114000吨/年煤油 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸设计。 3、设计结果概要或设计结果一览表。 4、设备简图(要求按比例画出主要结构及尺寸)。 5、对本设计的评述及有关问题的讨论。

第1章设计概述 1、1热量传递的概念与意义[1](205) 1、1、1 传热的概念 所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。 1、1、2 传热的意义 化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。所以传热是最常见的重要单元操作之一。无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。 ②削弱传热过程,如设备和管道的保温,以减少热损失。 1、2 换热器的概念与意义[2] 1、2、1 换热器的概念 在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。 1、2、2 换热器的意义 热交换设备是工业生产中为实现物料之间热量传递的一种工艺设备。在化工、炼油、动力、原子能等众多的工业部门和行业中,广泛使用加热器、冷却冷凝器及其他热交换设备来满足一定的工艺生产条件;由这些设备构成的换热系统的状况,对整个化工过程的正常进行及整个化工系统的投资与操作费用关系重大。在一般化工厂的建设中,换热器约占总投资的10%-20%[3];在石油炼厂中,换热器约占全部工艺设备投资的35%-40%[3]。因此,在能源日趋紧张的今天,合

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

液氯钢瓶贮存和汽化工艺设计说明

液氯贮存和汽化工艺设计说明 第一节概述 1000吨/年多晶硅装置年需液氯9497吨,从附近地区的生产厂家购买。液氯置入充装量1吨的钢瓶中,由汽车运输至多晶硅装置。在多晶硅装置设置液氯贮存仓库和液氯汽化系统。 氯属于II级(高度危害)物质,氯气的贮存和使用必须严格遵守国家标准和规范。本系统采用的设计规范如下: 《氯气安全规程》GB11984-89 《建筑设计防火规范》GBJ16-87 《工业企业设计卫生标准》TJ36 《石油化工企业设计防火规范》GB50160-92及1999年局部修改条例 第二节设计说明 1.液氯钢瓶仓库及安全设施 本装置年需液氯9497吨,年操作时间310天。液氯贮存时间按照5天考虑,液氯钢瓶总数量为155个。钢瓶横向卧放,设有防止滚动的固定支架,并留有吊运见距和通道。实钢瓶存放高度为2层。 仓库内分设实瓶区和空瓶放置区,其占地面积分别为:150m2和80m2。 整个厂房为半封闭结构,四周墙高3m,房顶高8m。整个厂房的占地面积为768m2。 安全设施:当有氯气泄露时,由于氯气的比重比空气大,会聚集在厂房底部,因此在厂房外设置有抽风机,将地面附近含氯的空气吸入设于地沟内的风管,并送入一个专设的废气处理塔E-001,用碱液池,当液氯钢瓶出现严重泄露且难以制止时,将钢瓶浸入碱液池中,以防止大量氯气泄露至空气中。 2.液氯汽化流程说明 液氯汽化及储存厂房内设置有1#、2#两个工作钢瓶组,两组钢瓶为一开一备。在由1#钢瓶组向汽化器供应液氯的时段内,进行2#钢瓶空瓶的移

出和实瓶的移入:用单梁吊车V-001将2#钢瓶组的空瓶逐个吊至空瓶区堆放,再将对方于实瓶区的钢瓶刀至磅称称重后,放置于钢瓶组规定的位置。将气、液氯总管上分出的各支管末端的绕性管(紫铜管)分别与各钢瓶的气、液接嘴可靠连接。当1#钢瓶组各出液管上设置的转子流量计的指示降低到一定值时,表示液氯即将放尽。此时切换至已安排就绪的2#钢瓶组,继续向汽化器供应液氯,并入前所述移出1#组空瓶,移入实瓶。 液氯从1组12个钢瓶中同时放出,经各钢瓶对应支管上的转子流量计观测流量,汇入液氯总管,然后流入液氯汽化器C-001的盘管内,被流经管外的热水加热汽化。出汽化器的氯气经氯气缓冲罐F-001后送去氯化氢合成工序。 为满足多晶硅生产的要求,液氯汽化的压力需达到0.65MPaA,相应的,钢瓶内液氯的温度需达到21℃,对应的压力达到0.69MPaA,才能将液氯输送至汽化器内。当温度较低,瓶内压力不足时,采用热水喷淋钢瓶表面的方法加热液氯,提高瓶内压力。喷淋水来自喷淋水循环池。用喷淋水循环泵J-003将水从池中送出,流经喷淋水加热器C-003,用水蒸汽加热后,送至各钢瓶上方的喷淋管喷出。加热钢瓶后的水汇入下方的地沟,然后流回喷淋水循环池。在适当的时候,可直接使用多晶硅装置的循环冷却回水用于钢瓶的加热。钢瓶可能泄露的氯气(液氯)会溶于水中,当水中氯含量达到一定浓度时,为避免设备的腐蚀,将其泵送出系统,去讴歌能够仪废料车间处理。 用于液氯汽化的加热水来自热水槽F-006。通入低压蒸汽直接加热槽内的水。出槽的热水用循环泵J-006A/B送入液氯汽化器C-001A/B加热汽化液氯。出液氯汽化器的水返回热水槽。 液氯汽化器C-001A/B为一开一备。随着汽化器工作时间的增加,液氯中的NCl 3 浓度会升高,当达到一定浓度时,会导致爆炸。因此须定期分析 汽化器中NCl 3的浓度,当NCl 3 浓度达到40g/l时,必须切换汽化器,将汽 化器中NCl 3浓度较高的残液放入排污罐F-002,用碱液将NCl 3 和液氯处理 掉。 从液氯钢瓶或汽化系统设备、管线泄露出来的氯气,必须得到及时的处

浮头式换热器(过程设备设计课程设计说明书)

目录 设计题目及工艺参数---------------------------------------------------1 一、换热器的分类及特点---------------------------------------------------2 二、结构设计-------------------------------------------------------------5 1、管径及管长的选择---------------------------------------------------5 2、初步确定换热管的根数n和管子排列方式-------------------------------5 3、筒体内径确定-------------------------------------------------------5 4、浮头管板及钩圈法兰结构设计-----------------------------------------6 5、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------7 6、外头盖法兰、外头盖侧法兰设计---------------------------------------7 7、外头盖结构设计-----------------------------------------------------8 8、接管的选择--------------------------------------------------------------------------------------8 9、管箱结构设计-------------------------------------------------------8 10、管箱结构设计------------------------------------------------------8 11、垫片选择----------------------------------------------------------9 12、折流板------------------------------------------------------------------------------------------9 13、支座选取----------------------------------------------------------10 14、拉杆的选择--------------------------------------------------------13 15、接管高度(伸出长度)确定------------------------------------------13 16、防冲板------------------------------------------------------------13 17、设备总长的确定----------------------------------------------------13 18、浮头法兰---------------------------------------------------------------------------------------14 19、浮头管板及钩圈----------------------------------------------------14 三、强度计算--------------------------------------------------------------14 1、筒体壁厚的计算-----------------------------------------------------14 2、外头盖短节,封头厚度计算-------------------------------------------15 3、管箱短节、封头厚度计算 --------------------------------------------16 4、管箱短节开孔补强的核校 --------------------------------------------16 5、壳体压力试验的应力校核---------------------------------------------16 6、壳体接管开孔补强校核-----------------------------------------------17 7、固定管板计算-------------------------------------------------------18 8、无折边球封头计算 --------------------------------------------------19 9、管子拉脱力计算-----------------------------------------------------20 四、设计汇总-----------------------------------------------------21 五、设计体会--------------------------------------------------------------21 参考文献--------------------------------------------------------------22

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

相关文档
最新文档