人教版中考数学压轴题综合模拟测评检测

人教版中考数学压轴题综合模拟测评检测
人教版中考数学压轴题综合模拟测评检测

一、中考数学压轴题

1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ;

(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;

(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.

2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().

(1)求抛物线的解析式及顶点M 坐标;

(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点

D 作D

E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,

PDE

ABMC 1

S

S 9

=四边形. 3.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;

(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.

4.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.

(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);

②若(1)()0x mx n -+=是半等分根方程,则代数式2

25

2

m mn n +

+= ; (2)若点(,)p q 在反比例函数8

x y =的图象上,则关于x 的方程2

60px x q -+=是半等分根方程吗?并说明理由;

(3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2

y ax bx c =++上,试说明方程20ax bx c ++=的一个根为

53

. 5.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =1

3

,BC =8. (1)求证:CF 是⊙O 的切线; (2)求⊙O 的半径OC ;

(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.

6.如图,直角三角形ABC ?中,90460ACB AC A ∠?=∠?=,,=,O 为BC 中点,将

ABC ?绕O 点旋转180?得到DCB ?.一动点P 从A 出发,以每秒1的速度沿

A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.

(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使

//QN PM ,设点Q 的运动时间为t 秒,(0

图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.

(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在

BC 上以每秒

3

的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ?为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.

7.如图,在平面直角坐标系xoy 中,直线1

22y x =-

+与x 轴交于点B ,与y 轴交于点,C 抛物线2

y ax bx c =++的对称轴是直线3,2

x =与x 轴的交点为点,A 且经过点B C

、两点.

(1)求抛物线的解析式;

(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;

(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由. 8.如图1,抛物线2

3y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶

点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .

(1)求顶点D 的坐标;

(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N . ①若直线CM 将BCD ?分成的两部分面积之比为2:1,求点M 的坐标; ②若NCB DBC ∠=∠,求点N 的坐标.

9.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90°得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .

(1) 依题意补全图形; (2) 求证:EG ⊥AD ;

(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较

()()11a b ++与

9+62

10.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点

A C 、(点A 在点C 的左侧),与y 轴正半轴交于点

B ,24O

C OB ==. (1)如图1,求a m 、的值;

(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;

(3)如图3,在(2)的条件下,当15

4

d =时,过点D 作DE x 轴交抛物线于点E ,点

P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线2

11

y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH

CG 交DG 于点H ,若3CFG EGH S S =△△,求点

P 的坐标.

11.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.

(1)求点 B 的坐标;

(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式; (3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.

12.已知:如图①,在等腰直角ABC ?中,斜边2AC =.

(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=?;

(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;

(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=?,且此时四边形ABDE 的面积最大?若存在,求出四边形

ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.

13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =

1

3

,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.

14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,

108BAC ∠=?,点D 是BC 边上的一点,7224BAD BD CD AD ∠=?==,,,求AC 的

长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题: (1)ACE ∠=___________度; (2)求AC 的长.

(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=?∠=?,,对角线

AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.

15.AB 是

O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,

连接CD 交AB 于E ,

(1)如图(1)求证:90AEC ∠=?;

(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接

MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠

(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==?的面积等于8,求线段MN 的长度

16.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与

CD 相交于点E .

(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.

17.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 322m m -62=AB 与x 轴交于点,E 点

F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.

(1)求m 的值;

(2)若45,APF ∠=?求证:AHF HFA ∠=∠;

(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)

18.如图,在?ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.

19.在△ABC 中∠B=45°,∠C=30°,点D 为BC 边上任意一点,连接AD ,将线段AD 绕A 顺时针旋转90°,得到线段AE ,连接DE .

(1)如图1,点E 落在BA 的延长线上时,∠EDC= (度)直接填空. (2)如图2,点D 在运动过程中,DE ⊥AC 时,AB=4 ,求DE 的值.

(3)如图3,点F 为线段DE 中点,AB=2a ,求出动点D 从B 运动到C ,点F 经过的路径长度.

20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF =( ) A .180° B .270° C .360° D .540° (1)请写出这道题的正确选项;

(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.

(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.

(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.

21.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=?,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .

①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中

NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:

③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).

22.问题探究

(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.

(2)如图2,在ABC 中,60BAC ∠=?,AG 为BC 边上的高,O 为ABC 的外接

圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明

理由.

问题解决:

如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=?,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由. 23.已知,抛物线2

12

y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.

(1)求该抛物线的解析式.

(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接

CP ,求PCE ?面积的最大值.

=+与线段AC交于点M,与线段BC交于点N,是否存在(3)如图2,若直线y x m

?为直角三角形,若存在,请求出m的值;若不存在,请说明理M,N,使得OMN

由.

24.问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km).

(1)当甲追上乙时,x=.

(2)请用x的代数式表示y.

问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.

(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;

(4)若从2:00起计时,求几分钟后分针与时针第一次重合?

25.已知:在平面直角坐标系中,抛物线2

23y ax ax a =--与x 轴交于点A ,B (点B

在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2. (1)如图1,求此抛物线的解析式;

(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点

D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t

的取值范围);

(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若

72

8

CG AG =

,求点P 的坐标.

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.B

解析:(1)8

3

;(2)3或433)565x ≤<

【解析】【分析】

(1)设BP=a,则PC=8-a,由△MBP~△DCP知MB BP

DC CP

=,代入计算可得;

(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;

(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由

PC2+DC2=BM2+PB2,可求得BP=7,继而知22

7465

PM=+=.据此可得答案.【详解】

(1)设BP=a,则PC=8-a,

∵AB=8,M是AB中点,

∴AM=BM=4,

∵△MBP~△DCP,

∴MB BP

DC CP

=,即

4

88

a

a

=

-

解得

8

3

a=,

故答案为:8

3

(2)如图1,当⊙P与边CD相切时,

设PC=PM=x,

在Rt△PBM中,∵PM2=BM2+PB2,

∴x2=42+(8-x)2,

∴x=5,

∴PC=5,BP=BC-PC=8-5=3.

如图2,当⊙P与边AD相切时,

设切点为K ,连接PK ,

则PK ⊥AD ,四边形PKDC 是矩形. ∴PM=PK=CD=2BM , ∴BM=4,PM=8,

在Rt △PBM 中,228443PB -==. 综上所述,BP 的长为3或43.

(3)如图1,当PM=5时,⊙P 经过点M ,点C ; 如图3,当⊙P 经过点M 、点D 时,

∵PC 2+DC 2=BM 2+PB 2, ∴42+BP 2=(8-BP )2+82, ∴BP=7, ∴227465PM

=+=

综上,565x ≤< 【点睛】

本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.

2.C

解析:(1)2

1

y x 343

=-+(),顶点M 3,4;(2)P 3,2();(3)1m =2,

2m =1

【解析】 【分析】

(1)由点C 的坐标,可求出c 的值,再把()

A 3,0-、()

B 33,0代入解析式,即可求出a

、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;

(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;

(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDE

S

3=,根据OC =

3,OB =33,推出OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,()OE 33m =-,根据PDE

DOE PDOE S

S S

=-四边形,列出关于

m 的方程,

解方程即可. 【详解】

(1)∵抛物线y =2ax bx c a 0++≠()过()A 3,0-、()

B 33,0,()

C 0,3三点, ∴c =3,

∴3a 3b 3027a 33b 30

?-+=??++=??, 解得1a 323b ?=-????=??

故抛物线的解析式为()

2

21231

y x x 3x 3433

=-++=--+,

故顶点M 为

(

)

3,4.

(2)如图1,

∵点A 、B 关于抛物线的对称轴对称,

∴连接BC 与抛物线对称轴交于一点,即为所求点P . 设对称轴与x 轴交于点H , ∵PH //y 轴,

∴PHB COB ∽. ∴

PH BH

CO BO

=. 由题意得BH =23,CO =3,BO =33,

PH 23

333

=

, ∴PH =2. ∴(

)

P

3,2.

(3)如图2,∵()

A 3,0-、()

B 33,0,()

C 0,3,(

)

M

3,4,

∴ABMC S 四边形=

()AOC MHB

COHM 111

S

S S

3334342393222

++=

??++??=梯形. ∵ABMC S 四边形=PDE

9S ,

∴PDE

S

3=

∵OC =3,OB =33

∴OCB ∠=60. ∵DE //PC , ∴ODE ∠=60.

∴OD =3m -,)OE 33m =-. ∵PDOE S 四边形=))COE

133S 333m 3m 22

=

?-=-, ∴PDE

S

=))2

DOE

PDOE 333S S

3m 3m -=

--=四边形 2333

0m 33+<<()

. ∴2333

3+= 解得1m =2,2m =1. 【点睛】

此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.

3.D

解析:(1)证明见解析;(2)29

或5;(3)DG =2MG ,理由见解析. 【解析】 【分析】

(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB. (2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.

(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到DG=BG=2MG. 【详解】

解:(1) 连接MG 并延长交AB 于N 点,如下图所示:

∵GF ∥AN , ∴∠NAM=∠GFM 在△ANM 和△FGM 中

∠∠=??

=??∠=∠?

BAM GFM AM FM

NMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN ∴AB-AN=BC-CG ∴NB=GB

∴△NBG 为等腰直角三角形 又M 是NG 的中点

∴由直角三角形斜边上的中线等于斜边的一半知: 故有:MG=MB. (2)分类讨论:

情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时

延长MG 到N 点,并使得MG=MN ,连接AN ,BN

∴∠∠=??

=??=?

MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS) ∴AN=GF=GC ,∠NAM=∠GFM ∴AN ∥GF

∴∠NAB+∠ABG=180° 又∠ABC=90° ∴∠NAB+∠CBG=90°

又在△BCG 中,∠BCG+∠CBG=90° ∴∠NAB=∠BCG

∴在△ABN 中和△CBG 中:∠∠=??

=??=?

AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)

∴BN=BG ,∠ABN=∠CBG ∴∠ABC=∠NBG=90°

∴△NBG 是等腰直角三角形,且∠BGN=45° 在Rt △BCG 中,2222=534--=BG BC CG 过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形 ∴MH=BH=HG=

1

2

BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时 如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,

同情况一中证明思路,

∠∠=??

=??=?

MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS) ∴AN=GF=GC ,∠NAM=∠GFM ∴AN ∥GF ∴∠NAB=∠ABG 又∠ABG+∠GBC=90° ∠GBC+∠BIF=90° ∴∠BIF=∠ABG

又∠BIF=∠BCG ,∠ABC=∠NAB ∴∠NAB=∠GCB

∴在△ABN 中和△CBG 中:∠∠=??

=??=?

AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)

∴BN=BG ,∠ABN=∠CBG ∴∠ABC=∠NBG=90°

∴△NBG 是等腰直角三角形,且∠BGN=45° 在△BCG 中,2222=534-=-=BG BC CG 过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形 ∴MH=BH=HG=

1

2

BG=2 ∴HF=HG-GF=2-1=1

在Rt △MFH 中,2222MF=215+=+=MH HF 29 5. (3)由题意作出图形如下所示:

DG 、MG 的数量关系为:2,理由如下: ∵G 点在AC 上 ∴∠DAG=∠BAG=45° 在△ADG 和△ABG 中:

∠∠=??

=??=?

AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS) ∴DG=BG

又由(2)中的证明过程可知:△MBG 为等腰直角三角形 ∴2MG ∴2MG 故答案为:2MG. 【点睛】

本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键. 4.(1)①不是;②0;(2)若点(,)p q 在反比例函数8

y x

=

的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析

【解析】 【分析】

(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程

(1)()0x mx n -+=得11x =,2n x m =-

,所以12n m -=或2n

m

-=,即:n =-2m 或m =-2n ,分别代入代数式2

25

2

m mn n +

+=结果均为0 (2)根据点(,)p q 在反比例函数8y x

=的图象上,得到8q p =,代入2

60px x q -+=,

得到关于x 的方程2

8

60px x p

-+

=,解方程,用含p 的式子表示x ,根据“半等分根方程”

相关主题
相关文档
最新文档