人脸检测的基本原理

人脸检测的基本原理
人脸检测的基本原理

人脸检测的基本原理

1引言

2人脸检测的基本知识

2.1人脸特征

2.2 预处理技术

3图像处理的基本运算方法

3.1数字图像的表示

3.2区域分割与合并的原理

3.3膨胀与腐蚀

1引言

人脸检测是指给定静止图像或视频序列,不管图像中人脸的位置、大小、方向、姿势、光照等如何变化,找到并定位所有人脸确切位置的技术。有很多与人脸相关的研究领域与人脸检测技术紧密相关,比如人脸定位(Face Localization),经过简化的、仅针对包含单个人脸图像的检测技术;人脸跟踪(Face Tracking),在连续的视频序列中实时定位并跟踪人脸的位置;面部特征检测(Facial Feature Detection),准确定位人脸区域内的眼睛、眉毛、鼻子、嘴、嘴唇、耳朵等面部器官的位置;人脸识别(Face Recognition),比较输入图像与已经建好的人脸数据库内各图像间的差异,找到差异最小的作为识别结果输出;面部表情识别(Facial Expression Recognition),识别人脸面部的感情状态,比如高兴、沮丧、悲伤等等。

上述这些人脸处理技术的第一步都是要求准确定位好图像中的人脸,因此一个鲁棒、高效的人脸检测算法对这些技术的发展起着关键的作用。

2人脸检测的基本知识

人脸检测从本质上讲是目标检测的一种,也就是将目标(人脸,Target)与干扰(背景,Clutter)区分开来的过程。

2.1人脸特征

人脸图像中包含的特征非常丰富。人脸检测利用的是人脸的共性特征,大致分为基本特征、肤色特征、变换域特征、统计特征等。

①基本特征

1)灰度特征

人脸区域内具有明显的灰度分布特征。眉、眼和嘴等区域的灰度值较低,前额、脸颊、鼻梁和下颌等区域的灰度值较高。利用这些信息,可以建立简单的人脸模板,用于粗检。例如,多个人脸图像的平均就是一个简单的人脸模板,类似的眼模板和嘴模板也常常使用。

人脸具有明显的灰度梯度分布特征。在人脸区域进行水平和垂直方向的灰度投影,根据极小点的位置可以得到眉、眼、鼻和嘴等器官所处的大致区域。

光照不均对灰度特征有很大的影响。但在偏光的情况下,眼和嘴、鼻和嘴、鼻和脸颊等区域灰度的比值会保持一定的比率。根据这个特点,可采用线性光照拟合和直方图均衡的方法来补偿光照的影响。Log、Exp和LogAbout等一些非线性变换也可用于光照补偿。

2)边缘和形状特征

人脸及人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、眉毛边缘、鼻侧线和嘴唇轮廓等均可近似视为椭圆、圆、弧线或线段等简单的几何单元。可采用Sobel、Laplacian和Canny等算子或小波变换提取这些边缘特征。

噪声的存在会导致边缘的不连续,常采用边缘跟踪器把属于同一轮廓的各段边缘连接起来,并通过约束搜索范围防止边缘跟踪失败。数学形态学的腐蚀与膨胀运算与Hough变换也常用于提取人脸轮廓特征,并对噪声有较好的适应性。应用Snakes模型或主动形状模型(ASM,Active Shape Model)能够较好地抽取人脸的边缘特征,但这些模型需要一个较好的初始化位置。

尽管在强光照变化下也会产生一些伪边缘,但相对于灰度特征,边缘特征对光照变化具有一定的鲁棒性。

3)结构特征

结构特征主要表现在人脸的对称性和各个器官的空间位置分布。

人脸在结构上的对称性是十分有用的特征。正面人脸左右对称,对应位置上的边缘和灰度特征基本一致;同时,各个器官也具有自身的对称性,比如双眼、鼻子、耳朵等。

面部器官如眉毛、眼睛、鼻子、嘴等,是按一定位置关系组织在一起的。各器官按照从上而下的顺序排列,相对位置保持不变。各器官间还存在着一些几何关系,比如两眼和嘴中心构成一个三角形、鼻子的中心大致位于这个三角形的中心等。

根据这些结构特征,配合前面介绍的灰度特征和边缘、形状特征,可以建立基本的规则,区分人脸区域与背景。

4)纹理特征

人脸具有特定的纹理分布特征,基于灰度共生(SGLD,Space Grey Level Dependency)矩阵建立人脸纹理特征模型,得到表征人脸的一系列纹理特征。

②肤色特征

肤色特征按类别划分应属于人脸基本特征,但其在彩色图像人脸检测中所起到的作用非常重要。

肤色是脸部区别于其他区域的重要特征,不依赖于面部细节特征,不受旋转、姿势、表情等变化的影响,具有相对稳定性并和大多数背景物体颜色相区别,已成为彩色图像人脸检测中的一个非常重要的特征。

尽管不同种族、不同年龄、不同光照条件下,肤色区域呈现不同的颜色,但相关研究证明,不同类的肤色点间的差别更多的在于颜色中的亮度分量,而色度分量在各肤色点间变化不大。由此,可以在特定的色彩空间中建立肤色模型,描述人脸肤色的特征,有效去除图像中复杂背景的干扰、减小待搜索范围。

常用的色彩空间有RGB、归一化RGB、HSV、YCbCr、YIQ、YES、CIE XYZ、CIE LUV、CIE Lab、CIE DSH、TSL等,常用的肤色模型有直方图模型、高斯模型、混合高斯模型等。

③变换域特征

基于FFT、DCT、小波、K-L等变换,根据能量规则选择一系列系数作为表征人脸图像的特征。

人脸识别中广泛使用的本征脸(Eigen Face)以及最近流行的类Haar特征(Haar-like feature)均属于变换域特征。

目前图像大多以压缩的格式存在,各个图像压缩标准广泛地应用了DCT和小波变换,因此,研究如何有效地提取这些变换域下的人脸特征,具有很强的实际意义,已成为目前一个很受重视的研究方向。

④统计特征

由于人脸图像模式的复杂性,能够用来描述人脸共性特点的显式特征是有限的,而由此建立起的人脸规则的有效性也有很大的局限性。解决这个问题的办法就是更多地使用人脸图像的统计特征,也可称为隐式特征。

统计特征是指通过统计的方法,从单个图像数据或大量图像数据中获得的特征,如自相关、高阶矩、不变矩、在子空间的投影、空间距离、隶属度、概率分布、熵、互信息,以及神经网络的抽象特征等。

统计特征不如基本特征直观,但描述的往往都是人脸与非人脸的本质区别,在一个更高的层次上描述人脸特征。在大量统计特征基础上构建起来的基于统计学习的人脸检测算法,具有良好的适应性和鲁棒性,得到了广大研究人员的普遍重视,已成为目前研究的主流。

⑤运动特征

对于视频序列,相邻帧间的运动信息是一个重要的特征。计算相邻帧图像的差分即可得到运动区域。为了提高算法对噪声的鲁棒性,可采用空间连通区域、多帧差分、差分图像光滑滤波、时空三维张量等方法。运动特征也常用于人脸跟踪的研究中,基本方法就是跟踪整个人脸或基于特征器官(如眼、嘴)的跟踪。

2.2 预处理技术

为了提高检测算法的效率,需对输入图像进行一些预处理。通用的预处理手段主要包括:

1)边缘提取,去除图像中低频的背景区域;

2)直方图均衡,使图像中象素值分布均衡化;

3)光照补偿,克服亮度不均对结果的干扰;

4)肤色分割,将肤色区域与背景分离。

①背景去除

人脸区域内灰度变化较大,在图像中属于高频信息,通过提取边缘、去除边缘很弱的图像区域,可以去除变化平坦的背景区域。除了这种简单的方法外,Shaick等提出了一种新的针对灰度图像的预处理方法,算法的框图如图1所示。

图1 Shai ck算法框图

首先对输入图像进行直方图均衡,然后利用2D-FFT将其变换到频域。在频域利用最佳自适应相关器(Optimal Adaptive Correlator, OAC)将输入图像与“平均脸”模板求相关,滤波器输出如式(1)

]),(]/[),(),(2

*y x y x y x f f V f f U f f H ?=ω (1)

其中U 、V 分别为“平均脸”模板和输入图像的傅立叶变换,“*”代表二维复共轭,x f 、y f 分别是二维频域内的索引,ω为5×5大小的矩形窗口,?代表卷积算子。

将滤波器的输出按照实验得到的阈值分为人脸区域、可能的人脸区域和背景区域三部分。实际使用中,首先通过训练的方法得到“平均脸”模板,然后在7×9的窗口内对待测图像进行局部灰度均衡(Local Homogenization ),最后使用OAC 滤波器排除背景区域。经过这样的处理,在MIT Set B 测试集中可以排除图像中99%的待检测区域,而仅仅产生了1.3%(2/153)的漏检,同时其计算复杂度也相对较小,可以在不对算法精度产生太大影响的条件下提高算法的速度。

②肤色模型

肤色是彩色图像中人脸部区别与其他区域的一个非常重要的特征。利用肤色分割算法不但可以减小待搜索图像的大小,而且还可以有效的控制误检。因此肤色模型在人脸检测的研究中一直受到很大的重视。

1)彩色空间

各种标准的彩色空间均可用于构建肤色模型,比如YCbCr 、HSV 、归一化rgb 等。Hsu 等考察了肤色点与背景点在各彩色空间中的实际分布情况,具体的统计结果如图2所示。

图2 不同颜色空间内肤色点的分布

(a) YCbCr 空间,(b)肤色点在CbCr 平面内的投影,(c)rgb 空间(d)HSV 空间

(红点表示肤色点,蓝点表示背景点)

由图2中可以明显看出,与其它空间相比,YCbCr 空间中的肤色点具有更加集中的分布,最为适合肤色分割。因此目前很多研究工作都是基于YCbCr 彩色空间进行的。在YCbCr 彩色空间的基础上,进行更深一步的考虑。YCbCr 三分量与视频中使用的YUV 三分量具有相似的思路,即将原来的RGB 三个色度分量通过一个线性变换,转化为一个亮度和两个色度分量,其中Y 为亮度分量,CbCr 分别为蓝色(Blue )和红色(Red )的色度分量。通过分析RGB 三个分量在肤色区域的分布,Dios 等提出与YCbCr 空间类似的一个新的颜色空间YCgCr ,使用Cg (代表绿色Green )分量来代替Cb 分量。依据ITU Rec.BT.601规定的标准,Cg 分量可以由式(2)所示的变换公式得到:

B

G R Cr Cg Y ?----+=214.18768.93112915.30112085.81966.24553.128481.65256112812816 (2) 如图3所示,在YCgCr 空间内,肤色点的分布更加集中,更加有利于排除那些近似肤色点的区域。相关的实验也证明了其可以获得更好的结果。

图3 两个颜色空间肤色分布比较

进一步思考产生这个现象的原因。人脸的肤色区域接近于黄色,而黄色是由红色和绿色混合而成,因此在肤色区域内,红、绿分量的值更大且基本相同(有很大的相关性),而蓝色分量则明显偏小且与其它两个颜色的分布无关。这一点可以由图3明显看出,图3(a )的分布没有任何规律,而图3(b )则呈现线性分布。因此,YCgCr 彩色空间可以更加有效地描述肤色点的分布情况。

2)肤色分布的描述

常用的肤色分布描述方法有阈值法、高斯法、混合高斯法、直方图法等。 阈值法最为简单,根据训练样本中各肤色点的色度分量出现的范围,确定一个阈值范围,如[Cr1,Cr2]及[Cb1,Cb2]。若待测图像中某个象素点的色度分量(Cr,Cb),满足Cr1≤Cr ≤Cr2并且Cb1≤Cb ≤Cb2,则该点就被认为是肤色点保留;否则认为该点是背景点去除。

直方图法是比阈值法更为准确的一种模型描述方法,通过统计训练图像中各肤色点出现的概率,得到一个关于CrCb 分量的二维统计直方图。直方图中,z 方向的分量即表示该点(Cr,Cb )为肤色点概率的大小。通过一个合适的阈值,确定哪些区域的颜色点是肤色点,哪些不是。

高斯以及混合高斯法均是用概率模型来描述各肤色点的分布。高斯法的思想是假设大量肤色点在彩色空间中的分布符合一个二维高斯分布,将肤色点的分布用一个高斯模型来表示,均值(也就是肤色点分布的中心)和协方差矩阵由统计的方法获得。通过这个高斯模型可以得到待测图像中各点属于肤色的概率,利用一个阈值作为判决条件,将概率大于这个阈值的点判断为肤色点,而小于这个阈值的点判为背景点。

在实际应用中,人们发现肤色点在彩色空间的真实分布大多具有多峰的性质,单一的高斯模型不能充分地描述。因此,Yang 等提出了使用高斯混合模型的方法来描述肤色点的分布,具体定义如下:

彩色空间中各肤色点的分布可以看成是混合高斯分布模型G ,由有限多个单一高斯模型G1,…,Gg 以及相应的权重系数π1,…,πg 混合而成,其中

∑==g i i 11π

,并且0≥∑i (3) 待测图像中某点属于肤色点的概率密度函数(p.d.f.)由下式定义:

(4)

其中p(x;θ)i 为模型Gi 的概率密度函数,μi 为Gi 的均值向量,Σi 为Gi 的协方差矩阵,具体的参数值,可通过EM 算法估计得到。

目前最为流行的肤色模型是使用YCbCr 彩色空间并配合直方图描述构建的。这种模型构建简单,对于大多数图像均可以取得可以接受的结果。

③光照补偿

光照对于检测算法的性能是一个非常大的干扰因素。特别是对肤色模型,在)()()(exp )2(1),(),(),(1212/12/11

1i i i d g i i g i i i g i i x i x i i x p x p x p μμππθπθπφ--???=?=?=--===∑∑∑∑∑

亮度分量不同的情况下,色度分量的分布是有较大区别的,如图2(a )。如果忽略光照的影响,则肤色模型的适用性将会受到很大限制,因此光照补偿常常伴随肤色模型一起研究。

对于光照问题有一些通用的方法,比如直方图均衡、对数变换、同态滤波等。直方图均衡主要针对灰度分布不均的图像,可以增强图像的对比度,提高图像质量;对数变换主要针对偏光图像,使用如式(5)所示的变换公式:

c

b y x f a y x g ln )1),(ln(),(?++= (5) 其中f(x,y)、g(x,y)为变换前后的图像,a 、b 、

c 为控制参数。通过对待测图像灰度分布的分析,可以自适应地确定参数a 、b 、c ,调整变换曲线使变换后的图像中,低灰度区域得到提升,高灰度区域得到抑制,从而实现光照补偿。 除了上述这些通用的光照补偿方法,还有一些专门针对肤色模型的研究值得注意:

目前各种肤色模型都仅考虑了CbCr 平面内肤色点的分布,但是通过图2(a )可以发现,在YCbCr 空间内,对应不同的Y 值,空间的横截面内Cb 、Cr 分量呈现不同的分布。如果仅使用CbCr 平面内的投影而忽略亮度对色度的干扰,则无法得到理想的肤色模型。因此,Hsu 等提出了一种颜色空间非线性变换的方法来解决光照不均的问题。

在YCbCr 空间内使用一个非线性变换,将其变换到YCb ’Cr ’空间。在变换后的YCb ’Cr ’空间内,肤色点的Cb ’、Cr ’分量在不同亮度Y 的情况下,达到一种比较均匀的分布,即呈现一个近似柱体的分布,由此达到补偿光照影响的目的。

除了针对输入图像进行被动的光照补偿处理之外,还可以建立一种主动的反射模型,对不同皮肤、不同光源下的图像进行主动的自适应处理。Storring 等深入分析了不同种光源对于肤色的影响,综合利用皮肤反射、光源、镜头色温等建立起一个可以适合各种光源的肤色模型。肤色是由皮肤对不同波长光有不同的反射率而形成的,Storring 等利用二分光反射模型建立起肤色反射模型。任何一个非光源物体的颜色L 都是由面反射LSurf 和体反射LBody 两部分构成:

Body Soft L L L += (6)

其中,面反射主要来自表皮(epidermis ),而体反射主要来自真皮(dermis ),不同肤色的人脸对各种波长的光线具有不同的反射率,从而形成不同的颜色。在这方面Anderson 等做了很多深入的研究,得到了肤色区域内对不同光线的反射率曲线ρBody 。

有了这样的反射模型,配合光源的相关色温曲线(Correlated Color Temperature,CCT )和摄像镜头的敏感度曲线,利用整个光谱区域内的积分,就可以得到针对不同肤色、不同光源、不同镜头的肤色分布模型。

(7)

其中E(λ)是光源的色度谱,)(λρSkin 为肤色反射模型,)()()(λλλB G R f f f 为摄像镜头对于各种不同波长光的敏感度曲线。

由此可以通过式(7)在归一化rgb 空间内建立肤色模型,如图4所示。

图4 不同人种在不同光源色温下的肤色分布

图4中,各个符号代表有上述方法建立起的不同人种肤色分布模型的中心,而四边形的外框代表使用训练集得到的真实肤色分布模型,可以看到使用光谱积分可以有效地建立起针对各种不同情况下的肤色模型,具有较强的通用性。 Sorianoa 等延伸了Storring 的工作,提出了一种自适应的肤色模型,在归一化的rgb 空间内,将肤色点分为自然光反射、室内光反射和混合反射3种,在分割时,自适应地利用不同种模型得到有效的分割结果。

λλλρλλλλρλλλλρλλ

λλd f E B d f E G d f E R B Skin G Skin R Skin )()()()()()()()()(???===

3图像处理的基本运算方法

3.1数字图像的表示

本设计中我的实验对象是数字图象。数字图象在计算机中可以被定义为一个二维的函数f(x,y),这里x 和y 是空间坐标,而任意坐标对(x,y )的幅度f 被称为图象在该点的密度。术语“灰度级”被经常用来描述黑白图象的密度。而彩色图象由单独的2维图象组合而成。例如,在RGB 彩色系统中,一幅彩色图象包括三个单独图象元素(红,绿,蓝)。出于这个原因,通过处理三个单独的分量,许多发源于黑白图象的技术能够被延伸到彩色图象的处理中去。

一幅图象可能在x 和y 坐标以及幅度上都是连续的。将这样的一幅图象转化为数字图象需要将坐标和幅度都进行数字化。数字化坐标的过程叫做采样,而数字化幅度的过程叫做量化。当x ,y 和f 都是有限的、离散的数量时,我们称其为数字图象。

在Matlab 中,一幅图象被存储为如下的矩阵:

),()2,()1,(),2()2,2()

1,2(),1()2,1()

1,1(),(N M f M f M f N f f f N f f f y x f ?

????????????

????????= (8) 3.2 区域分割与合并的原理

让R 表示整个图象区域并选择谓词P 。一种分割R 的方法是将其不断的分割为越来越小的四个子象限,使得对于任何区域Ri ,P(Ri)=TURE 。我们从整个区域开始。如果P(Ri)为假,则将图象分为四个子象限。如果对于某一子象限其谓词仍为假,则将这一象限继续分为子象限,如此这般下去。这种特别的切割技术有一个简便的表述即被称为四叉树,即:一个树型结构的每个节点有四个后继节点,

AdaBoost人脸检测原理

AdaBoost人脸检测原理 对人脸检测的研究最初可以追溯到 20 世纪 70 年代,早期的研究主要致力于模板匹配、子空间方法,变形模板匹配等。近期人脸检测的研究主要集中在基于数据驱动的学习方法,如统计模型方法,神经网络学习方法,统计知识理论和支持向量机方法,基于马尔可夫随机域的方法,以及基于肤色的人脸检测。目前在实际中应用的人脸检测方法多为基于 Adaboost 学习算法的方法。 Viola人脸检测方法是一种基于积分图、级联检测器和AdaBoost 算法的方法,方法框架可以分为以下三大部分: 第一部分,使用Harr-like特征表示人脸,使用“积分图”实现特征数值的快速计算; 第二部分,使用Adaboost算法挑选出一些最能代表人脸的矩形特征( 弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器; 第三部分,将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。 Adaboost 算法是一种用来分类的方法,它的基本原理就是“三个臭皮匠,顶个诸葛亮”。它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。例如下图中, 需要用一些线段把红色的球与深蓝色的球分开,然而如果仅仅画一条线的话,是分不开的。 a b c d 使用Adaboost算法来进行划分的话,先画出一条错误率最小的线段如图 1 ,但是左下脚的深蓝色球被错误划分到红色区域,因此加重被错误球的权重,再下一次划分时,将更加考虑那些权重大的球,如 c 所示,最终得到了一个准确的划分,如下图所示。

人脸检测的目的就是从图片中找出所有包含人脸的子窗口,将人脸的子窗口与非人脸的子窗口分开。大致步骤如下: (1)在一个 20*20 的图片提取一些简单的特征(称为Harr特征),如下图所示。 它的计算方法就是将白色区域内的像素和减去黑色区域,因此在人脸与非人脸图片的相同位置上,值的大小是不一样的,这些特征可以用来区分人脸和分人脸。 (2)目前的方法是使用数千张切割好的人脸图片,和上万张背景图片作为训练样本。训练图片一般归一化到 20*20 的大小。在这样大小的图片中,可供使用的haar特征数在1万个左右,然后通过机器学习算法-adaboost算法挑选数千个有效的haar特征来组成人脸检测器。 (3)学习算法训练出一个人脸检测器后,便可以在各个场合使用了。使用时,将图像按比例依次缩放,然后在缩放后的图片的 20*20 的子窗口依次判别是人脸还是非人脸。

复杂背景下基于时间差分的人脸检测算法

复杂背景下基于时间差分的人脸检测算法 Face Detection Based on Time Difference in Complex Background 姚静梅雪林锦国 Yao Jing Mei Xue Lin Jin-guo (南京工业大学,自动化学院,江苏南京 210009) 摘要:本文主要结合序列图像的运动信息和肤色信息进行复杂背景下的人脸检测。首先利用连续三帧间的运动信息进行粗检测,采用自适应阈值法从差分图像中提取出运动区域,再对差分图像进行相与操作,限制搜索范围;然后利用人脸肤色信息,在YCbCr色彩空间内检测出肤色区域;最后利用人脸的几何特征信息对肤色区域作进一步验证,得到精确人脸。该方法综合了帧间和帧内的分析结果,实现简单、高效。实验证明,在复杂背景下对光照和其他噪声有较好的鲁棒性。 关键词:人脸检测;时间差分;运动信息;肤色特征 中文分类号:TP391.41 文献标识码:A Abstract: A method of combining motion and skin-color information of successive images to detect faces in complex background is presented. First, the motion information between three continuous frames is used for coarse detection to obtain the difference images, from which the motion areas can be detected by self-adaptive threshold method, and then take and operation to limit the searching range. Second, the skin-color areas are detected in YCbCr color-space. Finally, g eometry feature information is used to further validate the skin-color areas, which can obtain the fine face. This method combines the inter-frame and intra-frame processing, which is simple and effective to realize, and is proved to be robust to illumination and other noises in complex background. Keywords:Face Detection;Time Difference;Motion Information;Skin-color Feature 1、引言 人脸检测(Face Detection)是一切人脸处理系统的基础。近年来,由于计算机技术的迅猛发展,数字图像处理技术的日益完善,人脸检测作为人脸信息处理中的一项关键技术,已成为图像处理、模式识别与计算机视觉领域内的热点课题[1]。 目前人脸检测方法多数是在一般环境下的单幅图像中检测人脸。如基于对称性、器官分布、纹理等的人脸检测,以及神经网络的学习、特征脸模式等方法。这些方法或者计算复杂度太高,或者鲁棒性较差,适应面很窄。视频序列图像的人脸检测算法要比单幅静态图像的人脸检测算法复杂得多,需要考虑更多噪声因素的影响,如随机噪声、室内亮度变化、室外背景纹理的慢变化等。 本文使用了一种基于时间差分的人脸检测方法,从粗到细实现人脸的精确检测。首先利用连续三帧图像间的运动信息进行粗检测,在两两差分得到差分图像后,利用形态学方法分别对差分图像进行预处理,去除光线等因素引起的干扰,并采用自适应阈值法从差分图像中提取出运动区域,再对两幅差分图像相与,去除非本帧图像的目标区域,即只提取当前帧图像的运动目标区域,进一步限制搜索范围;然后利用肤色和形状信息对人脸区域作进一步检测和验证[2], 得到精确人脸。该方法综合了帧间和帧内的分析结果,实验证明,该方法实现简单、高效,并且在复杂背景环境下仍具有对光照、噪声等的鲁棒性。 2、算法的总体框架 该算法按照从粗到细的检测模式,主要采用图像的运动特征信息与人脸的肤色、形状特征信息相结合的检测法,通过运动检测缩小搜索范围,并将肤色、形状特征信息作为验证手段。算法流程如图1所示,由3大步骤组成[3]。 (1)帧间的时间差分处理 在视频序列图像中,人脸是一个运动区域,所以利用运动信息可以去除图像中静止背景区域的干扰。本文在三帧序列图像之间采用基于像素的两两差分,使用自适应阈值化来提取各自差分图像中的运动区域,然后对两幅差分图像二值化后相与来缩小目标范围。但是由于背景的复杂性和光线、图像的噪声等干扰因素引起的波纹和小块仍没能去除,因此加上形态学处理方法。该模块缩小了后续人脸检测和定位部分的搜索范围,从而减少了运算量。该方法实现简单,计算速度快,并且在静止的复杂背景下有很好的鲁棒性。 (2) 基于肤色的人脸检测

人脸识别人行通道系统

人脸识别通道系统 (解决方案 - 微控科技) 微控智慧全新推出人脸 / 指纹识别智能通道闸机出入管理控制系统(以下简称通道系统),可 以实现门禁、考勤、限流等功能,还有收费功能。具有对人员出入控制、实时监控、保安防盗报警等 多种功能,它主要方便内部大量人员有序出入,杜绝外来人员随意进出,既方便了内部管理,又增 强了内部的保安,从而为用户提供一个高效和具经济效益的工作环境。 1. 人行通道系统组成 人行通道系统主要由计算机、智能读卡部分、智能闸机、智能卡及管理软件等组成。计算机与智能闸 机之间采用 TCP/IP 网络结构通讯,通讯距离可无限扩展,单台计算机可接任意数量智能闸机。智能闸机,既可联网运行,又可脱机运行。 2. 人行通道系统优势微控面部识别进出人行通道系统是采用非接触式智能技术,研制开发的智能系统,与其它系统相比较,其优势在于:人脸/指纹识别:人脸识别,是基于人的脸部特征信息进行身份识别的一种高安全生物识别技术。用高清摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部指纹识别。成功的解决了一卡多多卡、保密、无卡、操作简便等多种问题,大大提高了系统的实用性。

3. 门禁系统硬件说明 翼闸技术参数: 1. 电源电压:AC220V ±10% 、50Hz ; 2. 驱动电机:直流电机24V/100W ; 3.工作环境温度:—30 C?+70 C; 4.相对湿度:相对湿度w 95%、不凝露; 5 .输入接口:12V电平信号或脉宽〉100ms的12V脉冲信号; 6 .驱动电流:>200mA ; 7.通信接口:电气标准/TCPT 通讯; 8.通信距离:局域网通讯; 9. 最大通道宽:550mm ; 10. 通行速度:<40人/分钟; 11. 闸门开、关时间: 1.5 秒(可调);(指纹消费扣款成功后开闸) 12. 外形尺长1000* 宽300* 高980mm(可定制); 13. 结构:框架结构/ 标准不锈钢外壳; 14. 工作环境:室内、室外。 人脸翼闸功能参数: 1. 全部采用304 不锈钢材质,依据防潮、防尘、防水国际规范设计; 2 .箱体在标准化设计基础上,激光下料、开孔,一次成型技术、机械化拉丝工艺,模块化对接,易于装卸维护,互换程度高; 3.通体不锈钢箱体厚度1.2mm ; 4 .翼闸挡板上独有的冷光源警示装置,业内首创,可选;(需定制) 5. 翼板采用高强度透明材质,配套冷光源背景灯,保障行人夜间安全通行;

基于神经网络的人脸检测方法

基于神经网络的人脸检测方法 摘要:自动人脸检测应用十分广泛,如安全访问控制,基于模型的视频编码或基于内容的视频索引,所以它正在成为一个非常重要的研究课题。在本文中,我们在假设不考虑内容,场景的照明条件,大小,方向和外观的前提下,提出了一种检测复杂图像和精确本地半正面人脸的方法。这就是卷积神经网络结构,这种方法不像其他系统,其他系统需要一个手工检测的阶段或特征分类阶段。卷积神经网络结构是从一个大的训练集中自动合成自己的一套特征提取方法,所以它可以直接从未预处理的照片中提取变化的人脸模型,而且可以在神经元模型中利用感受区域,共享权数和空间采样对人脸进行一定程度的旋转,缩放和变形。我们将会对我们的结构,研究策略和检测过程进行详细的描述。最后我们将证明在环境和人脸变化的情况下这种方法相当稳健,具有精确检测的能力。 1简介 因为其广泛的应用范围,人脸检测正在成为一个非常重要的的研究课题。比如在安全访问控制,基于模型的视频编码,基于内容的视频索引等方面。相对于人脸检测,脸部识别和表情分析算法已经得到学术方面的足够关注。近年来,在光线,面部表情和姿势微小变化的情况下,对人脸的识别已经取得相当大的进展。在[1]中你会发现一个现象。就是大多数的人脸识别和表情分析算法是在特定条件下得到的,要么是在同一背景下要么是出现过的图像要么直接是“人脸照片”,在这种情况下,人脸识别相对比较容易。然而,多数情况人脸检测是在复杂的场景下,这并不简单。由于面部表情,表现力和方位的改变面部模型也会呈现巨大的变化。 最近一些检测非人脸照片的技术已经得到了提高。这些方法可大致分为三大类:本地的面部特征检测,模板匹配和图像不变性。第一种方法,低层次的计算机视觉算法[3,7,13]用于检测的面部特征,如眼睛,嘴巴,鼻子,下巴和其他特征部位。第二种方法,几个相关模板用来进一步检测本地特征。这些人脸特征将被作为硬性模板(基于eigenspaces [8])或(模板 [12, 5])。这些方法有很大的缺点,就是即使是很小的约束全局条件被改变也会对人脸模型和提取特征造成强烈的影响,比如噪声,表情的变化和焦点的改变等。最后一种方法,即使在不同的成像条件下图像不变方案也假定图像存在一定空间关系,比如亮度分布,相似点,人脸模型[10]的唯一性。在场景不受限制的情况下,这些算法都不是很健壮。 肤色信息的使用是制约搜索空间的一个重要线索。在[4]中,Garcia and Tziritas提出一个快速检测到人脸的方法,即皮肤颜色过滤和概率分布方法,而所用到的统计数据是从小波包中分解提取得到的。在[5]中,Garcia 将可变的脸部模板进行扩展,从而使这种方法可以精确的定位面部特征。 对于一般灰度图像,不需要遵守人为设定的规则,事实证明,类似于[11,9]中提到的基于神经网络的方法,效果最好。在本文中,我们提出一种新的检测方法,这种方法是基于神经网络的检测方法,这种方法可以对复杂的照片即使是半正面的人脸进行准确的检测。不需要考虑场景的照明条件,人脸大小,方向和人的外貌特征等因素。

【CN109961021A】一种深度图像中人脸检测方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910164890.2 (22)申请日 2019.03.05 (71)申请人 北京超维度计算科技有限公司 地址 100142 北京市海淀区西四环北路160 号9层一区907 (72)发明人 马宁 徐杰 张颢 向志宏  杨延辉  (74)专利代理机构 北京亿腾知识产权代理事务 所(普通合伙) 11309 代理人 陈霁 (51)Int.Cl. G06K 9/00(2006.01) (54)发明名称一种深度图像中人脸检测方法(57)摘要本发明涉及一种深度图像中人脸检测方法,包括以下步骤:找出深度图像中所有有效深度值的局部最小值点;计算局部最小值点的曲率,去除曲率超出范围的点;如果此时还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点;如果此时还有剩余的局部最小值点,则认为图像中有人脸,否则认为图像 中没有人脸。权利要求书2页 说明书3页 附图1页CN 109961021 A 2019.07.02 C N 109961021 A

权 利 要 求 书1/2页CN 109961021 A 1.一种深度图像中人脸检测方法,其特征在于,包括以下步骤: 找出深度图像中所有有效深度值的局部最小值点; 计算局部最小值点的曲率,去除曲率超出范围的点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸区域,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点; 如果此时还有剩余的局部最小值点,则认为图像中有人脸,输出图像中所有的人脸区域位置,否则认为图像中没有人脸。 2.根据权利要求1所述的方法,其特征在于,所述找出深度图像中所有有效深度值的局部最小值点步骤,包括: 对深度相机输出的深度图像,找出深度图像中所有在局部窗口中有效深度值最小的像素点的位置,如果邻接的多个像素都为局部最小值点,则只取这几个邻接像素的中心位置为局部最小值位置。 3.根据权利要求1所述的方法,其特征在于,所述计算局部最小值点的曲率,去除曲率超出范围的点步骤,包括: 对得到的每个局部极小值点,在一定邻域范围内计算有效深度值梯度幅度的平均值,此梯度幅度平均值反映了物体表面的曲率,通过人鼻尖表面曲率的范围,可以排除一些不是鼻尖的局部最小值点。 4.根据权利要求1所述的方法,其特征在于,所述在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点步骤,包括:对于剩余的每个局部最小值点,找出深度图像中该位置的纵向廓线,由局部最小值点的深度和位置信息可以估计出该距离下真实人脸在纵向廓线上的最大范围,该范围作为人脸可能存在的范围,在该范围内,用该局部最小值点的深度值加上一个深度差值,作为深度切割的阈值,用该阈值切割出可能存在的人脸纵向廓线,并计算可能的人脸廓线的长度,由局部最小值点的深度可以估计出该距离下真实人脸廓线的长度,通过对比可以去除一些纵向剖线不符合真实人脸尺寸的局部最小值点。 5.根据权利要求1所述的方法,其特征在于,所述计算纵向剖线上鼻子廓线占人脸廓线长度的比值,排除比值超出一定范围的局部最小值点步骤,包括: 根据符合真实人脸尺寸的每个局部极小值点,计算其在人脸廓线上的梯度,如果梯度值不大于0,则继续计算其在人脸廓线上的上一个像素点的梯度;当梯度值大于0时,此时的像素点位置即为鼻子廓线的上边缘位置; 所述像素点位置的深度值与对应的局部最小值点位置的深度差值即为鼻子的高度;所述像素点位置与对应的局部最小值点位置的差值即为鼻子廓线的长度; 2

人脸识别技术的应用背景及研究现状

1.人脸识别技术的应用 随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面:(1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。 (2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。 (3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。 (4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。 (5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。 2.人脸识别技术在国外的研究现状 当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,著名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Computer I nterface Institute,Microsoft Research,英国的Department of Engineerin g in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面: (1)模板匹配 主要有两种方法,固定模板和变形模板。固定模板的方法是首先设计一个或几个参考模板,然后计算测试样本与参考模板之间的某种度量,以是否大于阈值来判断测试样本是否人脸。这种方法比较简单,在早期的系统中采用得比较

人脸识别系统需求方案

前后门人脸识别系统需求方案为进一步加强厂区人员管控,杜绝无关人员及违禁物品进入厂区,把好人员、物品入场安全第一关,辅助和提升管理人员工作效率,提高公司安全生产管理技术水平,现申请安装前后门人脸识别系统,需求如下: 一、公司人员出入管理存在问题 目前,公司合作单位人员通过办理出入证卡,由前门内勤员进行核对放行的方式进入厂区。但出入证件卡在实际使用过程中存在以下问题:1.卡面磨损程度严重,无法确认人员真实信息,一般情况下多为依靠内勤人员的印象辨别外来人员,如此一来需要耗费大量人力,无法保证厂区人员识别的准确性;2.人员离职后没有及时办理退卡,仍使用出入证逗留厂区;3.一卡多用、借给他人使用;4.合作单位常以未能及时取到证件卡为由,临时通行等。 二、系统实现功能 1.采用快速人脸检测技术,实行一人一脸录入,支持现场设备或者移动客户端录入。 2.系统验证方式需支持人脸识别及身份证均可认证。 3.可在系统管理设置限定时间内(如3-5天,具体时间由我司管理人员自定义),如人员未进行验证,系统会自动发出相关人员名单信息警报提示或停止其使用。 4.前后门验证设备数据要求放置前门值班室处进行统一管

理,同时实现网络远程管理。5.前后门人行道设置双通道区分进出道,进道只允许进入通行不允许出,出道只允许出通行,不允许进入;人员进厂需进行人脸认证,出口红外线感应开启(明确的通行指示功能)。 6.当断电时,闸门能自动打开,确保人员安全通行。 7.前后门各加装2个摄像头,1台监控主机设备,监控闸门位置,防止人员违规通行或设备破坏,有效调查录像取证。 8.单独配置管理电脑套装(主机加显示器等)。 9.在系统出现故障,或者非法闯入时,系统产生声光报警提示功能。 10.系统管理需考虑预留出口道闸后续可以实现增加人脸识别功能融合使用。 三、系统硬件要求

人脸识别的主要方法

1.1 人脸识别的主要方法 目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。人脸识别的方法根据研究角度的不同,有不同的分类方法。根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。本文重点研究基于正面的、静态的灰度图像的识别方法。 对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。下面分别进行介绍。 1.1.1 基于特征脸的方法 特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。变换得到对应特征值依次递减的特征向量,即特征脸。 特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。 通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。主分量特征

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

opencv adaboost人脸检测训练程序阅读笔记(LBP特征)

1、训练程序整体流程 (1)读输入参数并打印相关信息 (2)进入训练程序最外层入口classifier.train 1)读正负样本,将正负样本放入imgLiast中,先读正样本,后读负样本 2)load( dirName )判断之前是否有已训练好的xml文件,若有,不在重新训练该stage的xml文件,没有返回false,初始化参数 3)计算requiredLeafFARate = pow(maxFalseAlarm,numStages)/max_depth,该参数是stage停止条件(利用训练样本集来计算tempLeafFARate,若 tempLeafFARate小于这一参数,则退出stage训练循环); 4)Stage训练循环 5)更新训练样本集,计算tempLeafFARate(负样本被预测为正样本的个数除以读取负样本的次数,第一次没有训练之前,这个比值为1,因为没训练之前, 所有负样本都被预测成了正样本,当第一层训练好以后,负样本采集时会先 用第一层的分类器预测一次,若能分类,则不选用,选用负样本的数目是固 定的,但选用这么多负样本总共要选的次数会随着层数的增多而加大,因为 层数越大,分类器的分类能力也要求越大,说需要的样本就是前面分类器所 不恩呢该识别的,故在采集时也比较困难。) 6)判断stage是否退出训练,若tempLeafFARatetrain() a.建立训练数据data = new CvCascadeBoostTrainData(主要是一些参 数的设置,还有特征值的计算) b.初始化样本权重update_weights( 0 ); c.弱分类器训练循环 i)tree->train—》do_train ai) 根节点的初始root = data->subsample_data( _subsample_idx ); (主要是对根节点的一些参数进行初始化,parent 0,count 1, split 0,value 0,class_idx 0,maxlr 0,left = right = 0,等等) bi) CV_CALL( try_split_node(root)),根据根节点计算整颗数的各 节点的参数配置 aii) calc_node_value( node );计算节点的回归值,类似于分类 投票值sum(w*class_lable),正样本的class_lable取,负样 本的class_lable取-1;计算节点的风险值node_risk,node risk is the sum of squared errors: sum_i((Y_i - )^2) bii) 判断节点是否可以分裂(判断依据:样本值和设计的节点最 大深度);再利用node_risk与regression_accuracy,如 果这个节点的所有训练样本的节点估计值的绝对差小 于这个参数,节点不再进行分裂 cii) 找出最佳分裂best_split = find_best_split(node); aiii) 定义DTreeBestSplitFinder finder( this, node ); biii) parallel_reduce(cv::BlockedRange(0, data->var_count), finder); 此时调用DTreeBestSplitFinder类的操作符 DTreeBestSplitFinder::operator()(constBlockedRange

人脸识别技术的弊端

三个方面的缺点: 1.识别精度低 2.自然性、不易察觉以及非接触性也致使人脸识别技术在一些特定领域面临环境复杂性。 便于收集的好处也带来了图像清晰度不高,角度不好等问题 3.人脸识别不只是隐私问题信息泄露面临更大安全隐患 人脸识别的一个缺点也在于信息的可靠性及稳定性较弱。 人脸所蕴含的信息量较指纹、虹膜等生物特征相比是比较少的,其变化的复杂性不够。例如,若要两个人的指纹或者虹膜基本相同,大概需要好几十乃至上百个比特(信息量的度量单位)达到完全重合才可以。但如果是人脸的话,十几个比特达到重合就可以了。在全世界,可以找到很多具有相似性的面孔。所以说,人脸的辨别性不是很高,它并没有那么独一无二。 另外,人自身内在的变化以及外在环境的变化都会影响采集时人脸的信息稳定度。相较于之前的人脸识别技术,目前的人脸识别技术有所提高,但是具体应用时还是不能达到完美状态,如今,保守估计,人脸识别技术准确率能达到99%,但没有达到100%。同时,对于双胞胎,由于相似特征太多,人脸识别基本不可能完成。比如在ATM机上使用人脸识别技术,是在使用密码信息的基础上辅助的认证功能。如果脱离了密码输入,完全使用人脸识别技术进行存取款操作,是不太可能的。 例如,2018年7月,美国公民自由联盟(ACLU)对美国国会议员的照片应用了亚马逊算法,该算法确定其中28人是因犯罪而被捕的人。 如果说双胞胎根本不应该用此技术来进行分辨的情况下,如何解决整容带来的无法辨别的问题?在如今整容手段如此先进的情况下? 其一,应用“人脸识别”技术的视频采集机器设备愈来愈普及化,会否对大家的人身自由权与隐私权产生威协,这个问题如何解决?其二,人工智能的市场应用,会否产生新的岐视与不公平,并对人们具有的社会道德纪律产生挑战? 例如:一些商业算法在识别肤色较深的人员和女性方面不如识别肤色较浅的男人准确。

小区人脸识别系统解决方案设计2018-11-30

实用 小区人脸识别系统 解决方案

目录 1背景概述 (3) 2人脸识别应用优势 (3) 3设计原则 (4) 4设计依据 (5) 5系统组成 (6) 6主要功能 (11) 7产品特点 (12) 8规格参数 (14) 9客户端功能 (16) 10小区应用场景 (17) 10.1新疆庭院化社区 (17) 10.2智慧小区 (18) 11案列 (20)

1背景概述 随着社会经济的高速发展和我国城镇化进程的加快,城市人口日趋密集,居住环境的舒适性和安全性已经成为人们居住首选,而门禁系统在安居环境中起到的重要作用得到越来越多的重视。目前国内的门禁系统主要以卡类设备、视频门禁、指纹设备或密码设置为主,这些识别方式都要求人员近距离操作,当使用者双手被占用时则显得极不方便,同时也带来卡片或密码丢失、遗忘,复制以及被盗用的隐患和成本高的问题,而指纹识别,被网上的指纹套破解了“密码”,更让人觉得惶恐不安。 为切实解决小区门禁系统存在的问题,夯实社会稳定和长治久安的基层基础,及高清技术、智能化技术、网络技术的日趋普及与成熟,我司立足实际需求,针对小区门禁操作不便、卡片易丢失容易被复制、密码容易忘记等问题,推出人脸识别系统解决方案。 系统采用先进的人脸识别算法,高速芯片作为识别算法的运行硬件平台,通过出入口的身份证信息采集、实时人脸抓拍识别和人证比对,从而实现人证合一验证。并针对小区实现固定人员刷脸通行,访客人员登记后刷脸通行或刷身份证人证比对成功后通行,解决固定人员通行时需要刷卡或遗忘密码的问题,人证比对失败人员则需要小区管理人员确认后手工放行。 2人脸识别应用优势 人脸识别技术特指利用比较不同人脸视觉特征信息进行身份鉴别的最新识别技术,属于生物特征识别技术的一种。人脸识别技术是一种基于人的脸部特征,对输入的人脸图像或者视频流进行处理,根据每个脸的位置、大小和各个主要面部器官的位置信息,进一步提取每个人脸中的身份特征,并将其与一直的人脸进行对比,配合人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理,身份确认以及身份查找等,确认具体人员的身份。 人脸识别技术在人员身份识别方面的应用优势与特点: 非接触的,用户不需要和设备直接接触;

AdaBoost算法简介

Adaboost 算法 1、AdaBoost算法简介 AdaBoost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了AdaBoost算法错误率的上界,以及为了使强分类器达到错误率,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaBoost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。 2、Adaboost 算法基本原理 Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用Adaboost 分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。 AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中n 为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T 次循环,得到T 个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。 AdaBoost算法的具体步骤如下: 设输入的n个训练样本为:{(x1,y1),(x2,y2),......(xn,yn)},其中xi是输入的训练样本,yi∈{0,1}分别表示正样本和负样本,其中正样本数为l,负样本数m。n=l+m,具体步骤如下: (1)初始化每个样本的权重w i,i∈D(i); (2)对每个t=1,..., T(T为弱分类器的个数) ①把权重归一化为一个概率分布 ②对每个特征f,训练一个弱分类器h j计算对应所有特征的弱分类器的加权错误率 ③选取最佳的弱分类器h t(拥有最小错误率):εt ④按照这个最佳弱分类器,调整权重 其中εi =0表示被正确地分类,εi=1,表示被错误地分类

复杂背景下多人脸的检测与识别算法

目录 中文摘要 .............................................................................................................................................. I Abstract ................................................................................................................................................ II 第1章绪论 . (1) 1.1 生物认证技术 (1) 1.2 人脸识别技术 (2) 1.2.1 应用背景 (2) 1.2.2 国内外研究现状 (3) 1.2.3 研究内容 (4) 1.3 人脸图像数据库 (5) 1.3.1 FERET人脸数据库 (5) 1.3.2 AR人脸数据库 (6) 1.3.4 Caltech人脸库 (6) 1.3.5 自建人脸库 (7) 1.4 本文的主要工作及内容安排 (7) 第2章复杂背景下多人脸检测算法 (9) 2.1 人脸检测方法综述 (9) 2.1.1 基于知识的方法 (9) 2.1.2 基于特征不变量的方法 (10) 2.1.3 基于模板匹配的方法 (10) 2.1.4 基于学习的方法 (11) 2.2 基于Adaboost的人脸检测算法 (11) 2.2.1 Haar特征 (11) 2.2.2 积分图 (13) 2.2.3 训练分类器 (15) 2.2.4 多尺度检测与合并机制 (17) 2.2.5 基于Adaboost的人脸检测实验分析 (18) 2.3 基于肤色特征的彩色人脸检测 (19) 2.3.1 颜色空间 (19) 2.3.2 肤色模型 (20) 2.3.3 彩色图像人脸检测实验分析 (22) 2.4 基于灰度投影的灰度图像的人脸检测 (23) 2.4.1积分投影 (23) 2.4.2 二值化 (24) 2.4.3 灰度图像人脸检测实验分析 (25) 2.5 人脸检测实验分析 (26) 2.6 本章小结 (28) 第3章人脸图像的预处理 (29) 3.1 人眼定位 (29) 3.2 几何归一化 (30) 3.3 灰度归一化 (31) 3.4 图像去噪 (32) 3.5 本章小结 (33) 第4章复杂背景下人脸识别算法 (34)

人脸识别系统解决方案

人脸识别系统解决方案 深圳东南创通智能科技有限公司 2018年6月13日

目录

一、概述 1、背景分析 随着我国城镇化进程的加快,城市人口日趋密集,人口流动性也大大增加,社会犯罪率呈逐年升高的趋势。在传统侦查工作方式中,多采用人工排查的方式,要排查重要场所人员身份,和限制外来人员进入固定区域,不仅费时费力,还可能造成遗漏等情况,排查效率大打折扣,同时给公共安全防范和社会维稳工作带来了极大的困难。 为切实解决重点复杂区域社会治理难题,夯实社会稳定和长治久安的基层基础,及高清技术、智能化技术、网络技术的日趋普及与成熟,我司立足实际需求,针对复杂区域流动人口多、身份难以核查、人员来访不易管理的局面,推出人脸识别系统解决方案。 系统采用先进的人脸识别算法,高速芯片作为识别算法的运行硬件平台,通过出入口的身份证信息采集、实时人脸抓拍和人证比对,从而实现人证合一验证。并针对不同场所实现固定人员刷脸通行,访客人员人证比对登记,解决固定人员每次需要刷证或输入密码的问题,人证比对失败人员则需要安保人员或工作人员人工确认后手动放行。 2、设计原则 系统设计遵循技术先进、深度学习算法、性能稳定、节约成本的原则;本系统设计内容是系统的、全面的、完整的、易用的以及符合人机交互的;方案设计具有科学性、合理性、可操作性。

二、系统介绍 1、系统组成 人脸识别系统由人证识别终端、通道闸、人脸识别管理客户端及平台组成。 人脸识别系统拓扑图 2、人脸识别特性 人脸识别系统核心组成部分主要包括人脸图像采集模块、动态人脸定位、人脸识别预处理、身份查找、身份比对、身份确认、执行机构和记录平台等,并通过一脸通平台判断人员身份及权限,开放相应的区域,保留人脸通行记录事件,并根据相应的权限命令各子系统作出响应,例如固定客户通道自动放行,访客只允许进入指定楼层等。 人脸识别一体化终端使用世界领先的人脸检测、识别算法(FDDB与LFW世界前三),将其运行在高性能嵌入式平台中,配合200W像素的摄像头,终端实现人脸检测、人脸跟踪、与人脸识别,并可在屏幕上呈现相应的反馈。 本产品能够同时识别5个人,光线环境良好的情况下最远能识别5米远的人脸,人脸跟踪与检测耗时20ms左右,人脸特征提取耗时200ms左右,人脸比对耗时左右,对光

人脸识别技术的主要研究方法

人脸识别技术的主要研 究方法 The manuscript was revised on the evening of 2021

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。 4、基于代数特征的人脸识别方法

相关文档
最新文档