数学模型动态规划

数学模型动态规划
数学模型动态规划

动态规划

动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(R.Bellman)等人所创立的.1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生.

§1动态规划的概念与原理

一、动态规划的基本概念

引例:最短路线问题

美国黑金石油公司(The Black Gold Petroleum Company)最近在阿拉斯加(Alaska)的北斯洛波(North Slope)发现了大的石油储量。为了大规模开发这一油田,首先必须建立相应的输运网络,使北斯洛波生产的原油能运至美国的3个装运港之一。在油田的集输站(结点C)与装运港(结点P1、P

、P3)之间需要若干个中间站,中间站之间的联通情况如图1所示,图中线2

段上的数字代表两站之间的距离(单位:10千米)。试确定一最佳的输运线路,使原油的输送距离最短。

解:最短路线有一个重要性质,即如果由起点A经过B点和C点到达终点D是一条最短路线,则由B点经C点到达终点D一定是B到D的最短路(贝尔曼最优化原理)。此性质用反证法很容易证明,因为如果不是这样,则从B 点到D点有另一条距离更短的路线存在,不妨假设为B—P—D;从而可知路线A—B—P—D比原路线A—B—C—D距离短,这与原路线A—B—C—D是最短路线相矛盾,性质得证。

根据最短路线的这一性质,寻找最短路线的方法就是从最后阶段开始,由后向前逐步递推求出各点到终点的最短路线,最后求得由始点到终点的最短路;即动态规划的方法是从终点逐段向始点方向寻找最短路线的一种方法。按照动态规划的方法,将此过程划分为4个阶段,即阶段变量4,3,2,1

k;取

x,按逆序算法求解。

过程在各阶段所处的位置为状态变量

k

当4=k 时:

由结点M 31P 1或P 2;故:

668min )(3144=?

??

???==M x f 选择P 2

由结点M 32到达目的地有三条路线可以选择,即选择P 1、P 2或P 3;故:

3734min )(3244=???

???????==M x f 选择P 2

由结点M 33到达目的地也有三条路线可以选择,即选择P 1、P 2或P 3;故:

5567min )(3344=???

???????==M x f 选择P 3

由结点M 34到达目的地有两条路线可以选择,即选择P 2或P 3;故:

343min )(3444=?

??

???==M x f 选择P 2

当3=k 时:

由结点M 21到达下一阶段有三条路线可以选择,即选择M 31、M 32或M 33;故:

105637610min )(2133=??

?

???????+++==M x f 选择M 32

由结点M 22到达下一阶段也有三条路线可以选择,即选择M 31、M 32或M 33;

故:

10553769min )(2233=???

???????+++==M x f 选择M 32或M 33

由结点M 23到达下一阶段也有三条路线可以选择,即选择M 32、M 33或M 34;

故:

93654311min )(2333=???

???????+++==M x f 选择M 33或M 34

当2=k 时:

由结点M 11到达下一阶段有两条路线可以选择,即选择M 21或M 22;故:

16106108min )(1122=?

??

???++==M x f 选择M 22

由结点M 12到达下一阶段也有两条路线可以选择,即选择M 22或M 23;故:

19911109min )(1222=?

??

???++==M x f 选择M 22

当1=k 时:

由结点C 到达下一阶段有两条路线可以选择,即选择M 11或M 12;故:

2819101612min )(11=?

??

???++==C x f 选择M 11

从而通过顺序(计算的反顺序)追踪(黑体标示)可以得到两条最佳的输运线路:C —M 11—M 22—M 32—P 2;C —M 11—M 22—M 33—P 3。最短的输送距离是280千米。

一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。

1、阶段

阶段是过程中需要做出决策的决策点。描述阶段的变量称为阶段变量,常用k 来表示。阶段的划分一般是根据时间和空间的自然特征来进行的,但要便于将问题的过程转化为多阶段决策的过程。阶段变量一般用n k ,,2,1 =表示。

2、状态

状态(state )表示每个阶段开始时过程所处的自然状况。它应能描述过程的特征并且无后效性,即当某阶段的状态变量给定时,这个阶段以后过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是直接或间接可以观测的。

描述状态的变量称状态变量(state variable )。变量允许取值的范围称允许状态集合(set of admissible states)。用k x 表示第k 阶段的状态变量,它可以是一个数或一个向量。用k D 表示第k 阶段的允许状态集合。 n 个阶段的决策过程有1+n 个状态变量,1+n x 表示n x 演变的结果。 根据过程演变的具体情况,状态变量可以是离散的或连续的。为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。状态变量简称为状态。

3 决策

当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision ),在最优控制问题中也称为控制(control )。

描述决策的变量称决策变量(decision variable ),变量允许取值的范围称允许决策集合(set of admissible decisions )。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k u U 表示k u 的允许决策集合。决策变量简称决策。 4 策略

决策组成的序列称为策略(policy )。由初始状态1x 开始的全过程的策略

记作)(11x p n ,即)}(,),(),({)(221111n n n x u x u x u x p =.

由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记作)(k kn x p ,即

)}(,),({)(n n k k k kn x u x u x p =,1,,2,1-=n k . 类似地,由第k 到第j 阶段的子过程的策略记作)}(,),({)(j j k k k kj x u x u x p =. 可供选择的策略有一定的范围,称为允许策略集合(set of admissible

policies),用)(),(),(11k kj k kn n x P x P x P 表示。 5. 状态转移方程

在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态便

完全确定。用状态转移方程(equation of state transition )表示这种演变规律,写作

.,,2,1),,(1n k u x T x k k k ==+ (1)

6. 指标函数和最优值函数

指标函数(objective function)是衡量过程优劣的数量指标,它是定

义在全过程和所有后部子过程上的数量函数,用),,,,(11++n k k k kn x x u x V 表示,

n k ,,2,1 =。指标函数应具有可分离性,即kn V 可表为n k k k V u x 1,,+的函数,记

)),,,(,,(),,,,(1211111+++++++=n k k k n k k k k n k k k kn x x u x V u x x x u x V ? 并且函数k ?对于变量n k V 1+是严格单调的。

过程在第j 阶段的阶段指标取决于状态j x 和决策j u ,用),(j j j u x v 表示。指标函数由),,2,1(n j v j =组成,常见的形式有:

阶段指标之和,即 ∑=++=n

k j j j j n k k k kn u x v x x u x V ),(),,,,(11 ,

阶段指标之积,即 ∏=++=n

k

j j j j n k k k kn u x v x x u x V ),(),,,,(11 ,

阶段指标之极大(或极小),即

),((min)max ),,,,(11j j j n

j k n k k k kn u x v x x u x V ≤≤++= .

这些形式下第k 到第j 阶段子过程的指标函数为),,,(11++j k k k kj x x u x V 。 根据状态转移方程指标函数kn V 还可以表示为状态k x 和策略kn p 的函数,即

),(kn k kn p x V 。在k x 给定时指标函数kn V 对kn p 的最优值称为最优值函数(optimal value function ),记为)(k k x f ,即

),(opt )()

(kn k kn x P p k k p x V x f k kn kn ∈=,

其中opt 可根据具体情况取max 或min 。

7 最优策略和最优轨线

使指标函数kn V 达到最优值的策略是从k 开始的后部子过程的最优策

略,记作},,{***n k kn u u p =。*

1n p 是全过程的最优策略,简称最优策略(optimal policy )。从初始状态)(*11x x =出发,过程按照*1n p 和状态转移方程演变所经历

的状态序列},,,{*1*2*1+n x x x 称最优轨线(optimal trajectory )

。 二、基本方程:

对于n 阶段的动态规划问题,在求子过程上的最优指标函数时,k 子过程与1+k 子过程有如下递推关系:

?????==?=++++∈c

x f n k x f u x v x f n n k k k k k u U u k k k k k )(1,,)},(),({opt )(1111)( (2) 在上述方程中,当?为加法时取0)(11=++k n x f ;当?为乘法时,取

1)(11=++k n x f 。 三、最优化原理

动态规划的最优化原理是美国学者R .Bellman 首先提出的,其表述如下:

“作为整个过程的最优策略应具有这样的性质,无论过去的状态和决策如何,对于前面的决策所形成的状态而言,余下的诸决策必须构成最优策略”.也就是说最优策略的任一子策略都是最优的.

最优化原理还阐述这样一个事实,对全过程的任一状态点k x ,我们不考虑k x 以前的决策,只保证k x 以后的决策是最优的。显然,由于k 的任意性(k =1,2,…,n )就保证了全过程的决策是最优的.最优化原理为动态规划从最后阶段的优化开始,逐步向前一阶段优化扩展直至第一阶段,从而达到全程优化的方法奠定了理论基础.

§2动态规划模型的建立与求解

根据动态规划的概念不难看出,在用动态规划方法解决实际问题时,必须首先明确本问题中的阶段、状态、决策、策略以及考察指标,并建立状态转移方程,然后根据k 阶段最优指标的大小找出与之对应的最优子策略,直至找出问题的最优解.我们把找出实际问题中的阶段、状态、决策、策略以及考察指标,并建立状态转移方程这一过程称为建立动态规划模型.应该说建立动态规划模型是解决动态规划问题的第一步,也是非常重要的一步.模型建立的是否简捷、准确,直接关系到问题最优解的筛选及准确性,因此,建立动态规划模型是十分重要的.

其步骤可归纳如下:

(1)将所要解决的问题恰当地划分为若干阶段,经常是按事物发展的时间和空间来划分不同阶段,各阶段的首尾要互相衔接;

(2)正确地选择状态变量k x ,确定它在每一阶段的取值范围;这一步是形成动态模型的关键,状态变量k x 是动态规划模型中最重要的参数。一般来说,状态变量k x 应该具有以下三个特征:

①要能够用来描述决策过程的演变特征;

②满足无后效性,即若某阶段状态已经给定后,则以后过程的进展不受以前各个状态的影响,也就是说,过去的历史只通过当前的状态去影响未来的发展;

③递推性,即由k 阶段的状态变量k x 及决策变量k u 可以计算出1+k 阶段的状态变量1+k x

(3)选择决策变量k u ,确定允许决策集合)(k k u D 。 (4)正确写出状态转移方程.,,2,1),,(1n k u x T x k k k ==+

(5)建立指标函数,一般用),(k k k u x r 描述阶段效应,)(k k x f 表示从n k →阶段的最优子策略函数.

(6)建立动态规划基本方程。对每一对k x ,)(k k x u 计算不同指标值

)())(,(11++?k k k k k k x f x u x r .把这些指标值进行比较取出最优的一个,所谓最优是根据实际问题的需要确定指标值的最大者或最小者,即

{?????-==+=++++∈1

,,1,)()}())(,()(1111)( n n k c x f x f x u x r opt x f n n k k k k k k u D u k k k k k 在动态规划基本方程中,))(,(k k k k x u x r ,.,,2,1),,(1n k u x T x k k k ==+都是已知函数,最优子策略)(k k x f 与)(11++k k x f 之间是递推关系,要求出)(k k x f 及)(k k x u 需要先求出)(11++k k x f ,这就决定了用在动态规划基本方程求最优策略是逆着阶段的顺序进行的,由 k = n ,n –1,…2,1将上式依次逐步递推,直至全过程的优化结束,即可求出动态规划问题的最优策略及最优指标值.称为动态规划的逆序算法。

第三节 动态规划方法应用

一、机器负荷分配问题

例1:某厂新购某种机床125台,据估计,这种设备5年后将被其他设备所代

替,此机床如在高负荷状态下工作,年损坏率为2

1

,年利润为10万元;

如在低负荷状态下工作,年损坏率为5

1

,年利润为6万元;问应该如何安

排这些机床的生产负荷,才能使5年内获得最大的利润?

解:以年为阶段,k =1,2,3,4,5

取k 年初完好的机床数为状态变量k x , 以k 年初投入高负荷运行的机床数为决策变量k u ,则低负荷运行的机床数为k k u x -,于是状态转移方程为:

k k k k k k u x u x u x 3.08.0)(5

4

211-=-+=+

以利润为目标函数,则k 年利润为:

k k k k k x u u x u 64)(610+=-+

记 )(k k x f 表示从k 年至5年末的最大总利润。则动态规划基本方程为:

{????

?

??

??====-=++=+++≤≤1,,4,50)(0,1253.08.0)}

(64max )(6

6611110 k x f x x u x x x f x u x f k k k k k k k x u k k k

k 下面具体求解

注意到动态规划基本方程{?

??

-++=+≤≤)}3.08.0(64max )(10k k k k k x u k k u x f x u x f k

k

所以5=k 时 {555

665505510)}(64max )(5

5x u x x f x u x f x u ==++=≤≤

当4=k 时

{{{4

44

440444404454404415}14max )}

3.08.0(1064max )}

3.08.0(64max )(4

4444

4x u x x u u x x u u x f x u x f x u x u x u ==+=-++=-++=≤≤≤≤≤≤

当3=k 时

{{{0

18}185.0max )}

3.08.0(1564max )}

3.08.0(64max )(33

33033330334330333

3333

3==+-=-++=-++=≤≤≤≤≤≤u x x u u x x u u x f x u x f x u x u x u

当2=k 时

{{{0

4.20}4.204.1max )}

3.08.0(1864max )}

3.08.0(64max )(22

22022220223220222

2222

2==+-=-++=-++=≤≤≤≤≤≤u x x u u x x u u x f x u x f x u x u x u

当1=k 时

{{{0

)

(279012532.2232.22}32.2212.2max )}

3.08.0(

4.2064max )}

3.08.0(64max )(11

11011110112110111

1111

1==?==+-=-++=-++=≤≤≤≤≤≤u x x u u x x u u x f x u x f x u x u x u 万元

即第一年到第5年末的最大利润为125,32.2211=x x 而。 在按与计算过程相反的顺序推回去,可得最优计划为

二、资源分配问题

所谓资源分配问题,就是将一定数量的一种或若干种资源(如原材料、机器设备、资金、劳动力等)恰当地分配给若干个使用者,以使资源得到最有效地利用。 1、一维分配问题

设有某种资源可用于n 项活动,假设资源的数量为a ,已知用于第i 项活动的资源数为i x 时,可以得到的收益为),,2,1()(n i x g i i =,试确定资源的分配方案使收益最大?

该问题的数学模型可以表示为

,,,..)

()()(max 21212211≥≤++++++=n n n n x x x a

x x x t s x g x g x g Z

当),,2,1()(n i x g i i =为线性函数时,该问题是线性规划问题,当),,2,1()(n i x g i i =为非线性函数时,该问题是非线性规划问题,如果采用非线性规划求解,比较麻烦。可以将它看成多阶段决策问题,利用动态规划求解。

在应用动态规划方法处理这一 类问题时,提出将资源分配给每项活动的过程看成一个阶段,每个阶段都要确定对一种活动的资源投放量,这时,状态变量k x 可以选择k 阶段初所拥有的资源量,即k x 是要在第k 项到第n 项活动间分配的资源量。

决策变量k u 选择对活动k 的资源投放量,决策变量k u 的允许集合为k k x u ≤≤0。

在选取上述状态变量和决策变量的情况下,状态转移方程为: k k k u x x -=+1

去投放资源时的收益为指标函数,则)(k k u g 为阶段效益指标。

记 )(k k x f 表示从k 阶段至n 阶段的最大总利润。则动态规划基本方程为:

{????

?-==+=++++≤≤1

,,1,0)()}((max )(11110 n n k x f x f u g x f n n k k k k x u k k k

k )

例2:某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表1所示。试确定500万元资本的分配方案,以使公司总的年利润增长额最大。

解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k x (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k u 代表第k 个工厂的投资额。于是有状态转移方程为 k k k u x x -=+1、允许决策集合

}0|{)(k k k k k x u u u D ≤≤=和递推关系式:

)}()({max )(

10k k k k k x u k k u x f u g x f k

k -+=+≤≤ )1,2,3(=k

0)(44=x f

当3=k 时:

)}({max }0)({max )(330330333

33

3u g u g x f x u x u ≤≤≤≤=+=

于是有表2,表中3u 表示第三个阶段的最优决策。

当2=k 时:

)}()({max )(223220222

2u x f u g x f x u -+=≤≤

于是有表3。

当1=k 时:

)}()({max )(112110111

1u x f u g x f x u -+=≤≤

于是有表4。

然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。按最优分配方案分配投资(资源),年利润将增长210万元。

这个例于是决策变量取离散值的一类分配问题,在实际问题中,相类似的问题还有销售店的布局(分配)问题、设备或人力资源的分配问题等。

2、二维分配问题

(1)设数量分别为b a ,的两种资源分配给n 个使用者, n i i y x r i y i x i i i i i ,,2,1),( =个阶段的收益,第—个使用者的数量,

分配第二种资源给第—个使用者的数量,

分配第一种资源给第—

求总收益最大的分配方案

该问题的数学模型可以表示为???????????

=≥≥===∑∑∑===n

i y x b y a x y x r Z i i

n i i n

i i n

i i i i ,,2,1,0,0)

,(max 1

1

1

(2)二维分配问题的解法

1、逐次逼近法

由于???????????

=≥≥===∑∑∑===n

i y x b y a x y x r Z i i

n i i n

i i n

i i i i ,,2,1,0,0)

,(max 1

1

1

① 设

?????≥==∑=0),,,,(1

)

0()0(2)0(1)

0(i

n

i i n x a x x x x X 满足 求下列一维问题的于固定,)0(X x

得最优解

????

?????=≥=∑∑==n i y b

y y x r i n

i i n

i i i i ,,2,1,0)

,(max 1

1

)

0( ),,,,()

0()0(2)0(1)0(n y y y Y =

②求下列一维问题的于固定,)0(Y y

得最优解

????

?????=≥=∑∑==n i x a

x y x r i n

i i n

i i i i

,,2,1,0),(max 1

1

)0( ),,,,()

1()1(2)1(1)1(n x x x X =

③求下列一维问题的于固定,)1(X x

得最优解

????

?????=≥=∑∑==n i y b y y x r i n

i i n

i i i i ,,2,1,0)

,(max 11

)

1(

),,,,()

1()1(2)1(1)1(n y y y Y =

轮转若干步,直到满足精确度要求。

2、拉格郎日乘子法

(1)估计一个拉格郎日乘子0≥λ (2)用动态规划法解一维问题

????

?????

=≥≥=-∑∑∑===n i y x a

x y y x r i i n

i i n

i i n i i i i ,,2,1,0,0]

),(max[1

1

1 λ 若解不唯一,假设共有m 个

))(),((,)),(),(()),(),(()()()2()2()1()1(λλλλλλm m y x y x y x

T n T n y y y y x x x x ))(,),(),(()(,))(,),(),(()()

1()1(2)1(1)1()1()1(2)1(1)1(λλλλλλλλ ==

(3)计算m j y F n

i j i j

,,2,1)

(min )(1

)( ==∑=λλ m j y G n

i j i j

,,2,1)

(max )(1

)( ==∑=λλ

(4)判断

①若存在为最优解则))(),((,.,)()(1)(λλk k n

i k i y x b y t s k j ==∑=

②若)1(,,)(转到则增大λλb F > ③若)1(,,)(转到则减少λλb G <

④若..,),()(1)(则无解均有且b y j G b F n

i j i ≠?<<∑=λλ

三、存贮控制问题

在动态规划模型中,以时期为阶段,取各时期初的库存量为状态变量;取各阶段的产量(或采购量)为决策变量,在确定决策变量时一般要考虑需求量、生产能力、库存限制等因素;指标函数取生产或采购费用。

例3:某工厂要制定今后四个时期某产品的生产计划,估计今后四个时期内市

本为1千元;每件产品的每期保管费为0.5千元;每个时期最大生产能力所允许的生产批量不超过5个单位;最大库存量为4个单位;假设开始时库存量为1个单位,要求第四期末库存在2个单位。试问该厂应如何安排各个时期的产量,才能满足市场需求的条件下使总费用最小? 解:按四个时期将问题分为四个阶段,k =1,2,3,4

取k 期初库存量k x 为状态变量;k 期内产量k u 为决策变量,则状态转移方程为

k k k k d u x x -+=+1

由题意,第k 期内的费用为

??

?=>++=??

?=>?++=0

,00

,25.00

,00

,125.0),(k k k k k k k k k k k u u u x u u u x u x r

记 )(k k x f 表示第k 期至第4期末的最小总费用。则动态规划基本方程为:

{????

?==+=++1

,2,3,40)()}(,(min )(5511k x f x f u x r x f k k k k k u k k k

) 下面求解

当4=k 时 注意:k k k k d u x x -+=+1

=≤-=-+=+-=4,3,2,1,564244444454u u u u d u x x

{4

411116)}(025.0{min )}

(,(min )(x u x f u x x f u x r x f k k k k u k k k k k u k k k k

-=+?

??++=+=++++)

2

)4(6

2245.0)4(3)3(5.63235.0)3(4)2(74225.0)2(5)1(5.75215.0)1(44444444==++?===++?===++?===++?=u f u f u f u f 当3=k 时 4,3,2,103,=x 注意:k k k k d u x x -+=+1

}

6{5min 5642,433,2,1333333343

33334333x u u u x u x u x u u x d x d u x -≤∴≤≤+≤-+≤-≥∴≥+∴=≥=-+,,,

3

)0(5

.125.677

65.75min )

3(5205.0)

2(4205.0)

1(3205.0min )0(34443==??

???+++=??

?

??+++?+++?+++?=u f f f f

2

)1(12

65.75.65.675.55.75.4min )

4(5215.0)3(4215.0)2(3215.0)1(2215.0min )1(344443==??????

?++++=????

??

?+++?+++?+++?+++?=u f f f f f

1

)2(5.11675.66755.74min )4(4225.0)3(3225.0)2(2225.0)1(1225.0min )2(3444

43==??????

?++++=??????

?+++?+++?+++?+++?=u f f f f f

)3(9

65.65.65.575.45.75.1min )4(3235.0)3(2235.0)2(1235.0)1(0235.0min )3(3444

43==??????

?++++=??????

?+++?+++?+++?+++?=u f f f f f

)4(9

665

.6572min )

4(2245.0)

3(1245.0)2(0245.0min )4(34443==??

?

??+++=??

?

??+++?+++?+++?=u f f f f

当2=k 时 4,3,2,102,

=x 注意:k k k k d u x x -+=+1

}

7{5min 3743,533,3,4022222222222223222x u x u x u x u x u u x d x d u x -≤≤-∴≤+≤-+≤-≥∴≥+∴=≤=-+≤,,,

3

)0(5

.175.11712

65.125min )

2(5205.0)

1(4205.0)

0(3205.0min )0(23332==??

?

??+++=??

?

??+++?+++?+++?=u f f f f

5

)1(5

.169

5.75.115.6125.55.125.4min )

3(5215.0)2(4215.0)1(3215.0)0(2215.0min )1(233332==??????

?++++=????

??

?+++?+++?+++?+++?=u f f f f f

4

)2(16

9

8975

.1161255.124min )4(5225.0)

3(4225.0)

2(3225.0)

1(2225.0)0(1225.0min )2(233

3332==?????

????+++++=?????

????+++?+++?+++?+++?+++?=u f f f f f f

)3(14

9

5.795.65

.115.5125.45.125.1min )4(5235.0)

3(4235.0)

2(3235.0)

1(2235.0)0(1235.0min )3(233

3332==?????

????+++++=?????

????+++?+++?+++?+++?+++?=u f f f f f f

)4(14

9

7965.115122min )4(3245.0)3(2245.0)2(1245.0)1(0245.0min )4(2333

32==??????

?++++=??????

?+++?+++?+++?+++?=u f f f f f

当1=k 时 11=x 注意:

5

1,

2,40212111≤≤∴=≤=-+≤u d x d u x

4

)1(5

.20145.7145.616

5.55.165.45.173min )

4(5215.0)

3(4215.0)

2(3215.0)

1(2215.0)0(1215.0min )1(122

2221==?????

????+++++=?????

????+++?+++?+++?+++?+++?=u f f f f f f

至此计算出本问题第一至四期的最小总费用为20.5千元。在按计算顺序反推回去,可以求出最优生产计划为

数学建模算法动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随

整数规划的两种数学模型解法

规划模型求解 指导老师: 组员: 组员分工 实际的内容: 1·简要介绍线性规划的历史 线性规划是运筹学中最基本、应用最广泛的分支。规划模型是一类有着广泛应用的确定性的系统优化模型,1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》一书. 1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法. 1951年,美国经济学家库普曼斯(J.C.Koopmans,1910—1985)出版《生产与配置的活动分析》一书. 1950~1956年,线性规划的对偶理论出现. 1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法. 1975年,康托洛维奇与库普曼斯因“最优资源配置理论的贡献”荣获诺贝尔经济学奖. 1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法),具有重要理论意义. 1984年,在美国贝尔实验室工作的印度裔数学家卡玛卡(N.Karmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Karmarkar算法.

线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优. 现在线性规划已不仅仅是一种数学理论和方法,而且成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术. 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看 函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念 对数学发展,数学学习的巨大作用。 2·线性规划的原理:线性规划是合理利用、调配资源 的一种应用数学方法。它的基本思路就是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。前者是求极小,后者是求极大。线性规划是在满足企业内、外部的条件下,实现管理目标和极值(极小值和极大值)问题,就是要以尽少的资源输入来实现更多的社会需要的产品的产出。因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有重要的作用。其一般形式为: n n n n n n b x a x a x a b x a x a x a x c x c x c x f =+++=+++→+++= 2 2222121112121112211min )(

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点 整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。 松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。 若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。 一、整数线性规划数学模型的一般形式 ∑==n j j j x c Z 1 min)max(或 中部分或全部取整数n j n j i j ij x x x m j n i x b x a t s ,...,,...2,1,...,2,10 ),(.211 ==≥=≥≤∑= 整数线性规划问题可以分为以下几种类型 1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。有时,也称为全整数规划。

2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。 3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。 1 解整数规划问题 0—1型整数规划 0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的 ???? ? ????≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

01型整数规划模型

甲乙公司不合作即竞争下所争取到的不同名专业推广者所建立的不同动态规划模 型的组合方案如下:其中X 为可能竞争到的专业推广者人数,即动态规划模型中第一天的

专业推广者推 广能力的份数,Y 为第二天需要的专业推广者推广能力的份数,即第三天安排从事推广 工作的专业推广者的人数;Z 为第三天需要的专业推广者推广能力的份数,即第三天安排从事推广工作的专业推广者的人数;a 为x 名专业推广者累计从事培训工作出来的兼职推广者的批数(每批20 人),其中,有多种组合方案;甲公司雇佣这些兼职推广者均工作一天,从事推广工作,第二天辞退a ?b 批兼职推广员,其余的b 批继续从事推广工作一天后辞退,即兼职宣传员总共最多雇佣2 天;cost 为花费的成本,即资金的使用数量;F 为不同方案下所达到的总推广效益。上表可以提供给甲公司做决策依据,根据效益的大小甲公司可以决策的目标方向顺序是从①--⑧,即不合作的情况下甲公司可以尽量争取到9 人,如若 不行,考虑争取4 人。 §5.4 0—1型整数规划模型 1、 0—1型整数规划模型概述 整数规划指的是决策变量为非负整数值的一类线性规划,在实际问题的应用中,整数规划模型对应着大量的生产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平面解法(这里不作介绍,感兴趣的读者可参考相关书籍)。在整数规划问题中,0—1型整数规划则是其中较为特殊的一类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着大量的最优决策的活动与安排讨论,我们将列举一些模型范例,以说明这个事实。 0—1型整数规划的的数学模型为: 目标函数 n n x c x c x c z M i n M a x +++= 2211)( 约束条件为: ???? ?? ?==≥≤++=≥≤++=≥≤++1 | 0 ) ,() ,() ,(2211222221211 1212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21 这里,0 | 1表示0或1。 2、0—1型整数规划模型的解法

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模-动态规划

-56- 第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G 距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time -57- decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随 机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段

10427-数学建模-动态规划的原理及应用

动态规划的原理及应用 动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。 动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。 1.动态规划的基本理论 一.动态规划的术语 在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。在此先简要介绍动态规划中的常用术语。 级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n. 状态(λ):用来描述、刻画级的特征。状态可以是单变量,也可以时向量。在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。 状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。描述决策的变量称为决策变量。对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。决策变量x(λ)∈X(λ)。 变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。T(λ,x(λ))可分为两种类型,即确定型和不确定型。确定型的T(λ,x(λ))只含有一个元。不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。这时,集函数T(λ,x(λ))将包含多个元素。当T(λ,x(λ))=0 时,过程终止。 策略:顺序排列的决策集,记为v。所有可能的策略集构成策略空间Γ。 收益:评价给定策略的目标函数r(λ,v),它依赖于状态和策略。总收益是集收益s(λ,v)的某个组合(通常为集收益之和)。若T(λ,x(λ))=0,则r(λ1,v1)= s(λ1,v1);若T(λ,x(λ))= λ2,则r(λ1,v)= s(λ1,v1)+ r(λ1,v2)。 二.序贯决策过程 动态规划的寻优过程可以有正序、逆序两种方式。当初始状态给定时,用逆序方式比较好,当终止状态给定时,用正序方式较好。 采用分级的序贯决策方法,把一个含有n个变量的问题转化为求解n个单变量问题。为了应用最优化原理,必须满足分级条件,即目标函数可分性和状态可分性。 目标函数可分性:

数学建模(整数规划)

整数规划模型

实际问题中 x x x x f z Max Min T n "),(),()(1==或的优化模型 m i x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件 多元函数决策变量个数n 和数 线性规划条件极值约束条件个数m 较大最优解在可行域学 规 非线性规划解 的边界上取得划 整数规划

Programming +Integer 所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。 型整数规划

+整数线性规划 max(min) n z c x =1j j j n =∑1 s.t. (,) 1,2,,ij j i j a x b i m =≤=≥=∑"12 ,,,0 () n x x x ≥"且为整数 或部分为整数

+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化? m 1?1 max j j j c y =∑ 1 0j j y =?被装载 s.t. m j j v y V ≤∑0 j ?没被装载1 j m =1 j j j w y W =≤∑ 0 or 1 1,2,,j y j m =="

(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h 前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:https://www.360docs.net/doc/96476781.html, I)网址htt//li d LINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。 LINGO——解决线性规划LP—Linear Programming,非线性规划NLP—Nonlinear Programming,整数规划IP—Integer Programming g g整划g g g 问题。

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划 一、动态规划 1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的 优化问题。但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2.基本概念、基本方程: (1)阶段 (2)状态 (3)决策 (4)策略 (5)状态转移方程: (6)指标函数和最优值函数: (7)最优策略和最优轨线 (8)递归方程: 3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)

4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4) 5.若干典型问题的动态规划模型: (1)最短路线问题: (2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为 (3)资源分配问题:详见例5

状态转移方程: 最优值函数: 自有终端条件: (4)具体应用实例:详见例6、例7。 二、目标规划 1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。其求解思路有加权系数法、优先等级法、有效解法等。 2.基本概念: (1)正负偏差变量: (2)绝对(刚性)约束和目标约束 ,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P 1……以此类推。 予P 2 (4)目标规划的目标函数: (5)一般数学模型:

第二章 动态数学模型

第二章控制系统的数学模型 控制系统的数学模型 本章主要内容: 引言 微分方程模型 传递函数模型 脉冲响应模型 方框图模型 信号流图模型 频域特性模型 数学模型的实验测定方法(辨识) 2.0 引言 主要解决的问题: 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求 2.0.1 什么是数学模型 控制系统的数学模型是描述系统内部各物理量(或变量)之间关系的数学表达式或图形表达式或数字表达式。 亦:描述能系统性能的数学表达式(或数字、图像表达式) 控制系统的数学模型按系统运动特性分为:静态模型

动态模型 静态模型:在稳态时(系统达到一平衡状态)描述系统各变量间关系的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法可以不同,不同的模型形式适用于不同的分析方法。 2.0.2 为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的认识上升到定量的精确认识的关键!(这一点非常重要,数学的意义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持;另一方面,数学本身也只有给它提供实际应用的场合,它才具有生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位)才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模白箱实验建模(数据建模)黑箱或灰箱 系统辨识 2.0.3 对系统数学模型的基本要求 亦:什么样的数学表达式能用于一个工程系统的描述。 理论上,没有一个数学表达式能够准确(绝对准确)地描述一个系统,因为,理论上任何一个系统都是非线性的、时变的和分布参数的,都存在随机因素,系统越复杂,情况也越复杂。 而实际工程中,为了简化问题,常常对一些对系统运动过程影响不大的因素忽略,抓住主要问题进行建模,进行定量分析,也就是说建立系统的数学模型应该在模型的准确度和复杂度上进行折中的考虑。因此在具体的系统建模时往往考虑以下因素:

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模在计算机专业的应用

应用一图论算法 图论在计算机处理问题中占有重要地位,现实中的很多问题最终都可以转化成图论问题,或者要借助图结构来存储和处理。但是怎么把一图存入计算机就要涉及到数学建模的知识。 比如下面一图: 如果要求出从节点v1到节点v5的所有路径,就可以借助计算机来很轻松的解决。但前提条件是,必须要把图以一种计算机可以理解的形式存进去,即要把它抽象为数学问题。 在此,我们需要定义一些关于图的概念,以便更好的描述问题。 边与顶点的关系有如下几种典型情况: 简单图:无自回环,无重边的图。

无向图:边没有指向, 1212 e. i i i i i ψ()={v,v}=v v此时称边e i与顶点12 i i v,v关联,称 顶点 1 i v与顶点 2 i v邻接。 有向图:边有指向, 1212 e. i i i i i ψ u u u u u r ()=(v,v)=v v 下面是具体涉及到图如何存储的问题: 1.图G(V,E)的关联矩阵x R=(r) ij n m ,若G(V,E)为无向图, 1 2 i j ij i j j i j j v e r v e e v e e ? ? =? ? ? 与不关联 与关联,为非自回环 与关联,为自回环 若G(V,E)为有向图, 1 2 i j ij i j i j v e r v e v e ? ? =? ? ? 与不关联 是的起点 是的终点 因此该图可以用关联矩阵表示出来,如下所示 1100000 1010100 0101001 0011010 0000111 R ?? ? ? ? = ? ? ? ?? 这样,我们就可以以矩阵的形式将图存入计算机

数学建模-(动态规划)

1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。 : 个销售店,C 区增设1个销售店.最大利润为490万元。 贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。 2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。试确定500万元资 解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式: )}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k

0)(44=S f 当3=k 时: )}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+= 于是有表2-1,表中*3x 表示第三个阶段的最优决策。 当2=k 时: )}()({max )(2232202222x S f x g S f S x -+=≤≤ 于是有表7-3。 当1=k 时: )}()({max )(1121101111x S f x g S f S x -+=≤≤ 于是有表2-3。 然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。按最优分配方案分配投资(资源),年利润将增长210万元。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

相关文档
最新文档