机器人正运动学方程的D-H表示法

机器人正运动学方程的D-H表示法
机器人正运动学方程的D-H表示法

用平面二连杆机器人为例贯穿运动学、雅可比、动力学、轨迹规划甚至控制与编程分析

一、平面二连杆机器人手臂运动学 平面二连杆机械手臂如图1所示,连杆1长度1l ,连杆2长度2l 。建立如图1所示的坐标系,其中,),(00y x 为基础坐标系,固定在基座上,),(11y x 、),(22y x 为连体坐标系,分别固结在连杆1和连杆2上并随它们一起运动。关节角顺时针为负逆时针为正。 图1平面双连杆机器人示意图 1、用简单的平面几何关系建立运动学方程 连杆2末段与中线交点处一点P 在基础坐标系中的位置坐标: ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (1) 2、用D-H 方法建立运动学方程 假定0z 、1z 、2z 垂直于纸面向里。从),,(000z y x 到),,(111z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 00sin cos 1 111 01θθ θθT (2) 从),,(111z y x 到),,(222z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 0sin cos 2 212212 θθ θθl T (3) 从),,(000z y x 到),,(222z y x 的齐次旋转变换矩阵为:

? ???? ???????+++-+=?? ??? ? ? ?? ???-?????????????-=?=10000100sin 0)cos()sin(cos 0)sin()cos( 1000010 000cos sin 0sin cos 1000 010000cos sin 00sin cos 1121211121212212 2111 1120102θθθθθθθθθθθθθθθθ θθl l l T T T (4) 那么,连杆2末段与中线交点处一点P 在基础坐标系中的位置矢量为: ? ?? ? ? ???????=????????????++++=? ? ? ?? ? ?????????????? ?? ???+++-+=?=110)sin(sin )cos( cos 10010000100sin 0)cos()sin(cos 0)sin()cos( 212112121121121211121212 020p p p z y x l l l l l l l P T P θθθθθθθθθθθθθθθθ (5) 即, ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (6) 与用简单的平面几何关系建立运动学方程(1)相同。 建立以上运动学方程后,若已知个连杆的关节角21θθ、,就可以用运动学方程求出机械手臂末端位置坐标,这可以用于运动学仿真。 3、平面二连杆机器人手臂逆运动学 建立以上运动学方程后,若已知个机械臂的末端位置,可以用运动学方程求出机械手臂二连杆的关节角21θθ、,这叫机械臂的逆运动学。逆运动学可以用于对机械臂关节角和末端位置的控制。对于本例中平面二连杆机械臂,其逆运动学方程的建立就是已知末端位置 ),(p p y x 求相应关节角21θθ、的过程。推倒如下。 (1)问题 ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p 已知末端位置坐标),(p p y x ,求关节角21θθ、。 (2)求1θ

机器人学得一个正运动学举例说明

PUMA 560 运动分析(表示)
1 正解
PUMA 560 是属于关节式机器人,6 个关节都是转动关节。前 3 个关节确定手腕参 考点的位置,后 3 个关节确定手腕的方位。
各连杆坐标系如图 1 所示。相应的连杆参数列于表 1。
图 1 机器人模型
PUMA560 每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机 器人机体绕 z0 轴的回转(角1 ),它由固定底座和回转工作台组成。安装在轴中心的驱 动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置 控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂 的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角 2 )。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3 ),以 及小臂的回转(4 )。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5 )和转动(6 )。 下图为简化模型:
T i1 6
Ai Ai1 A6
图 2 机器人简化模型
表1
机械手的末端装置即为连杆
6
的坐标系,它与连杆坐标系的关系可由
T i1 6
表示:
T i 1 6
Ai Ai1 A6
(1)
可得连杆变换通式为 :
ci
si
0
ai1
T i1 i

si
c
i
1
si si1
cici1 ci si1
si1 ci1
di
si1

dici1
(2)
0
0
0
1
据连杆变换通式式(2)和表 1 所示连杆参数,可求得各连杆变换矩阵如下:

机器人运动学精品教程

第2章机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,这里还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。 图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB偏 移,它将影响杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/967010347.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

2.7机器人正运动学方程的D-H表示法

2.7机器人正运动学方程的D-H表示法 在1955年,Denavit和Hartenberg在“ASME Journal of Applied Mechanics”发表了一篇论文,后来利用那个这篇论文来对机器人进行表示和建模,并导出了它们的运动方程,这已成为表示机器人和对机器人运动进行建模的标准方法,所以必须学习这部分内容。Denavit-Hartenberg(D_H)模型表示了对机器人连杆和关节进行建模的一种非常简单的方法,可用于任何机器人构型,而不管机器人的结构顺序和复杂程度如何。它也可用于表示已经讨论过的在任何坐标中的变换,例如直角坐标、圆柱坐标、球坐标、欧拉角坐标及RPY坐标等。另外,它也可以用于表示全旋转的链式机器人、SCARA 机器人或任何可能的关节和连杆组合。尽管采用前面的方法对机器人直接建模会更快、更直接,但D-H表示法有其附加的好处,使用它已经开发了许多技术,例如,雅克比矩阵的计算和力分析等。 假设机器人由一系列关节和连杆组成。这些关节可能是滑动(线性)的或旋转(转动)的,它们可以按任意的顺序放置并处于任意的平面。连杆也可以是任意的长度(包括零),它可能被弯曲或扭曲,也可能位于任意平面上。所以任何一组关节和连杆都可以构成一个我们想要建模和表示的机器人。

为此,需要给每个关节指定一个参考坐标系,然后,确定从一个关节到下一个关节(一个坐标系到下一个坐标系)来进行变换的步骤。如果将从基座到第一个关节,再从第一个关节到第二个关节直至到最后一个关节的所有变换结合起来,就得到了机器人的总变换矩阵。在下一节,将根据D-H 表示法确定一个一般步骤来为每个关节指定参考坐标系,然后确定如何实现任意两个相邻坐标系之间的变换,最后写出机器人的总变换矩阵。 图2.25 通用关节—连杆组合的D-H表示假设一个机器人由任意多的连杆和关节以任意形式构成。

机器人学第六章(机器人运动学及动力学)

第六章 机器人运动学及动力学 6.1 引论 到现在为止我们对操作机的研究集中在仅考虑动力学上。我们研究了静力位置、静力和速度,但我们从未考虑过产生运动所需的力。本章中我们考虑操作机的运动方程式——由于促动器所施加的扭矩或作用在机械手上的外力所产生的操作机的运动之情况。 机构动力学是一个已经写出很多专著的领域。的确,人们可以花费以年计的时间来研究这个领域。显然,我们不可能包括它所应有的完整的内容。但是,某种动力学问题的方程式似乎特别适合于操作机的应用。特别是,那种能利用操作机的串联链性质的方法是我们研究的天然候选者。 有两个与操作机动力学有关的问题我们打算去解决。向前的动力学问题是计算在施加一 组关节扭矩时机构将怎样运动。也就是,已知扭矩矢量τ,计算产生的操作机的运动Θ、Θ 和Θ 。这个对操作机仿真有用,在逆运动学问题中,我们已知轨迹点Θ、Θ 和Θ ,我们欲求出所需要的关节扭矩矢量τ。这种形式的动力学对操作机的控制问题有用。 6.2 刚体的加速度 现在我们把对刚体运动的分析推广到加速度的情况。在任一瞬时,线速度矢量和角速度矢量的导数分别称为线加速度和角加速度。即 B B Q Q B B Q Q 0V ()V ()d V V lim dt t t t t t ?→+?-==? (6-1) 和 A A Q Q A A Q Q 0()()d lim dt t t t t t ?→Ω+?-ΩΩ=Ω=? (6-2) 正如速度的情况一样,当求导的参坐标架被理解为某个宇宙标架{}U 时我们将用下面的记号 U A AORG V V = (6-3) 和 U A A ω=Ω (6-4)

6.2.1 线加速度 我们从描述当原点重合时从坐标架{}A 看到的矢量B Q 的速度 A A B A A Q B Q B B V V B R R Q =+Ω? (6-5) 这个方程的左手边描述A Q 如何随时间而变化。所以,因为原点是重合的,我们可以重写(6-5)为 A A B A A B B Q B B d ()V dt B B R Q R R Q =+Ω? (6-6) 这种形式的方程式当推导对应的加速度方程时特别有用。 通过对(6-5)求导,我们可以推出当{}A 与{}B 的原点重合时从{}A 中看到的B Q 的 加速度表达式 A A B A A A A Q B Q B B B B d d V (V )()dt dt B B R R Q R Q =+Ω?+Ω? (6-7) 现在用(6-6)两次── 一次对第一项,一次对最后一项。(6-7)式的右侧成为: A B A A A A B Q B B Q B B A A A A B B Q B B V () +Ω?+Ω?+Ω?+Ω? B B B B R R V R Q R V R Q (6-8) 把相同两项合起来 A B A A A A B Q B B Q B B A A A B B B V 2 () +Ω?+Ω?+Ω?Ω? B B B R R V R Q R Q (6-9) 最后,为了推广到原点不重合的情况,我们加上一项给出{}B 的原点的线加速度的项,得到下面的最后的一般公式 A B A A A A BORG B Q B B Q B B A A A B B B V 2 () ++Ω?+Ω?+Ω?Ω? A B B B V R R V R Q R Q (6-10) 对于我们将在本章上考虑的情况,我们总是有B Q 为不变,或 B Q Q V 0== B V (6-11) 所以,(6-10)简化为 A A A A A A Q BORG B B B B B V ()=+Ω?Ω?+Ω? A B B V R Q R Q (6-12) 我们将用这一结果来计算操作机杆件的线加速度。 6.2.2 角加速度 考虑{}B 以A B Ω相对于{}A 转动的情况,而{}C 以B C Ω相对于{}B 转动。为了计算 A C Ω我们把矢量在坐标架{}A 中相加

机器人学得一个正运动学的例子

PUMA 560 运动分析(表示) 1 正解 PUMA 560是属于关节式机器人,6个关节都是转动关节。前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。 各连杆坐标系如图1所示。相应的连杆参数列于表1。 图1机器人模型 PUMA560每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机器人机体绕0z 轴的回转(角1θ),它由固定底座和回转工作台组成。安装在轴中心的驱动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角2θ) 。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3θ),以及小臂的回转(4θ)。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5θ)和转动(6θ)。 下图为简化模型: 图2机器人简化模型 表1 机械手的末端装置即为连杆6的坐标系,它与连杆坐标系的关系可由16i T -表示: 1 616i i i T A A A -+= (1) 可得连杆变换通式为: 111111111100001i i i i i i i i i i i i i i i i i i i c s a s c c c s d s T s s c s c d c θθθαθαααθαθααα-----------????--? ?=???? ?? (2) 据连杆变换通式式(2)和表1所示连杆参数,可求得各连杆变换矩阵如下: 1 616 i i i T A A A -+=

机器人运动学知识介绍

机器人运动学知识介绍 收藏 21:53|发布者: dynamics|查看数: 1125|评论数: 2| 来自: 东方早报 摘要: 现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。随着书页的翻动,你也许会在无意识里考虑这个问题。作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。而 ... 丹尼尔·威尔逊 现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。随着书页的翻动,你也许会在无意识里考虑这个问题。作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。而另一方面,机器人———就像最后一个选择踢球的孩子———为了避免伤到自己和别人,每一个动作都必须经过仔细考虑。机器 人专家管这个过程叫做“操作研究”。 前进和逆转 如果你醒来发现自己处在一具新的躯体中,拥有金属手臂,每只手只有三根手指,你会怎么样呢?如果不知道手臂的长度,拿东西会很困难;如果只有三根手指,那么你必须找到一个全新的抓取和握东西的方法;由于弯曲的金属手臂,你可能再也没有约会的机会。这些就是身处各地的孤独的机器人们所面临的重大问题。 运动学研究旨在解决机器人的手臂转向何方(动力学则为了解决移动的速度和劲道)。机器人运动学可分两类:前进和逆转。前进运动学的问题是机器人运用它对自身的了解(关节角度和手臂长度)来判断自己在三维空间中到底身处何方。这算是简单的部分,逆转运动学正好相反,它解决机器人如何移动才能达到合适的姿势(改变关节位置)这一问题。机器人在握你手之前,需要知道你手的大概方位,以及从这里移向那里的最优顺序。有时候,可能没有最好的解决方案(试试用你的右手碰你的右肘)。 对逆转运动学来说,大多数方案运用传感器(通常是视觉和力)来估计机器人身体的当前位置。只要有了这个,机器人就能够计划下一步行动(握手、问好或绞断你的脖子)。机器人的反应很敏捷,日本ATR实验室的类人机器人能够更新视觉,估计世界形势,并且在一秒钟里能够做60个动作。这些类人机器人已经能够跳舞,耍弄彩球,玩篮球和曲棍球。 扫描环境和选择动作的过程叫做反馈环路。新的信息被经常性地用于更新当前的决定。如果缺乏经常性更新,机器人的操作技能会变得糟糕。传感器的损伤(或非常不可信赖的传感器)会干扰这一重要的环路。比如以视觉为基础的跟踪遇到混乱的场景会大受干扰,或者浪费资源去跟踪一些无意义的目标(比如落叶等)。震动可以扰乱力传感器,即使它们位于机器人手臂的内部。虽然机器人能够反应得更快更精确,但它们总是依赖于不断更新的信息和持续改进的计划。

机器人运动学

第2章 机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF ),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。 图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自 由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。 1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2)

机器人正运动学方程的D-H表示法

2.8机器人正运动学方程的D-H表示法 在1955年,Denavit和Hartenberg在“ASME Journal of Applied Mechanics”发表了一篇论文,后来利用这篇论文来对机器人进行表示和建模,并导出了它们的运动方程,这已成为表示机器人和对机器人运动进行建模的标准方法,所以必须学习这部分内容。Denavit-Hartenberg(D-H模型表示了对机器人连杆和关节进行建模的一种非常简单的方法,可用于任何机器人构型,而不管机器人的结构顺序和复杂程度如何。它也可用于表示已经讨论过的在任何坐标中的变换,例如直角坐标、圆柱坐标、球坐标、欧拉角坐标及RPY坐标等。另外,它也可以用于表示全旋转的链式机器人、SCARA机器人或任何可能的关节和连杆组合。尽管采用前面的方法对机器人直接建模会更快、更直接,但D-H表示法有其附加的好处,使用它已经开发了许多技术,例如,雅克比矩阵的计算和力分析等。 假设机器人由一系列关节和连杆组成。这些关节可能是滑动(线性)的或旋转(转动)的,它们可以按任意的顺序放置并处于任意的平面。连杆也可以是任意的长度(包括零),它可能被弯曲或扭曲,也可能位于任意平面上。所以任何一组关节和连杆都可以构成一个我们想要建模和表示的机器人。 为此,需要给每个关节指定一个参考坐标系,然后,确定从一个关节到下一个关节(一个坐标系到下一个坐标系)来进行变换的步骤。如果将从基座到第一个关节,再从第一个关节到第二个关节直至到最后一个关节的所有变换结合起来,就得到了机器人的总变换矩阵。在下一节,将根据D-H表示法确定一个一般步骤来为每个关节指定参考坐标系,然后确定如何实现任意两个相邻坐标系之间的变换,最后写出机器人的总变换矩阵。

相关文档
最新文档